Assessment of Total Petroleum Hydrocarbon Contamination of the Red Sea with Endemic Fish from Jeddah (Saudi Arabia) as Bioindicator of Aquatic Environmental Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Chemicals
2.4. Extraction and Separation
2.5. Chromatographic Analysis
2.6. Bioconcentration Factor (BCF) and Bioaccumulation
2.7. Assessment of Cancer Risk of Saudis Exposed to PAHs in Endemic Fish
2.7.1. Carcinogenic Potency of PAHs (BaPequi) in Fish
2.7.2. Cancer Risk Estimates Based on PAH Exposure to Fish
2.8. Statistical Methods
3. Results and Discussion
3.1. Profile of the Amino Acid Content in the Three Fish Species
3.2. TPHs and PAHs Levels in the Coral Reef Fish Samples
3.3. Total Petroleum Hydrocarbon Concentrations in Tissues
3.4. Polycyclic Aromatic Hydrocarbon Levels in Fish Species
3.5. Health Risks from Endemic Fish Consumption
3.5.1. Carcinogenic Potential of PAHs (BaPequi)
3.5.2. Carcinogenic PAH Estimation
3.5.3. Incremental Lifetime Cancer Risk (ILCR)
3.6. Multivariate Analysis
3.6.1. Pearson and Spearman Correlation Analysis
3.6.2. Factor Analysis
3.6.3. Principal Component Analysis
3.6.4. Cluster Analysis
3.7. Bioconcentration Factor (BCF) and Bioaccumulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashraf, W.; Mian, A. Total Petroleum Hydrocarbon Burden in Fish Tissues from the Arabian Gulf. Toxicol. Environ. Chem. 2010, 92, 61–66. [Google Scholar] [CrossRef]
- Al-Mur, B.A. Assessing the Ecological Risks from Hydrocarbons in the Marine Coastal Sediments of Jeddah, Red Sea. Environ. Monit. Assess. 2019, 191, 180. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Polycyclic Aromatic Hydrocarbons in Food-Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- Polycyclic, S.N. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 853. [Google Scholar]
- European Chemicals Agency. Member State Committee Support Document for Identification of Benzo[def]chrysene (benzo[a]pyrene) as a Substance of very High Concern Because of its Carcinogenic (Article 57 A), Mutagenic (Article 57 b), Toxic for Reproduction (Article 57 c), Persistent, Bioaccumulative, and Toxic (PBT) (Article 57 d) and Very Persistent and Very Bioaccumulative (Article 57 E) Properties. Adopted on 27 May 2016. Available online: http://echa.europa.eu/documents/10162/985e117f-38e2-4d45-9d0c-94413dd0462e (accessed on 23 May 2022).
- Roubal, W.T.; Collier, T.K. Spin-Labeling Techniques for Studying Mode of Action of Petroleum Hydrocarbons on Marine Organisms. Fish. Bull. 1975, 73, 2. [Google Scholar]
- Li, Y.; Zou, X.; Zou, S.; Li, P.; Yang, Y.; Wang, J. Pollution status and trophic transfer of polycyclic aromatic hydrocarbons in coral reef ecosystems of the South China Sea. ICES J. Mar. Sci. 2021, 78, 2053–2064. [Google Scholar] [CrossRef]
- Moore, M.N.; Livingstone, D.R.; Widdows, J.; Lowe, D.M.; Pipe, R.K. Molecular, cellular and physiological effects of oil-derived hydrocarbons on molluscs and their use in impact assessment. Philos. Trans. R. Soc. B Biol. Sci. 1987, 316, 603–623. [Google Scholar]
- Neff, J.M. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Biol. Conserv. 1980, 18, 212–233. [Google Scholar]
- Vandermeulen, J.H.; Foda, A.; Stuttard, C. Toxicity vs. Mutagenicity of Some Crude Oils, Distillates and Their Water Soluble Fractions. Water Res. 1985, 19, 1283–1289. [Google Scholar] [CrossRef]
