Assessment of the Habitat Quality of Offshore Area in Tongzhou Bay, China: Using Benthic Habitat Suitability and the InVEST Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Identification of the Major Environmental Factors Impacting Benthic Biodiversity
2.4. Evaluation of the Habitat Suitability Index (HSI)
2.5. Evaluation of Habitat Quality
3. Results
3.1. Benthic Characteristics
3.2. Correlations between Benthic Biodiversity and Environmental Factors
3.3. The Empirical Benthic Habitat Suitability Index (HSI) Model
3.4. Evaluation of the Habitat Suitability Index
3.5. Evolution of the Habitat Quality of Tongzhou Bay
3.5.1. Habitat Types
3.5.2. Evaluation of Habitat Quality
4. Discussion
4.1. Habitat Quality Model
4.2. The Habitat Suitability Model
4.3. Habitat Suitability of Tongzhou Bay
4.4. Habitat Quality of Tongzhou Bay
4.5. Implications for Future Management
4.6. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- Villa, F. Semantically driven meta-modelling: Automating model construction in an environmental decision support system for the assessment of ecosystem services flows. In Information Technologies in Environmental Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–36. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2010, 48, 219–242. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Deng, J.S.; Lin, Y.; Zhou, M.M.; Wu, C.; Chen, B.J.; Xiao, G.Q.; Cai, J.B. Ecosystem services dynamics response to tremendous reclamation in a coastal island city. Ecosyst. Health Sustain. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hou, X.; Song, Y.; Shan, K.; Zhu, S.; Yu, X.; Mo, X. Assessing Changes of Habitat Quality for Shorebirds in Stopover Sites: A Case Study in Yellow River Delta, China. Wetlands 2018, 39, 67–77. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Song, W.; Yu, J.; Wu, Y. Dynamic evolution and scenario simulation of habitat quality under the impact of land-use change in the Huaihe River Economic Belt, China. PLoS ONE 2021, 16, e0249566. [Google Scholar] [CrossRef]
- Cao, W.; Li, R.; Chi, X.; Chen, N.; Chen, J.; Zhang, H.; Zhang, F. Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China. Ecol. Indic. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Li, S.P.; Liu, J.L.; Lin, J.; Fan, S.L. Spatial and temporal evolution of habitat quality in Fujian Province, China based on the land use change from 1980 to 2018. J. Appl. Ecol. 2020, 31, 4080–4090. (In Chinese) [Google Scholar]
- Li, X.; Yu, X.; Wu, K.N.; Feng, Z.; Liu, Y.N.; Li, X.L. Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China. Sci. Total Environ. 2021, 762, 14. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Borja, A.; Franco, J.; Perez, V. A marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull. 2000, 40, 1100–1114. [Google Scholar] [CrossRef]
- Peng, S.; Zhou, R.; Qin, X.; Shi, H.; Ding, D. Application of macrobenthos functional groups to estimate the ecosystem health in a semi-enclosed bay. Mar. Pollut. Bull. 2013, 74, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Degraer, S.; Verfaillie, E.; Willems, W.; Adriaens, E.; Vincx, M.; Van Lancker, V. Habitat suitability modelling as a mapping tool for macrobenthic communities: An example from the Belgian part of the North Sea. Cont. Shelf Res. 2008, 28, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Currie, D.R.; Small, K.J. Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar. Coast. Shelf Sci. 2005, 63, 315–331. [Google Scholar] [CrossRef]
- Mutlu, E.; Çinar, M.E.; Ergev, M.B. Distribution of soft-bottom polychaetes of the Levantine coast of Turkey, eastern Mediterranean Sea. J. Mar. Syst. 2010, 79, 23–35. [Google Scholar] [CrossRef]
- Ganesh, T.; Raman, A.V. Macrobenthic community structure of the northeast Indian shelf, Bay of Bengal. Mar. Ecol. Prog. Ser. 2007, 341, 59–73. [Google Scholar] [CrossRef] [Green Version]
- GB 17378.4-2007; The Specification for Marine Monitoring—Part 4: Seawater Analysis. National Marine Environmental Monitoring Center: Dalian, China, 2007.
