Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- −
- Preparatory stage (field measurements and sampling);
- −
- Project development for the installation of emitters and planning of treatment operations;
- −
- Laboratory microbiological investigation;
- −
- Preparation of a treatment system on the site (drilling of wells, installation of emitters and the necessary equipment) and implementation of groundwater remediation;
- −
- Monitoring of the processes of control over groundwater;
- −
- Processing of the data received.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logeshwaran, P.; Megharaj, M.; Chadalavada, S.; Bowman, M.; Naidu, R. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 2018, 10, 175–193. [Google Scholar] [CrossRef]
- Ossai, I.C.; Aziz, A.; Auwalu, H.; Fauziah, S.H. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 3–42. [Google Scholar] [CrossRef]
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems—Fate and Microbial Responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huling, S.G.; Weaver, J.W. Ground Water Issue: Dense Nonaquieous Liquids; United States Environmental Protection Agency: Washington, DC, USA, 1991. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=129406 (accessed on 21 November 2021).
- Socolov, E.M.; Maksimovich, N.G.; Meshcheriakova, O.Y. Forming oil polluting sulfate massif in karstic regions and methods of their liquidation. News Tula State Univ. Sci. Earth 2015, 2, 79–89. [Google Scholar]
- Brusseau, M.L.; Sabatini, D.A.; Gierke, J.S.; Annable, M.D. Innovative subsurface remediation. Field testing of physical, chemical, and characterization technologies. Am. Chem. Soc. Symp. Ser. 1999, 725, 299. [Google Scholar]
- Sabatini, D.A.; Knox, R.C.; Harwell, J.H. Surfactant-enhanced subsurface remediation. Emerging technologies. Am. Chem. Soc. Symp. Ser. 1995, 594, 300. [Google Scholar]
- Carey, G.R.; McBean, E.A.; Feenstra, S. DNAPL Source Depletion: 2. Attainable goals and cost-benefit analyses. Remediat. J. 2014, 24, 79–106. [Google Scholar] [CrossRef]
- Interstate Technology Regulatory Council (ITRC). Integrated DNAPL Site Strategy. Available online: https://itrcweb.org/teams/projects/integrated-dnapl-site-strategy (accessed on 21 November 2021).
- Kavanaugh, M.C.; Arnold, W.A.; Beck, B.D.; Chin, Y.; Chowdhury, Z.; Ellis, D.E.; Illangasekare, T.H.; Johnson, P.C.; Mehran, M.; Mercer, J.W.; et al. Alternatives for Managing the Nation’s Complex Contaminated Groundwater Sites; The National Academies Press: Washington, DC, USA, 2013; 408p. [Google Scholar]
- Sale, T.; Parker, B.L.; Newell, C.J.; Devlin, J.F. State-of-the-Science Review: Management of Contaminants Stored in Low Permeability Zones. Strategic Environmental Research and Development Program SERDP Project ER-1740. Available online: https://www.serdp-estcp.org/ (accessed on 21 November 2021).