- Varanasi, U.; Malins, D.C. Metabolism of Petroleum Hydrocarbons: Accumulation and Biotransformation in Marine Organisms. In Biological Effects; Elsevier: Amsterdam, The Netherlands, 1977; pp. 175–270. [Google Scholar]
- Viarengo, A.; Moore, M.N.; Pertica, M.; Mancinelli, G.; Accomando, R. A simple procedure for evaluating the protein degradation rate in mussel (Mytilus galloprovincialis L.) tissues and its application in a study of phenanthrene effects on protein catabolism. Comp. Biochem. Physiol. B Comp. Biochem. 1992, 103, 27–32. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M.; Batang, Z.; Alikunhi, N.; Al-Jahdali, R.; Al-Jebreen, D.; Aziz, M.A.M.; Al-Suwailem, A. Fish Consumption Behavior and Rates in Native and Non-Native People in Saudi Arabia. Environ. Res. 2014, 133, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, C.; Zou, X.; Feng, Z.; Yao, Y.; Wang, T.; Zhang, C. Occurrence of Polycyclic Aromatic Hydrocarbons (PAHs) in Coral Reef Fish from the South China Sea. Mar. Pollut. Bull. 2019, 139, 339–345. [Google Scholar] [CrossRef]
- Fisher, S.W. Mechanisms of Bioaccumulation in Aquatic Systems. Rev. Environ. Contam. Toxicol. 1995, 4, 87–117. [Google Scholar] [CrossRef]
- Sheedy, B.R.; Mattson, V.R.; Cox, J.S.; Kosian, P.A.; Phipps, G.L.; Ankley, G.T. Bioconcentration of Polycyclic Aromatic Hydrocarbons by the Freshwater Oligochaete Lumbriculus Variegatus. Chemosphere 1998, 36, 3061–3070. [Google Scholar] [CrossRef]
- Groupers of the World (Family Serranidae, Subfamily Epinephelinae). FAO Species Catalogue. An Annotated and Illustrated Catalogue of the Grouper, Rockcod, Hind, Coral Grouper and Lyretail Species Known to Date. Volume 16. Available online: https://www.fao.org/documents/card/fr/c/9d54666b-08d2-522c-b593-229651cddc7f/ (accessed on 9 April 2022).
- Kanzari, F.; Syakti, A.D.; Asia, L.; Malleret, L.; Mille, G.; Jamoussi, B.; Abderrabba, M.; Doumenq, P. Aliphatic Hydrocarbons, Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls, Organochlorine, and Organophosphorous Pesticides in Surface Sediments from the Arc River and the Berre Lagoon, France. Environ. Sci. Pollut. Res. 2012, 19, 559–576. [Google Scholar] [CrossRef]
- Schuster, R.; Apfel, A. Hewlett-Packard App, Note, Pub. 1986; 5954–6257.
- Schuster, R. Determination of Amino Acids in Biological, Pharmaceutical, Plant and Food Samples by Automated Precolumn Derivatization and High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1988, 431, 271–284. [Google Scholar] [CrossRef]
- Godel, H.; Seitz, P.; Verhoef, M. Automated Amino Acid Analysis Using Combined OPA and FMOC-Cl Precolumn Derivatization. LC-GC Int. 1992, 5, 44–49. [Google Scholar]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. Amino Acid Anal. Using Zorbax Eclipse-AAA Columns Agil. 2000, 1100, 1–10. [Google Scholar]
- Woodward, C.; Henderson, J.W., Jr.; Wielgos, T. High-Speed Amino Acid Analysis (AAA) on Sub-Two Micron Reversed-Phase (RP) Columns. Agil. Pub 2010. [Google Scholar]
- Gratzfeld-Huesgen, A. Sensitive and Reliable Amino Acid Analysis in Protein Hydrolysates Using the Agilent 1100 Series HPLC. Tech. Note Agil. Technol. 1999, 5958, 5968. Available online: https://gimitec.com/sites/default/files/59685658.pdf (accessed on 25 May 2022).
