Influence of Particle Size of River Sand on the Decontamination Process in the Slow Sand Filter Treatment of Micro-Polluted Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of SSF Units
2.2. Feed Water
2.3. Methods
2.3.1. Adsorption Isotherm
2.3.2. Experimental Set-Up and Operation
2.3.3. Water Quality Measurement
2.3.4. Sample Collection, DNA Extraction, and Illumina Sequencing
3. Results
3.1. Nonlinear Fitting of Adsorption Isotherm
3.2. Removal Efficiency of Pollutants Using SSF with Different Particle Size
3.3. Microbial Community Structure
3.3.1. Simplification and Classification of OTU
3.3.2. The Analysis of Alpha Diversity
3.3.3. The Analysis of Taxonomic Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, D.C.; Graziele, I.; Marques, R.C.; Gonçalves, J. Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Sci. Total Environ. 2021, 779, 146279. [Google Scholar] [CrossRef]
- Word Health Organization (WHO). Drinking-Water. Fact Sheet. Available online: http://www.who.int/mediacentre/factsheets/fs391/en/ (accessed on 14 June 2019).
- Rodriguez-Caballero, A.; Ramond, J.-B.; Welz, P.J.; Cowan, D.A.; Odlare, M.; Burton, S.G. Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. J. Environ. Manag. 2012, 109, 54–60. [Google Scholar] [CrossRef]
- Huggett, R.D.; Haigh, I.D.; Purdie, D.A. Modelling the impact of river flow, macronutrients and solar radiation on the eutrophication status of small shallow estuaries. J. Mar. Syst. 2021, 222, 103606. [Google Scholar] [CrossRef]
- Feng, S.; Xie, S.; Zhang, X.; Yang, Z.; Ding, W.; Liao, X.; Liu, Y.; Chen, C. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment. J. Environ. Sci. 2012, 24, 1587–1593. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Environment Quality. Water Environment Quality. National Surface Water Quality. Available online: https://www.mee.gov.cn/hjzl/shj/qgdbszlzk/ (accessed on 11 November 2021).
- Tellen, V.; Nkeng, G.; Dentel, S. Improved Filtration Technology for Pathogen Reduction in Rural Water Supplies. Water 2010, 2, 285–306. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Campos, L.C. The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products. Sci. Total Environ. 2018, 635, 1182–1190. [Google Scholar] [CrossRef]
- Centre for Affordable Water and Sanitation Technology (CAWST). Key Performance Indicators 2015; Centre for Affordable Water and Sanitation Technology: Calgary, AB, Canada, 2016. [Google Scholar]
- Ahammed, M.M.; Davra, K. Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination 2011, 276, 287–293. [Google Scholar] [CrossRef]
- Mpenyana-Monyatsi, L.; Mthombeni, N.H.; Onyango, M.S.; Momba, M.N. Costeffective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int. J. Environ. Res. Public Health. 2012, 9, 244–271. [Google Scholar] [CrossRef]
- Chan, W.C.; Lu, M.C. A new type synthetic filter material for biofilter: Poly(vinyl alcohol)/peat composite bead. J. Appl. Polym. Sci. 2010, 88, 3248–3255. [Google Scholar] [CrossRef]
- Duran Romero, D.A.; de Almeida Silva, M.C.; Chaúque, B.J.M.; Benetti, A.D. Biosand Filter as a Point-of-Use Water Treatment Technology: Influence of Turbidity on Microorganism Removal Efficiency. Water 2020, 12, 2302. [Google Scholar] [CrossRef]