- Yi, Y.; Wang, Z.; Yang, Z. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecol. Model. 2010, 221, 864–875. [Google Scholar] [CrossRef]
- Cai, L.; Ma, L.; Gao, Y.; Zheng, T.; Lin, P. Analysis of Assessing Criterion for Polluted Situation Using Species Diversity Index of Marine Macrofauna. J. Nat. Sci. Xiamen 2002, 41, 641–646. (In Chinese) [Google Scholar]
- Chainho, P.; Costa, J.L.; Chaves, M.L.; Dauer, D.M.; Costa, M.J. Influence of seasonal variability in benthic invertebrate community structure on the use of biotic indices to assess the ecological status of a Portuguese estuary. Mar. Pollut. Bull. 2007, 54, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- GB 3097-1997; Sea Water Quality Standard. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1997.
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Boggero, A.; Zaupa, S.; Bettinetti, R.; Ciampittiello, M.; Fontaneto, D. The Benthic Quality Index to Assess Water Quality of Lakes May Be Affected by Confounding Environmental Features. Water 2020, 12, 2519. [Google Scholar] [CrossRef]
- Gore, J.A.; Layzer, J.B.; Mead, J. Macroinvertebrate instream flow studies after 20 years: A role in stream management and restoration. Regul. Rivers Res. Manag. 2001, 17, 527–542. [Google Scholar] [CrossRef]
- Bom, F.C.; Colling, L.A. Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol. 2020, 41, e12595. [Google Scholar] [CrossRef]
- Yu, S.L.; Lee, T.W. Habitat preference of the stream fish, Sinogastromyzon puliensis (Homalopteridae). Zool. Stud. 2002, 41, 183–187. [Google Scholar]
- Akoumianaki, I.; Nicolaidou, A. Spatial variability and dynamics of macrobenthos in a Mediterranean delta front area: The role of physical processes. J. Sea Res. 2007, 57, 47–64. [Google Scholar] [CrossRef]
- Liao, Y.; Shou, L.; Zeng, J.; Gao, A. Spatiotemporal distribution of macrobenthic communities and its relationships with environmental factors in Sanmen Bay. J. Appl. Ecol. 2011, 22, 2424–2430. (In Chinese) [Google Scholar]
- Sauthier, N.; Grasmick, A.; Blancheton, J.P. Biological denitrification applied to a marine closed aquaculture system. Water Res. 1998, 32, 1932–1938. [Google Scholar] [CrossRef]
- Pullin, R.S.V.; Rosenthal, H.; Maclean, J.L. Environment and aquaculture in developing countries. Fish. Res. 1995, 23, 1. [Google Scholar]
- Petersen, J.K.; Malm, T. Offshore windmill farms: Threats to or possibilities for the marine environment. AMBIO J. Hum. Environ. 2006, 35, 75–80. [Google Scholar] [CrossRef]
- Wilhelmsson, D.; Malm, T.; Ohman, M.C. The influence of offshore windpower on demersal fish. ICES J. Mar. Sci. 2006, 63, 775–784. [Google Scholar] [CrossRef] [Green Version]
Habitat Types | Habitat Score | Sensitivity to Threat Factors | ||||||
---|---|---|---|---|---|---|---|---|
Sewage Discharge | Reclamation | Pond Aquaculture | Open Aquaculture | Wind Turbines | Harbors | Trestles | ||
Tidal flat | 1 | 1 | 1 | 0.8 | 0.2 | 0.6 | 0.5 | 0.7 |
Water | 1 | 1 | 0.7 | 0.7 | 0.2 | 0.5 | 0.3 | 0.5 |