- Greene, J.; Henderson, J.W., Jr.; Wikswo, J.P. Rapid and Precise Determination of Cellular Amino Acid Flux Rates Using HPLC with Automated Derivatization with Absorbance Detection. Agil. Technol. 2009, 1–8. [Google Scholar]
- Liu, H. Measurement of Blood Plasma Amino Acids in Ultrafiltrates by High-Performance Liquid Chromatography with Automatic Precolumn O-Phthaldialdehyde Derivatization. In Amino Acid Analysis Protocols (Methods in Molecular BiologyTM); Cooper, C., Packer, N., Williams, K., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 123–140. [Google Scholar] [CrossRef]
- Jamoussi, B.; Kanzari, F.; Hassine, B.B.; Abderrabba, A. Using Bezier Curves for the Calculation of Retention Indices of Polycyclic Aromatic Hydrocarbons in the So-Called Lee’s Scale in Temperature-Programmed Gas Chromatography with Mass Spectrometry Detection. J. Chromatogr. Sci. 2007, 45, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, H.J.; Rimkus, G.G.; Scheunert, I.; Kaune, A.; Schramm, K.-W.; Kettrup, A.; Zeeman, M.; Muir, D.C.; Hansen, L.G.; Mackay, D. Bioaccumulation and Occurrence of Endocrine-Disrupting Chemicals (EDCs), Persistent Organic Pollutants (POPs), and Other Organic Compounds in Fish and Other Organisms Including Humans. In Bioaccumulation–New Aspects and Developments; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–166. [Google Scholar]
- Nisbet, I.C.; Lagoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals); United States Environmental Protection Agency: Washington, DC, USA, 1991; EPA/540/R-92/003. [Google Scholar]
- Pufulete, M.; Battershill, J.; Boobis, A.; Fielder, R. Approaches to Carcinogenic Risk Assessment for Poly-cyclic Aromatic Hydrocarbons: A UK Perspective. Regul. Toxicol. Pharmacol. 2004, 40, 54–66. [Google Scholar] [CrossRef]
- Pongpiachan, S. Incremental Lifetime Cancer Risk of PM 2.5 Bound Polycyclic Aromatic Hydrocarbons (PAHs) before and after the Wildland Fire Episode. Aerosol Air Qual. Res. 2016, 16, 2907–2919. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO Expert Committee on Food Additives; World Health Organization. Evaluation of Certain Food Contaminants: Sixty-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2006; Volume 64. [Google Scholar]
- Wu, W.-J.; Qin, N.; He, W.; He, Q.-S.; Ouyang, H.-L.; Xu, F.-L. Levels, Distribution, and Health Risks of Polycyclic Aromatic Hydrocarbons in Four Freshwater Edible Fish Species from the Beijing Market. Sci. World J. 2012, 2012, 156378. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Chu, M.M. Dose-Response Analysis of Ingested Benzo (a) Pyrene (CAS No. 50-32-8); Environmental Protection Agency: Washington, DC, USA, 1991. [Google Scholar]
- United States Environmental Protection Agency. Drinking Water Criteria Document for Polycyclic Aromatic Hydrocarbons (PAH) (Final Draft, 1985); U.S. Environmental Protection Agency: Washington, DC, USA, 1991; ECAO-CIN-D010 (NTIS PB86117801).
- Peng, C.; Chen, W.; Liao, X.; Wang, M.; Ouyang, Z.; Jiao, W.; Bai, Y. Polycyclic Aromatic Hydrocarbons in Urban Soils of Beijing: Status, Sources, Distribution and Potential Risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef]
- Akoto, O.; Bismark, E.F.; Darko, G.; Adei, E. Concentrations and Health Risk Assessments of Heavy Metals in Fish from the Fosu Lagoon. Int. J. Environ. Res. 2014, 8, 403–410. [Google Scholar]
- Moslen, M.; Miebaka, C.A. Heavy Metal Contamination in Fish (Callinectis amnicola) from an Estuarine Creek in the Niger Delta, Nigeria and Health Risk Evaluation. Bull. Environ. Contam. Toxicol. 2017, 99, 506–510. [Google Scholar] [CrossRef]
- Qu, C.; Qi, S.; Yang, D.; Huang, H.; Zhang, J.; Chen, W.; Yohannes, H.K.; Sandy, E.H.; Yang, J.; Xing, X. Risk Assessment and Influence Factors of Organochlorine Pesticides (OCPs) in Agricultural Soils of the Hill Region: A Case Study from Ningde, Southeast China. J. Geochem. Explor. 2015, 149, 43–51. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Exposure Factors Handbook (1997, Final Report); United States Environmental Protection Agency: Washington, DC, USA. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=12464 (accessed on 14 April 2022).
- Li, G.; Wu, S.; Wang, L.; Akoh, C.C. Concentration, Dietary Exposure and Health Risk Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) in Youtiao, a Chinese Traditional Fried Food. Food Control 2016, 59, 328–336. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final Report); United States Environmental Protection Agency: Washington, DC, USA. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 14 April 2022).