- Maciel, P.M.F.; Sabogal-Paz, L.P. Household slow sand filters with and without water level control: Continuous and intermittent flow efficiencies. Environ. Technol. 2020, 41, 944–958. [Google Scholar] [CrossRef]
- Terin, U.C.; Sabogal-Paz, L.P. Microcystis aeruginosa and microcystin-LR removal by household slow sand filters operating in continuous and intermittent flows. Water Res. 2019, 150, 29–39. [Google Scholar] [CrossRef]
- Jenkins, M.W.; Tiwari, S.K.; Darby, J. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: Experimental investigation and modeling. Water Res. 2011, 45, 6227–6239. [Google Scholar] [CrossRef]
- Andreoli, F.C.; Sabogal-Paz, L.P. Household slow sand filter to treat groundwater with microbiological risks in rural communities. Water Res. 2020, 186, 116352. [Google Scholar] [CrossRef]
- Haig, S.J.; Collins, G.J.; Davies, R.L.; Dorea, C.; Quince, C. Biological aspects of slow sand filtration: Past, present and future. Water Sci. Technol. 2011, 11, 468–472. [Google Scholar] [CrossRef]
- Lee, E.; Oki, L.R. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure. Water Res. 2013, 47, 5121–5129. [Google Scholar] [CrossRef]
- Zhang, B.; Fazal, S.; Gao, L.; Mahmood, Q.; Laghari, M.; Sayal, A. Biosand Filter Containing Melia Biomass Treating Heavy Metals and Pathogens. Pol. J. Environ. Stud. 2016, 25, 859–864. [Google Scholar] [CrossRef]
- Young-Rojanschi, C.; Madramootoo, C. Intermittent versus continuous operation of biosand filters. Water Res. 2014, 49, 1–10. [Google Scholar] [CrossRef]
- Campos, L.C.; Su, M.F.J.; Graham, N.J.D.; Smith, S.R. Biomass development in slow sand filters. Water Res. 2002, 36, 4543–4551. [Google Scholar] [CrossRef]
- Calvo-Bado, L.A.; Pettitt, T.R.; Parsons, N.; Petch, G.M.; Morgan, J.A.W.; Whipps, J.M. Spatial and Temporal Analysis of the Microbial Community in Slow Sand Filters Used for Treating Horticultural Irrigation Water. Appl. Environ. Microbiol. 2003, 69, 2116–2125. [Google Scholar] [CrossRef] [Green Version]
- Prest, E.I.; Hammes, F.; Kötzsch, S.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res. 2013, 47, 7131–7142. [Google Scholar] [CrossRef]
- Sun, H.; Shi, B.; Bai, Y.; Wang, D. Bacterial community of biofilms developed under different water supply conditions in a distribution system. Sci. Total Environ. 2014, 472, 99–107. [Google Scholar] [CrossRef]
- Ng, T.W.; Huang, G.; Wong, P.K. Investigation of drinking water bacterial community through high-throughput sequencing. J. Environ. Sci. 2015, 37, 154–156. [Google Scholar] [CrossRef]
- Haig, S.-J.; Quince, C.; Davies, R.L.; Dorea, C.C.; Collins, G. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Res. 2014, 61, 141–151. [Google Scholar] [CrossRef]
- Mittal, A.; Kurup, L.; Mittal, J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J. Hazard. Mater. 2007, 146, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Syers, J.K.; Browman, M.G.; Smillie, G.W.; Corey, R.B. Phosphate Sorption by Soils Evaluated by the Langmuir Adsorption Equation. Soil Sci. Soc. Am. J. 1973, 37, 358–363. [Google Scholar] [CrossRef]