Reclamation/road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Medium development (tidal flat) | 0.6 | 0.6 | 0.4 | 0.4 | 0.12 | 0.3 | 0.18 | 0.3 |
Medium development (water) | 0.6 | 0.6 | 0.4 | 0.4 | 0.12 | 0.3 | 0.18 | 0.3 |
Light development (tidal flat) | 0.8 | 0.8 | 0.5 | 0.5 | 0.16 | 0.4 | 0.24 | 0.4 |
Light development (water) | 0.8 | 0.8 | 0.5 | 0.5 | 0.16 | 0.4 | 0.24 | 0.4 |
Threat Factors | Maximum Distance (drmax; km) | Weight (wr) | Decay Type |
---|---|---|---|
Sewage discharge | 5 | 1 | Exponential decay |
Reclamation | 2 | 1 | Exponential decay |
Pond aquaculture | 2 | 0.7 | Exponential decay |
Pond aquaculture | 0.5 | 0.3 | Linear decay |
Harbors | 2 | 0.7 | Linear decay |
Wind turbines | 0.5 | 0.3 | Exponential decay |
Trestles | 0.5 | 0.5 | Linear decay |
Temperature | pH | Salinity | COD | DO | DIP | DIN | CHLA | |
---|---|---|---|---|---|---|---|---|
All samples | 0.323 ** | −0.099 | −0.054 | −0.226 * | 0.049 | 0.133 | −0.096 | 0.076 |
DIP < 45 (mg/L) | 0.650 ** | −0.156 | −0.105 | −0.268 * | 0.036 | 0.322 ** | −0.210 | −0.108 |
DIP > 45 (mg/L) | −0.044 | −0.002 | 0.110 | −0.090 | 0.023 | 0.012 | −0.064 | 0.104 |
Environmental Factors | Score of Single Factors | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Temperature | 0–7 | 7–13.4 | 13.4–18 | 18–30 | <30 |
COD | <1.12 | 0.85–1.12 | 0.7–0.85 | 0.61–0.7 | 0–0.61 |
DIP | 0–0.015 | 0.015–0.03 | - | - | 0.03–0.045 |
Sum of Squares | df | Mean Square | F | Sig. | R2 | |
---|---|---|---|---|---|---|
Regression | 1.965 | 3 | 0.655 | 26.562 | 0.000 | 0.57 |
Residual | 1.479 | 60 | 0.025 | |||
Total | 3.444 | 63 |
Tidal Flat | Water | Reclamation/Road | Medium Development (Tidal Flat) | Medium Development (Water) | Light Development (Tidal Flat) | Light Development (Water) |
---|---|---|---|---|---|---|
12.18% | 51.44% | 5.5% | 4.92% | 5.12% | 10.75% | 10.09% |
Average | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |
---|---|---|---|---|---|---|
Without HSI | 0.86 | 5.93% | - | 9.60% | 20.79% | 63.68% |
With HSI | 0.61 | 5.93% | 4.91% | 27.89% | 49% | 12.27% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, S.; Liu, Y.; Xu, M. Assessment of the Habitat Quality of Offshore Area in Tongzhou Bay, China: Using Benthic Habitat Suitability and the InVEST Model. Water 2022, 14, 1574. https://doi.org/10.3390/w14101574
Zhang H, Li S, Liu Y, Xu M. Assessment of the Habitat Quality of Offshore Area in Tongzhou Bay, China: Using Benthic Habitat Suitability and the InVEST Model. Water. 2022; 14(10):1574. https://doi.org/10.3390/w14101574
Chicago/Turabian StyleZhang, Haifeng, Sida Li, Yun Liu, and Min Xu. 2022. "Assessment of the Habitat Quality of Offshore Area in Tongzhou Bay, China: Using Benthic Habitat Suitability and the InVEST Model" Water 14, no. 10: 1574. https://doi.org/10.3390/w14101574
APA StyleZhang, H., Li, S., Liu, Y., & Xu, M. (2022). Assessment of the Habitat Quality of Offshore Area in Tongzhou Bay, China: Using Benthic Habitat Suitability and the InVEST Model. Water, 14(10), 1574. https://doi.org/10.3390/w14101574