- Huang, T.; Guo, Q.; Tian, H.; Mao, X.; Ding, Z.; Zhang, G.; Li, J.; Ma, J.; Gao, H. Assessing Spatial Distribution, Sources, and Human Health Risk of Organochlorine Pesticide Residues in the Soils of Arid and Semiarid Areas of Northwest China. Environ. Sci. Pollut. Res. 2014, 21, 6124–6135. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.; Mahanty, A.; Ganguly, S.; Sankar, T.V.; Chakraborty, K.; Rangasamy, A.; Paul, B.; Sarma, D.; Mathew, S.; Asha, K.K.; et al. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition. J. Amino Acids 2014, 2014, 269797. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.R. Biochemical Measurements. In The Effects of Stress and Pollution on Marine Animals; Bayne, B.L., Brown, D.A., Burns, K., Dixon, D.R., Ivanovici, A., Livingstone, D.R., Lowe, D.M., Moore, M.N., Stebbing, A.R.D., Widdows, J., Eds.; Praeger: New York, NY, USA, 1985; pp. 81–132. [Google Scholar]
- Scholz, N. Significance of the Taurine-Glycine Ratio as an Indicator of Stress. Bull. Environ. Contam. Toxicol. 1987, 38, 15–21. [Google Scholar] [CrossRef]
- Hummel, H.; Amiard-Triquet, C.; Bachelet, G.; Desprez, M.; Marchand, J.; Sylvand, B.; Amiard, J.C.; Rybarczyk, H.; Bogaards, R.H.; Sinke, J.; et al. Free Amino Acids as a Biochemical Indicator of Stress in the Estuarine Bivalve Macoma Balthica. Sci. Total Environ. 1996, 188, 233–241. [Google Scholar] [CrossRef]
- Narvia, M.; Rantamaki, P. Aminotransferases in the Bivalve Mollusc Mytilus edulis, L. and Short Term Effects of Crude Oil in Brackish Water. Biomarkers 1997, 2, 253–258. [Google Scholar] [CrossRef]
- Sokolowski, A.; Wolowicz, M.; Hummel, H. Free Amino Acids in the Clam Macoma Balthica L. (Bivalvia, Mollusca) from Brackish Waters of the Southern Baltic Sea. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 579–592. [Google Scholar] [CrossRef]
- Zurburg, W.; Hummel, H.; Bogaards, R.; de Wolf, L.; Ravestein, H. Free amino acid concentrations in Mytilus edulis L. from different locations in the Southwestern part of The Netherlands: Their possible significance as a biochemical stress indicator. Comp. Biochem. Physiol. Part A Physiol. 1989, 93, 413–417. [Google Scholar] [CrossRef]
- Pranal, V.; Fiala-Médioni, A.; Colomines, C.J. Amino Acid and Related Compound Composition in Two Symbiotic Mytilid Species from Hydrothermal Vents. Mar. Ecol. Prog. Ser. 1995, 119, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Duquesne, S.; Liess, M.; Bird, D.J. Sub-Lethal Effects of Metal Exposure: Physiological and Behavioural Responses of the Estuarine Bivalve Macoma Balthica. Mar. Environ. Res. 2004, 58, 245–250. [Google Scholar] [CrossRef]
- Moore, M.N.; Lowe, D.M.; Fieth, P.E.M. Lysosomal Responses to Experimentally Injected Anthracene in the Digestive Cells of Mytilus edulis. Mar. Biol. 1978, 48, 297–302. [Google Scholar] [CrossRef]
- Moore, M.N.; Clarke, K.R. Use of Microstereology and Quantitative Cytochemistry to Determine the Effects of Crude Oil-Derived Aromatic Hydrocarbons on Lysosomal Structure and Function in a Marine Bivalve Mollusc, Mytilus edulis. Histochem. J. 1982, 14, 713–718. [Google Scholar] [CrossRef]
- Moore, M.N.; Widdows, J.; Cleary, J.J.; Pipe, R.K.; Salkeld, P.N.; Donkin, P.; Farrar, S.V.; Evans, S.V.; Thomson, P.E. Responses of the Mussel Mytilus edulis to Copper and Phenanthrene: Interactive Effects. Mar. Environ. Res. 1984, 14, 167–183. [Google Scholar] [CrossRef]
- Moore, M.N.; Mayernik, J.A.; Giam, C.S. Lysosomal Responses to a Polynuclear Aromatic Hydrocarbon in a Marine Snail: Effects of Exposure to Phenanthrene and Recovery. Mar. Environ. Res. 1985, 17, 230–233. [Google Scholar] [CrossRef]
