UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Configuration
2.2. Reactor Startup
2.3. Influent Characteristics and Operational Parameters
2.4. Monitoring and Analytics
3. Results
3.1. COD and Solids Removal
3.2. Process Stability and Biogas Production
4. Discussion
4.1. Strategies for UASB Application for Enhanced Sustainability of Municipal WWTPs
4.2. Circular Economy Implications of UASB Wastewater Treatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novotny, V.; Brown, P. Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; IWA Publishing: London, UK, 2007. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Ghilardi, P.; Boguniewicz-Zablocka, J. New paradigms in urban water management for conservation and sustainability. Water Pract. Technol. 2016, 11, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Libralato, G.; Volpi Ghirardini, A.; Avezzù, F. To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management. J. Environ. Manag. 2012, 94, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Kenway, S.; Lant, P.; Priestly, A.; Daniels, P. The connection between water and energy in cities: A review. Water Sci. Technol. 2011, 63, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Van Loosdrecht, M.C.M.; Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G. Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Tomei, M.C.; Stazi, V.; Daneshgar, S.; Capodaglio, A.G. Holistic approach to phosphorus recovery from urban wastewater: Enhanced biological removal combined with precipitation. Sustainability 2020, 12, 575. [Google Scholar] [CrossRef] [Green Version]
- UN. Wastewater: The Untapped Resource. World Water Assessment Programme, 2017. The United Nations World Water Development Report 2017. Available online: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2017-wastewater-the-untapped-resource/ (accessed on 25 April 2021).
- Capodaglio, A.G. Fit-for-purpose urban wastewater reuse: Analysis of issues and available technologies for sustainable multiple barrier approaches. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1619–1666. [Google Scholar] [CrossRef]
- Cecconet, D.; Raček, J.; Callegari, A.; Hlavínek, P. Energy recovery from wastewater: A study on heating and cooling of a multipurpose building with sewage-reclaimed heat energy. Sustainability 2020, 12, 116. [Google Scholar] [CrossRef] [Green Version]
- Bharathiraja, B.; Yogendran, D.; Ranjith Kumar, R.; Chakravarthy, M.; Palani, S. Biofuels from sewage sludge—A review. Int. J. Chem. Technol. Res. 2014, 6, 4417–4427. [Google Scholar]
- Daneshgar, S.; Vanrolleghem, P.A.; Vaneeckhaute, C.; Buttafava, A.; Capodaglio, A.G. Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci. Total Environ. 2019, 668, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Morandi, C.G.; Wasielewski, S.; Mouarkech, K.; Minke, R.; Steinmetz, H. Impact of new sanitation technologies upon conventional wastewater infrastructures. Urban Water J. 2018, 15, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Zeeman, G.; Kujawa, K.; de Mes, T.; Hernandez, L.; de Graaf, M.; Abu-Ghunmi, L.; Mels, A.; Meulman, B.; Temmink, H.; Buisman, C.; et al. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Water Sci. Technol. 2008, 57, 1207–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, W.F. Energy in Wastewater Treatment; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Capodaglio, A.G.; Callegari, A.; Lopez, M.V. European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support. Sustainability 2016, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wei, J.; Ye, G.; Zhao, Y.; Li, Z.; Qiu, G.; Li, F.; Wei, C. The correlations among wastewater internal energy, energy consumption and energy recovery/production potentials in wastewater treatment plant: An assessment of the energy balance. Sci. Total Environ. 2020, 714, 136655. [Google Scholar] [CrossRef]