- Davydova, S.L.; Tagasov, V.I. Oil and Oil Products in the Environment; RUDN: Moscow, Russia, 2004; 163p. [Google Scholar]
- Oborin, A.A.; Khmurchik, V.T.; Ilarionov, S.A.; Makarova, M.Y.; Nazarov, A.V. Oil-Polluted Biogeocenoses; UB of RAS: Perm, Russia, 2008; 511p. [Google Scholar]
- Pryanichnikova, B.B. Electrochemical Method of Liquidation of the Consequences of Oil Pollution of Soils. Ph.D. Thesis, Ufa State Petroleum Technological University, Ufa, Russia, 2018. [Google Scholar]
- Chen, Z.; Kuschk, P.; Reiche, N.; Borsdorf, H.; Kaestner, M.; Köser, H. Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. J. Hazard. Mater. 2012, 209–210, 510–515. [Google Scholar] [CrossRef]
- Chen, Z.; Kuschk, P.; Paschke, H.; Kaestner, M.; Müller, J.A.; Köser, H. Treatment of a sulfate-rich groundwater contaminated with perchloroethene in a hydroponic plant root mat filter and a horizontal subsurface flow constructed wetland at pilot-scale. Chemosphere 2014, 117, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.; Chauhan, A.; Jain, R.K. Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol. Rev. 2009, 33, 324–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, N.; Singh, A.; Khan, H. Bioremediation of Contaminated Sites and Aquifers. Geomicrobiol. Biogeochem. Soil Biol. 2014, 39, 261–296. [Google Scholar]
- Trigo, A.; Valencia, A.; Cases, I. Systemic approaches to biodegradation. FEMS Microbiol. Rev. 2009, 33, 98–108. [Google Scholar] [CrossRef]
- Maksimovich, N.G.; Khmurchik, V.T. Biotechnologies in engineering geology. Eng. Geol. 2014, 3, 18–25. [Google Scholar]
- Maksimovich, N.G.; Meshcheriakova, O.Y.; Khmurchik, V.T. Bacterial processes in oil-polluted karst environments in Perm region (Russian Federation). In Proceedings of the IAEG/AEG Annual Meeting Proceedings, San Francisco, CA, USA, 17–21 September 2018; Springer: Cham, Switzerland; San Francisco, CA, USA, 2019; Volume 3, pp. 103–107. [Google Scholar]
- Wilson, S.B.; Brown, R.A. In situ bioreclamation: A cost-effective technology to remediate subsurface organic contamination. Ground Water Monit. Rev. 1989, 9, 173–185. [Google Scholar] [CrossRef]
- Foght, J.M.; Westlake, D.W.S. Bioremediation of oil spills. Spill Technol. News Lett. 1992, 17, 1–10. [Google Scholar]
- Koronelli, T.V. Principles and methods for Raising Efficiency of Biological degradation of hydrocarbons in the environment. Appl. Biochem. Microbiol. 1996, 32, 579–585. [Google Scholar]
- Atlas, R.M. Microbial Degradation of Petroleum Hydrocarbons: An Environmental Perspective. Microbiol. Rev. 1981, 45, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Maksimovich, N.G.; Khmurchik, V.T.; Meshcheriakova, O.Y. Ground waters clarification experience from oil pollution by biological methods. Ind. Saf. Ecol. 2009, 4, 34–36. [Google Scholar]
- Maksimovich, N.G.; Khmurchik, V.T. Consortium of Strains of Hydrocarbon-Oxidizing Bacteria Pseudomonas aeruginosa ND K3-1 and Pseudomonas fluorescens ND K3-2 as Hydrocarbon Destructor and a Method of Treating Oil-Polluted Subsurface Waters. Patent RU 2312719 C1, 20 December 2007. [Google Scholar]
- Maksimovich, N.G.; Khmurchik, V.T. Remediation of oil-polluted groundwater aquifers at karst region. In Engineering Geology for Society and Territory; River basins, reservoir sedimentation and water resources; Springer: Cham, Switzerland, 2015; Volume 3, pp. 417–419. [Google Scholar]
- Kaiser, J.-P.; Bollag, J.-M. Microbial activity in the terrestrial subsurface. Cell. Mol. Life Sci. 1990, 46, 797–806. [Google Scholar] [CrossRef]
- Aburto, A.; Fahy, A.; Coulon, F.; Lethbridge, G.; Timmis, K.N.; Ball, A.S.; McGenity, T.J. Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater. J. Appl. Microbiol. 2009, 106, 317–328. [Google Scholar] [CrossRef]
- Hao, R.; Lu, A. Biodegradation of heavy oils by halophilic bacterium. Prog. Nat. Sci. 2009, 19, 997–1001. [Google Scholar] [CrossRef]
- Yagi, J.M.; Neuhauser, E.F.; Ripp, J.A.; Mauro, D.M.; Madsen, E.L. Subsurface ecosystem resilience: Long-term attenuation of subsurface contaminants supports a dynamic microbial community. ISME J. 2010, 4, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cost Analyses for Selected Groundwater Cleanup Projects: Pump and Treat Systems and Permeable Reactive Barriers; US Environmental Protection Agency: Washington, DC, USA, 2001. Available online: https://www.epa.gov/remedytech/cost-analyses-selected-groundwater-cleanup-projects-pump-and-treat-systems-and-permeable (accessed on 21 November 2021).