- Jeppu, G.P.; Clement, T.P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 129, 46–53. [Google Scholar] [CrossRef]
- Okeola, F.O.; Odebunmi, E.O. Comparison of Freundlich and Langmuir Isotherms for Adsorption of Methylene Blue by Agrowaste Derived Activated Carbon. Adv. Environ. Biol. 2010, 4, 329–335. [Google Scholar]
- Ge, D.; Shi, W.; Ren, L.; Zhang, F.; Zhang, G.; Zhang, X.; Zhang, Q. Variation analysis of affinity-membrane model based on Freundlich adsorption. J. Chromatogr. A 2006, 1114, 40–44. [Google Scholar] [CrossRef]
- French, D. Granular filter media: Evaluating filter bed depth to grain size ratio. Filtr. Sep. 2012, 49, 34–36. [Google Scholar] [CrossRef]
- Matuzahroh, N.; Fitriani, N.; Ardiyanti, P.E.; Kuncoro, E.P.; Budiyanto, W.D.; Isnadina, D.R.M.; Wahyudianto, F.E.; Mohamed, R.M.S.R. Behavior of schmutzdecke with varied filtration rates of slow sand filter to remove total coliforms. Heliyon 2020, 6, e03736. [Google Scholar] [CrossRef]
- Wang, H.; Narihiro, T.; Straub, A.P.; Pugh, C.R.; Tamaki, H.; Moor, J.F.; Bradley, I.M.; Kamagata, Y.; Liu, W.-T.; Nguyen, T.H. MS2 Bacteriophage Reduction and Microbial Communities in Biosand Filters. Environ. Sci. Technol. 2014, 48, 6702–6709. [Google Scholar] [CrossRef]
- Weber-Shirk, M.L.; Chan, K.L. The role of aluminum in slow sand filtration. Water Res. 2007, 41, 1350–1354. [Google Scholar] [CrossRef]
- Muhammad, N.; Hooke, A.M. Biomass characterization of slow sand filtration schmutzdecke and its effects on filter performance. Environ. Technol. 2003, 24, 43–50. [Google Scholar] [CrossRef]
- Yang, H.; Tang, X.; Luo, X.; Li, G.; Liang, H.; Snyder, S. Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms. J. Hazard. Mater. 2021, 415, 125707. [Google Scholar] [CrossRef]
- Leverenz, H.L.; Tchobanoglous, G.; Darby, J.L. Clogging in intermittently dosed sand filters used for wastewater treatment. Water Res. 2009, 43, 695–705. [Google Scholar] [CrossRef]
- Thullner, M.; Mauclaire, L.; Schroth, M.; Kinzelbach, W.; Zeyer, J. Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media. J. Contam. Hydrol. 2002, 58, 169–189. [Google Scholar] [CrossRef]
- Baveye, P.; Vandevivere, P.; Hoyle, B.L.; DeLeo, P.; De Lozada, D.S. Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials. Crit. Rev. Environ. Sci. Technol. 1998, 28, 123–191. [Google Scholar] [CrossRef] [Green Version]
- McKinley, J.W.; Siegrist, R.L. Soil Clogging Genesis in Soil Treatment Units Used for Onsite Wastewater Reclamation: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 2186–2209. [Google Scholar] [CrossRef]
- Tanner, C.C.; Sukias, J.; Upsdell, M. Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters. Water Res. 1998, 32, 3046–3054. [Google Scholar] [CrossRef]
- Singer, S.; Skinner, B.; Cantwell, R.E. Impact of surface maintenance on BioSand filter performance and flow. J. Water Health 2017, 15, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Freitas, B.L.S.; Terin, U.C.; Fava, N.M.N.; Maciel, P.M.F.; Garcia, L.A.T.; Medeiros, R.C.; Oliveira, M.; Fernandez-Ibañez, P.; Byrne, J.; Sabogal-Paz, L. A critical overview of household slow sand filters for water treatment. Water Res. 2021, 208, 117870. [Google Scholar] [CrossRef]