- Englande, A.J.; Reimers, R.S. Biosolids management-sustainable development status and future direction. Water Sci. Technol. 2001, 44, 41–46. [Google Scholar] [CrossRef]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G. Sustainable management of biological solids in small treatment plants: Overview of strategies and reuse options for a solar drying facility in Poland. Environ. Sci. Pollut. Res. 2021, 28, 24680–24693. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, S.; Bernardi, G.; Callegari, A.; Dondi, D.; Capodaglio, A.G. Biochar production from sewage sludge and microalgae mixtures: Properties, sustainability and possible role in circular economy. Biomass Convers. Biorefinery 2021, 11, 289–299. [Google Scholar] [CrossRef]
- Djandja, O.S.; Wang, Z.C.; Wang, F.; Xu, Y.P.; Duan, P.G. Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review. Ind. Eng. Chem. Res. 2020, 59, 16939–16956. [Google Scholar] [CrossRef]
- Bora, R.R.; Richardson, R.E.; You, F. Resource recovery and waste-to-energy from wastewater sludge via thermochemical conversion technologies in support of circular economy: A comprehensive review. BMC Chem. Eng. 2020, 2, 8. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Dondi, D. Microwave-Induced Pyrolysis for Production of Sustainable Biodiesel from Waste Sludges. Waste Biomass Valoriz. 2016, 7, 703–709. [Google Scholar] [CrossRef]
- Kaszycki, P.; Głodniok, M.; Petryszak, P. Towards a bio-based circular economy in organic waste management and wastewater treatment—The Polish perspective. New Biotechnol. 2021, 61, 80–89. [Google Scholar] [CrossRef]
- Bodik, I.; Herdova, B.; Drtil, M. Anaerobic treatment of municipal wastewater under psychrophilic conditions. Bioprocess Eng. 2000, 22, 385–390. [Google Scholar] [CrossRef]
- Lettinga, G.; van Velsen, A.F.M.; Hobma, S.W.; de Zeeuw, W.; Klapwijk, A. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 1980, 22, 699–734. [Google Scholar] [CrossRef]
- Lettinga, G.; Hulshoff Pol, L.W. UASB-Process Design for Various Types of Wastewaters. Water Sci. Technol. 1991, 24, 87–107. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pract. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Von Sperling, M.; Chernicharo, C.A. Biological Wastewater Treatment in Warm Climate Regions; IWA Publishing: London, UK, 2005. [Google Scholar]
- Ribera-Pi, J.; Campitelli, A.; Badia-Fabregat, M.; Jubany, I.; Martínez-Lladó, X.; McAdam, E.; Jefferson, B.; Soares, A. Hydrolysis and Methanogenesis in UASB-AnMBR Treating Municipal Wastewater Under Psychrophilic Conditions: Importance of Reactor Configuration and Inoculum. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Serrano León, E.; Perales Vargas-Machuca, J.A.; Lara Corona, E.; Arbib, Z.; Rogalla, F.; Fernández Boizán, M. Anaerobic digestion of municipal sewage under psychrophilic conditions. J. Clean. Prod. 2018, 198, 931–939. [Google Scholar] [CrossRef]
- Daud, M.K.; Rizvi, H.; Akram, M.F.; Ali, S.; Rizwan, M.; Nafees, M.; Jin, Z.S. Review of Upflow Anaerobic Sludge Blanket Reactor Technology: Effect of Different Parameters and Developments for Domestic Wastewater Treatment. J. Chem. 2018, 2018, e1596319. [Google Scholar] [CrossRef] [Green Version]
- Uemura, S.; Harada, H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresour. Technol. 2000, 72, 275–282. [Google Scholar] [CrossRef]
- Daneshgar, S.; Buttafava, A.; Callegari, A.; Capodaglio, A.G. Economic and energetic assessment of different phosphorus recovery options from aerobic sludge. J. Clean. Prod. 2019, 223, 729–738. [Google Scholar] [CrossRef]
- Boe, K.; Batstone, D.J.; Steyer, I.P.; Angelidaki, I. State indicators for monitoring the anaerobic digestion process. Water Res. 2010, 44, 5973–5980. [Google Scholar] [CrossRef] [PubMed]
- Issah, A.A.; Kabera, T. Impact of volatile fatty acids to alkalinity ratio and volatile solids on biogas production under thermophilic conditions. Waste Manag. Res. 2021, 39, 871–878. [Google Scholar] [CrossRef]
- Lettinga, G.; Rebac, S.; Zeeman, G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 2001, 19, 363–370. [Google Scholar] [CrossRef]
- Singh, K.S.; Viraraghavan, T. Impact of temperature on performance, microbiological, and hydrodynamic aspects of UASB reactors treating municipal wastewater. Water Sci. Technol. 2003, 48, 211–217. [Google Scholar] [CrossRef]
- Seghezzo, L.; Zeeman, G.; van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. A review the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol. 1998, 65, 175–190. [Google Scholar] [CrossRef]