- Cost-Effective Design of Pump and Treat Systems; US Environmental Protection Agency: Washington, DC, USA, 2005. Available online: https://www.epa.gov/remedytech/cost-effective-design-pump-and-treat-systems (accessed on 21 November 2021).
- Nwachukwu, M.A. Prospective techniques for in situ treatment and protection of aquifers: A sustainable hydrology review. Int. J. Water Res. Environ. Eng. 2014, 6, 131–143. [Google Scholar]
- Juwarkar, A.A.; Misra, R.R.; Sharma, J.K. Recent trends in bioremediation. Geomicrobiol. Biogeochem. Soil Biol. 2014, 39, 81–100. [Google Scholar]
- Tyagi, M.; da Fonseca, M.M.R.; de Carvalho, C.C.C.R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22, 231–241. [Google Scholar] [CrossRef]
- Innovative Remediation Technologies: Field-Scale Demonstration Projects in North America, 2nd ed.; US Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://www.epa.gov/remedytech/innovative-remediation-technologies-field-scale-demonstration-projects-north-america-2nd (accessed on 21 November 2021).
- Gibson, T.L.; Abdul, A.S.; Chalmer, P.D. Enhancement of in situ bioremediation of BTEX-contaminated ground water by oxygen diffusion from silicone tubing. Groundwater Monit. Remediat. 1998, 18, 93–104. [Google Scholar] [CrossRef]
- Kashir, M.; Barker, J.; McGregor, R.; Shouakar-Stash, O. Aerobic Biodegradation of Hydrocarbons in High Temperature and Saline Groundwater. Remediat. J. 2014, 24, 77–90. [Google Scholar] [CrossRef]
- Wilson, R.D.; Mackay, D.M.; Scow, K.M. In situ MTBE biodegradation supported by diffusive oxygen release. Environ. Sci. Technol. 2002, 36, 190–199. [Google Scholar] [CrossRef]
- McHugh, T.E.; Kulkarni, P.R.; Newell, C.J.; Connor, J.A.; Garg, S. Progress in Remediation of Groundwater at Petroleum Sites in California. Groundwater 2014, 52, 898–907. [Google Scholar] [CrossRef]
- Salanitro, J.P.; Johnson, P.C.; Spinnle, G.E.; Maner, P.M.; Wisniewski, H.L.; Bruce, C. Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ. Sci. Technol. 2000, 34, 4152–4162. [Google Scholar] [CrossRef]
- Scow, K.M.; Hicks, K.A. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr. Opin. Biotechnol. 2005, 16, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.E.; Hristova, K.; Wood, I.; Mackay, D.M.; Lory, E.; Lorenzana, D.; Scow, K.M. Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Environ. Health Perspect. 2005, 113, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Robertson, W.D.; Cherry, J.A. Long term performance of the Waterloo denitrification barrier. In Proceedings of the International Containment Technology Conference Proceedings, St. Petersburg, FL, USA, 9–12 February 1997; US Department of Energy: Washington, DC, USA, 1997; pp. 691–696. [Google Scholar]
- Wilson, R.D.; Mackay, D.M. Arrays of unpumped wells: An alternative to permeable walls for in situ treatment. In Proceedings of the International Containment Technology Conference proceedings, St. Petersburg, FL, USA, 9–12 February 1997; US Department of Energy: Washington, DC, USA, 1997; pp. 888–894. [Google Scholar]