- Chao, A.; Shen, T.-J. Nonparametric prediction in species sampling. J. Agric. Biol. Environ. Stat. 2004, 9, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.M.C.K. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 1993, 80, 193–201. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Elliott, M.; DiGiano, F.; Sobsey, M. Virus attenuation by microbial mechanisms during the idle time of a household slow sand filter. Water Res. 2011, 45, 4092–4102. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.-T.; Hu, H.-W.; Cai, Z.-J.; Lei, Y.-R.; Li, W.; Zhang, M.-Y.; Li, Z.-M.; Zhu, Y.-N.; Cui, L.-J. Changes of the denitrifying communities in a multi-stage free water surface constructed wetland. Sci. Total Environ. 2019, 650, 1419–1425. [Google Scholar] [CrossRef]
- Wittebolle, L.; Marzorati, M.; Clement, L.; Balloi, A.; Daffonchio, D.; Heylen, K.; De Vos, P.; Verstraete, W.; Boon, N. Initial community evenness favours functionality under selective stress. Nat. Cell Biol. 2009, 458, 623–626. [Google Scholar] [CrossRef]
- White, R.A., 3rd; Power, I.M.; Dipple, G.M.; Southam, G.; Suttle, C.A. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front. Microbiol. 2015, 6, 966. [Google Scholar] [CrossRef] [Green Version]
- Langenbach, K.; Kuschk, P.; Horn, H.; Kästner, M. Modeling of slow sand filtration for disinfection of secondary clarifier effluent. Water Res. 2010, 44, 159–166. [Google Scholar] [CrossRef]
- Fu, J.; Lee, W.-N.; Coleman, C.; Meyer, M.; Carter, J.; Nowack, K.; Huang, C.-H. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere 2017, 166, 311–322. [Google Scholar] [CrossRef]
- Bai, H.; Liao, S.; Wang, A.; Huang, J.; Shu, W.; Ye, J. High-efficiency inorganic nitrogen removal by newly isolated Pannonibacter phragmitetus B1. Bioresour. Technol. 2019, 271, 91–99. [Google Scholar] [CrossRef]
- Meng, X.; Niu, G.; Yang, W.; Cao, X. Di(2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas sp. strain. Bioresour. Technol. 2015, 180, 356–359. [Google Scholar] [CrossRef]
- Falk, S.; Liu, B.; Braker, G. Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Syst. Appl. Microbiol. 2010, 33, 337–347. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, R.; Liang, J.; Qu, J. Integrated Metagenomic and Physiochemical Analyses to Evaluate the Potential Role of Microbes in the Sand Filter of a Drinking Water Treatment System. PLoS ONE 2013, 8, e61011. [Google Scholar] [CrossRef] [Green Version]
Parameter | Concentration Range | Average | Standards for Drinking Water Quality (GB5749-2006) in China |
---|---|---|---|
CODMn (mg/L) | 8.48–12.3 | 10.4 | 3 (5) 1 |
Ammonia Nitrogen (mg/L) | 0.84–1.5 | 1.1 | 0.5 |
Turbidity (NTU) | 7.5–12.1 | 9.9 | 1 (3) |
pH | 7.5–8.2 | 7.7 | 6.5–9.5 |
Trace elements 2 | - | - | - |
Adsorbent | CODMn | NH4+-N | |||||
---|---|---|---|---|---|---|---|
Langmuir adsorption model | particle size range (mm) | 0.1–0.5 | 0.5–1 | 1–1.5 | 0.1–0.5 | 0.5–1 | 1–1.5 |