- Von Sperling, M.; Freire, V.H.; De Lemos Chernicharo, C.A. Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Sci. Technol. 2001, 43, 323–328. [Google Scholar] [CrossRef]
- Lew, B.; Belavski, M.; Admon, S.; Tarre, S.; Green, M. Temperature effect on UASB reactor operation for domestic wastewater treatment in temperate climate regions. Water Sci. Technol. 2003, 48, 25–30. [Google Scholar] [CrossRef]
- Lerner, M.; Stahl, N.; Galil, N. Aerobic vs. anaerobic–aerobic biotreatment: Paper mill wastewater. Environ. Eng. Sci. 2007, 24, 277–285. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, A.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Taking the water out of “wastewater”: An ineluctable oxymoron for urban water cycle sustainability. Water Environ. Res. 2020, 92, 2030–2040. [Google Scholar] [CrossRef]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technol. Environ. Policy 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and Circular Economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Bolognesi, S.; Baneras, L.; Perona-Vico, E.; Capodaglio, A.G.; Balaguer, M.D.; Puig, S. Carbon dioxide to bio-oil in a bioelectrochemical system-assisted microalgae biorefinery process. Sustain. Energy Fuels 2022, 6, 150–161. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- Hossain, H.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef]
- Callegari, A.; Hlavinek, P.; Capodaglio, A.G. Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Rev. Ambient Agua 2018, 13, e2128. [Google Scholar] [CrossRef]
Parameter | Units | Range |
---|---|---|
Total COD | mg/L | 602–866 |
Soluble COD | mg/L | 147–183 |
TSS | mg/L | 300–520 |
VSS | mg/L | 274–467 |
VFA (as CH3COOH) | mg/L | 56–112 |
Alk (as CaCO3) | mg/L | 892–1037 |
Period | Duration (weeks) | Temperature (°C) | Hydraulic Load (m/h) | Influent Flow (L/h) | HRT (h) | OLR (kgCOD/m3·day) | SRT (days) |
---|---|---|---|---|---|---|---|
Startup | 8 | 30 | 0.22–0.36 | 185–280 | 11–24 | 0.4–2.3 | 40 |
I | 4 | 25 | 0.27 | 210 | 11.2 | 0.8–1.8 | 22 |
II | 1 | 25 | 0.29 | 230 | 10.5 | 1.5–2.0 | 12 |
III | 1 | 25 | 0.32 | 255 | 9.5 | 1.9–2.3 | 6 |
IV | 2 | 25 | 0.35 | 275 | 8.8 | 0.5–2.5 | 8 |
V | 14 | 25 | 0.33 | 185 | 13 | 0.7–3.0 | 30 |
Period | Total COD (mg/L) | Soluble COD (mg/L) | TSS (mg/L) | VSS (mg/L) | VFA (as CH3COOH) (mg/L) | Alk (mgCaCO3/L) | Biogas Production (L/day) | COD Conv. to CH4 (%) | |
---|---|---|---|---|---|---|---|---|---|
Startup | Influent | 617 | 147 | 300 | 276 | 58 | 894 | ||
Effluent | 324 | 130 | 121 | 138 | 66 | 1002 | 279 | 26 | |
Removal, % | 45.3 | 10.5 | 62.5 | ||||||
I | Influent | 659 | 179 | 423 | 388 | 98 | 959 | ||
Effluent | 391 | 108 | 255 | 231 | 53 | 1109 | 484 | 31 | |
Removal, % | 41.4 | 38.6 | 41.8 | ||||||
II | Influent | 745 | 180 | 479 | 434 | 108 | 982 | ||
Effluent | 506 | 79 | 209 | 229 | 36 | 1094 | 560 | 28 | |
Removal, % | 31.3 | 55.6 | 54.6 | ||||||
III | Influent | 820 | 153 | 562 | 468 | 86 | 969 | ||
Effluent | 631 | 79 | 516 | 397 | 39 | 1094 | 643 | 26 | |
Removal, % | 23 | 45.7 | 8.2 | ||||||
IV | Influent | 653 | 158 | 425 | 320 | 85 | 1034 | ||
Effluent | 518 | 110 | 326 | 215 | 50 | 1108 | 519 | 25 | |
Removal, % | 22.1 | 38.7 | 27.1 | ||||||
V | Influent | 756 | 160 | 458 | 383 | 97 | 932 | ||
Effluent | 234 | 62 | 142 | 120 | 34 | 1024 | 427 | 28 | |
Removal, % | 66.4 | 59 | 66.8 |
Parameter | Units | In | Out |
---|---|---|---|
Ammonia | mgN-NH4/L | 48 | 61 |
Total N | mgN/L | 69 | 76 |
Phosphate | mgP-PO4/L | 3.3 | 7 |
Total P | mgP/L | 9 | 8.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecconet, D.; Callegari, A.; Capodaglio, A.G. UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature. Water 2022, 14, 115. https://doi.org/10.3390/w14010115
Cecconet D, Callegari A, Capodaglio AG. UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature. Water. 2022; 14(1):115. https://doi.org/10.3390/w14010115
Chicago/Turabian StyleCecconet, Daniele, Arianna Callegari, and Andrea G. Capodaglio. 2022. "UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature" Water 14, no. 1: 115. https://doi.org/10.3390/w14010115
APA StyleCecconet, D., Callegari, A., & Capodaglio, A. G. (2022). UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature. Water, 14(1), 115. https://doi.org/10.3390/w14010115