- Davis, L.C.; Erickson, L.E. A review of bioremediation and natural attenuation of MTBE. Environ. Prog. 2004, 23, 243–252. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, E.M.; Pérez, E.X.; Schadt, C.W.; Zhou, J.; Massol-Deyá, A.A. Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico). Int. J. Environ. Res. Public Health 2006, 3, 292–300. [Google Scholar] [CrossRef]
- Chapelle, F.H. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology. Groundwater 1999, 37, 122–132. [Google Scholar] [CrossRef]
- Yaniga, P.M.; Matson, C.; Demko, D.J. Restoration of water quality in a multi-aquifer system via in situ biodegradation of the organic contaminants. In Proceedings of the Fifth National Symposium and Exposition on Aquifer Restoration and Ground Water Monitoring, Worthington, OH, USA, 21–24 May 1985; National Water Well Association: Worthington, OH, USA, 1985. 510p. [Google Scholar]
- Wilson, R.D.; Mackay, D.M. A method for passive release of solutes from an unpumped well. Ground Water 1995, 33, 936–945. [Google Scholar] [CrossRef]
- Baldwin, B.R.; Nakatsu, C.H.; Nies, L. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res. 2008, 42, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.D.; Mackay, D.M.; Cherry, J.A. Arrays of unpumped wells for plume migration control by semi-passive in situ remediation. Groundwater Monit. Remediat. 1997, 17, 186–194. [Google Scholar] [CrossRef]
- Chapman, S.W.; Byerley, B.T.; Smyth, D.J.A.; Mackay, D.M. A pilot test of passive oxygen release for enhancement of in situ bioremediation of BTEX-contaminated ground water. Groundwater Monit. Remediat. 1997, 17, 93–105. [Google Scholar] [CrossRef]
- Brzeszcz, J.; Kapusta, P.; Steliga, T.; Turkiewicz, A. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment. Molecules 2020, 25, 661. [Google Scholar] [CrossRef] [Green Version]
- Płaza, G.A.; Jangid, K.; Lukasik, K.; Nałecz-Jawecki, G.; Berry, C.J.; Brigmon, R.L. Reduction of Petroleum Hydrocarbons and Toxicity in Refinery Wastewater by Bioremediation. Bull. Environ. Contam. Toxicol. 2008, 81, 329–333. [Google Scholar] [CrossRef]
- Dueholm, M.S.; Marques, I.G.; Karst, S.M.; D’imperio, S.; Tale, V.P.; Lewis, D.; Nielsen, P.H.; Nielsen, J.L. Survival and activity of individual bioaugmentation strains. Bioresour. Technol. 2015, 186, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
Date | Parameter | Well 1-o | Well 2-o | Well 3-o | Well 4-o | Well 5-o | Well 6-o | Well 7-o | Well 8-o | Well 9-o | Well 10-o |
---|---|---|---|---|---|---|---|---|---|---|---|
05/28/20 | TDS (ppm) | 847 | 765 | 735 | 608 | 591 | 680 | 610 | 627 | 563 | 615 |
Conductivity (µS/cm) | 1734 | 1487 | 1470 | 1240 | 1185 | 1355 | 1225 | 1253 | 1121 | 1212 | |
pH | 6.48 | 6.92 | 6.75 | 6.42 | 6.70 | 6.73 | 6.93 | 6.81 | 6.82 | 6.78 | |
06/30/20 | TDS (ppm) | 966 | 697 | 595 | 590 | 593 | 577 | 634 | 624 | 622 | 565 |
Conductivity (µS/cm) | 1933 | 1394 | 1190 | 1184 | 1181 | 1154 | 1272 | 1248 | 1243 | 1167 | |
pH | 6.73 | 6.96 | 6.94 | 6.97 | 6.85 | 6.87 | 7.01 | 6.99 | 6.93 | 7.01 | |