R2 | 0.9702 | 0.9829 | 0.9401 | 0.9435 | 0.9486 | 0.9414 | |
a | 88.9281 | 73.2674 | 68.7745 | 21.6058 | 22.77677 | 23.67681 | |
b | 0.0542 | 0.0429 | 0.0385 | 0.2573 | 0.16427 | 0.12456 | |
Freundlich adsorption model | R2 | 0.9593 | 0.9693 | 0.9221 | 0.9269 | 0.9332 | 0.9285 |
k | 6.9740 | 7.8695 | 6.9740 | 5.41278 | 4.16285 | 3.46424 | |
1/n | 0.4674 | 0.4642 | 0.4674 | 0.4406 | 0.5107 | 0.5567 |
Sample | Phylum | Class | Order | Family | Genus | Species | Unclassified |
---|---|---|---|---|---|---|---|
1 | 2621 | 2602 | 2442 | 2344 | 1768 | 192 | 0 |
2 | 1707 | 1706 | 1699 | 1663 | 1348 | 150 | 0 |
3 | 1856 | 1852 | 1813 | 1764 | 1422 | 152 | 0 |
Sample | ACE | Chao | Simpson | Shannon |
---|---|---|---|---|
1 | 3614.31 | 3425.27 | 0.975296 | 8.13 |
2 | 2091.49 | 1967.24 | 0.978057 | 7.69 |
3 | 1857.00 | 1857.00 | 0.979462 | 8.09 |
Plum | Class | Total | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|---|---|
Proteobacteria | Alphaproteobacteria | 55.6 | 47.23 | 56.08 | 63.57 |
Proteobacteria | Betaproteobacteria | 16.6 | 26.10 | 11.23 | 12.46 |
Proteobacteria | Gammaproteobacteria | 10.9 | 7.41 | 12.52 | 12.69 |
Proteobacteria | Deltaproteobacteria | 4.4 | 2.89 | 8.65 | 1.78 |
Firmicutes | Bacilli | 2.6 | 1.59 | 3.57 | 2.52 |
Actinobacteria | Actinobacteria | 2.5 | 2.22 | 3.41 | 1.86 |
Bacteroidetes | Sphingobacteriia | 2.1 | 3.61 | 1.46 | 1.31 |
Bacteroidetes | Cytophagia | 1.1 | 2.09 | 0.90 | 0.38 |
Firmicutes | Clostridia | 1.0 | 0.72 | 1.14 | 1.05 |
Acidobacteria | Holophagae | 0.6 | 1.74 | 0.01 | 0.05 |
Chloroflexi | Anaerolineae | 0.3 | 0.55 | 0.12 | 0.29 |
Gemmatimonadetes | Gemmatimonadetes | 0.2 | 0.42 | 0.00 | 0.27 |
Acidobacteria | Subgroup_6 | 0.2 | 0.50 | 0.01 | 0.12 |
Chloroflexi | KD4-96 | 0.2 | 0.34 | 0.00 | 0.18 |
Acidobacteria | Blastocatellia | 0.2 | 0.34 | 0.08 | 0.05 |
Verrucomicrobia | Verrucomicrobiae | 0.2 | 0.10 | 0.23 | 0.13 |
Actinobacteria | Acidimicrobiia | 0.1 | 0.19 | 0.03 | 0.19 |
Nitrospirae | Nitrospira | 0.1 | 0.27 | 0.10 | 0.04 |
Armatimonadetes | Armatimonadia | 0.1 | 0.04 | 0.15 | 0.08 |
others | 1 | 1.6 | 0.4 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Zhao, C.; Lv, Y.; Yang, J.; Li, B. Influence of Particle Size of River Sand on the Decontamination Process in the Slow Sand Filter Treatment of Micro-Polluted Water. Water 2022, 14, 100. https://doi.org/10.3390/w14010100
Ji X, Zhao C, Lv Y, Yang J, Li B. Influence of Particle Size of River Sand on the Decontamination Process in the Slow Sand Filter Treatment of Micro-Polluted Water. Water. 2022; 14(1):100. https://doi.org/10.3390/w14010100
Chicago/Turabian StyleJi, Xuemei, Cui Zhao, Yufeng Lv, Jifu Yang, and Bin Li. 2022. "Influence of Particle Size of River Sand on the Decontamination Process in the Slow Sand Filter Treatment of Micro-Polluted Water" Water 14, no. 1: 100. https://doi.org/10.3390/w14010100
APA StyleJi, X., Zhao, C., Lv, Y., Yang, J., & Li, B. (2022). Influence of Particle Size of River Sand on the Decontamination Process in the Slow Sand Filter Treatment of Micro-Polluted Water. Water, 14(1), 100. https://doi.org/10.3390/w14010100