07/15/20 | TDS (ppm) | 933 | 623 | 584 | 589 | 585 | 643 | 597 | 598 | 590 | 603 |
Conductivity (µS/cm) | 1800 | 1252 | 1166 | 1183 | 1170 | 1285 | 1190 | 1198 | 1180 | 1208 | |
pH | 6.78 | 7.22 | 6.86 | 6.85 | 6.82 | 6.88 | 6.90 | 6.85 | 6.85 | 7.12 | |
07/30/20 | TDS (ppm) | 931 | 571 | 574 | 583 | 577 | 625 | 610 | 601 | 590 | 624 |
Conductivity (µS/cm) | 1851 | 1146 | 1159 | 1183 | 1160 | 1241 | 1198 | 1215 | 1163 | 1238 | |
pH | 6.79 | 7.15 | 7.10 | 7.00 | 6.95 | 6.88 | 7.11 | 7.00 | 7.09 | 7.20 | |
08/13/20 | TDS (ppm) | 902 | 587 | 581 | 590 | 582 | 621 | 595 | 594 | 592 | 630 |
Conductivity (µS/cm) | 1797 | 1171 | 1168 | 1177 | 1165 | 1240 | 1192 | 1226 | 1185 | 1259 | |
pH | 6.77 | 7.06 | 7.05 | 6.92 | 6.89 | 6.90 | 6.97 | 7.09 | 6.99 | 7.10 | |
08/28/20 | TDS (ppm) | 584 | 595 | 584 | 581 | 593 | 611 | 591 | 603 | 595 | 637 |
Conductivity (µS/cm) | 1175 | 1195 | 1166 | 1175 | 1168 | 1225 | 1173 | 1192 | 1168 | 1272 | |
pH | 6.67 | 6.82 | 6.84 | 6.80 | 7.01 | 7.03 | 7.07 | 7.01 | 7.09 | 6.99 |
Well | TPH (mg/L) | DO (mg/L) | Demand for DO (mg/L) | Excess DO (mg/L) |
---|---|---|---|---|
1-o | 0.62 | 11.7 | 1.86 | 9.84 |
2-o | 0.46 | 10.3 | 1.38 | 8.92 |
3-o | 1.15 | 12.2 | 3.45 | 8.75 |
4-o | 1.92 | 10.8 | 5.76 | 5.04 |
5-o | 1.68 | 9.7 | 5.04 | 4.66 |
6-o | 0.47 | 12.8 | 1.41 | 11.39 |
7-o | 1.88 | 8.6 | 5.64 | 2.96 |
8-o | 2.67 | 4.7 | 8.01 | −3.31 |
9-o | 0.77 | 15 | 2.31 | 12.69 |
10-o | 0.01 | 9.9 | 0.03 | 9.87 |
Date | Efficiency of Groundwater Treatment 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Well 1-o | Well 2-o | Well 3-o | Well 4-o | Well 5-o | Well 6-o | Well 7-o | Well 8-o | Well 9-o | Well 10-o | |
05/28/20 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
06/30/20 | 0.960 | 0.410 | 0.134 | 0.016 | 0.713 | 0.861 | 0.446 | 0.208 | 0.908 | 0.931 |
07/15/20 | 0.983 | 0.703 | 0.470 | 0.403 | 0.853 | 0.917 | 0.549 | 0.632 | 0.957 | 0.953 |
06/30/20 | 0.983 | 0.022 | 0.000 | 0.000 | 0.625 | 0.933 | 0.533 | 0.066 | 0.896 | 0.919 |
08/13/20 | 0.999 | 0.860 | 0.215 | 0.000 | 0.691 | 0.896 | 0.498 | 0.000 | 0.890 | 0.977 |
08/28/20 | 0.825 | 0.799 | 0.228 | 0.226 | 0.754 | 0.932 | 0.580 | 0.389 | 0.840 | 0.997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demenev, A.; Maksimovich, N.; Khmurchik, V.; Rogovskiy, G.; Rogovskiy, A.; Baryshnikov, A. Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow. Water 2022, 14, 192. https://doi.org/10.3390/w14020192
Demenev A, Maksimovich N, Khmurchik V, Rogovskiy G, Rogovskiy A, Baryshnikov A. Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow. Water. 2022; 14(2):192. https://doi.org/10.3390/w14020192
Chicago/Turabian StyleDemenev, Artem, Nikolay Maksimovich, Vadim Khmurchik, Gennadiy Rogovskiy, Anatoliy Rogovskiy, and Alexey Baryshnikov. 2022. "Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow" Water 14, no. 2: 192. https://doi.org/10.3390/w14020192
APA StyleDemenev, A., Maksimovich, N., Khmurchik, V., Rogovskiy, G., Rogovskiy, A., & Baryshnikov, A. (2022). Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow. Water, 14(2), 192. https://doi.org/10.3390/w14020192