- Moore, M.N.; Pipe, R.K.; Farrar, S.V.; Thomson, S.; Donkin, P. Lysosomal and Microsomal Responses to Oil-Derived Hydrocarbons in Littorina littorea. Mar. Pollut. Bull. 1987, 13, 10. [Google Scholar]
- Tolosa, I.; De Mora, S.J.; Fowler, S.W.; Villeneuve, J.P.; Bartocci, J.; Cattini, C. Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Mar. Pollut. Bull. 2005, 50, 1619–1633. [Google Scholar] [CrossRef]
- Turki, A. Distribution and Sources of Aliphatic Hydrocarbons in Surface Sediments of Al-Arbaeen Lagoon, Jeddah, Saudi Arabia. J. Fish. Livest. Prod. 2016, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Copat, C.; Brundo, M.V.; Arena, G.; Grasso, A.; Conti, G.O.; Ledda, C.; Fallico, R.; Sciacca, S.; Ferrante, M. Seasonal Variation of Bioaccumulation in Engraulis encrasicolus (Linneaus, 1758) and Related Biomarkers of Exposure. Ecotoxicol. Environ. Saf. 2012, 86, 31–37. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, C.; Parrott, J.L.; Frank, R.A.; Yang, Z.; Brown, C.E.; Hollebone, B.P.; Landriault, M.; Fieldhouse, B.; Liu, Y.; et al. Forensic Source Differentiation of Petrogenic, Pyrogenic, and Biogenic Hydrocarbons in Canadian Oil Sands Environmental Samples. J. Hazard. Mater. 2014, 271, 166–177. [Google Scholar] [CrossRef]
- Sluka, R.; Reichenbach, N. Grouper Density and Diversity at Two Sites in the Republic of Maldives. Fac. Publ. Present. 1995, 438, 1–16. [Google Scholar]
- Farmer, N.A.; Ault, J.S. Grouper and Snapper Movements and Habitat Use in Dry Tortugas, Florida. Mar. Ecol. Prog. Ser. 2011, 433, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Green, A.L.; Maypa, A.P.; Almany, G.R.; Rhodes, K.L.; Weeks, R.; Abesamis, R.A.; Gleason, M.G.; Mumby, P.J.; White, A.T. Larval Dispersal and Movement Patterns of Coral Reef Fishes, and Implications for Marine Reserve Network Design. Biol. Rev. 2015, 90, 1215–1247. [Google Scholar] [CrossRef]
- Kannan, K.; Perrotta, E. Polycyclic Aromatic Hydrocarbons (PAHs) in Livers of California Sea Otters. Chemosphere 2008, 71, 649–655. [Google Scholar] [CrossRef]
- Frapiccini, E.; Annibaldi, A.; Betti, M.; Polidori, P.; Truzzi, C.; Marini, M. Polycyclic Aromatic Hydrocarbon (PAH) Accumulation in Different Common Sole (Solea Solea) Tissues from the North Adriatic Sea Peculiar Impacted Area. Mar. Pollut. Bull. 2018, 137, 61–68. [Google Scholar] [CrossRef]
- Cheung, K.C.; Leung, H.M.; Kong, K.Y.; Wong, M.H. Residual Levels of DDTs and PAHs in Freshwater and Marine Fish from Hong Kong Markets and Their Health Risk Assessment. Chemosphere 2007, 66, 460–468. [Google Scholar] [CrossRef]
- Net, S.; Henry, F.; Rabodonirina, S.; Diop, M.; Merhaby, D.; Mahfouz, C.; Amara, R.; Ouddane, B. Accumulation of PAHs, Me-PAHs, PCBs and Total Mercury in Sediments and Marine Species in Coastal Areas of Dakar, Senegal: Contamination Level and Impact. Int. J. Environ. Res. 2015, 9, 419–432. [Google Scholar]
- Pruell, R.J.; Lake, J.L.; Davis, W.R.; Quinn, J.G. Uptake and Depuration of Organic Contaminants by Blue Mussels (Mytilus edulis) Exposed to Environmentally Contaminated Sediment. Mar. Biol. 1986, 9, 497–507. [Google Scholar] [CrossRef]
- Sun, R.-X.; Lin, Q.; Ke, C.-L.; Du, F.-Y.; Gu, Y.-G.; Cao, K.; Luo, X.-J.; Mai, B.-X. Polycyclic Aromatic Hydrocarbons in Surface Sediments and Marine Organisms from the Daya Bay, South China. Mar. Pollut. Bull. 2016, 103, 325–332. [Google Scholar] [CrossRef]
- Afifi, M.; Alkaladi, A.; Abu Zinada, O.A.; Couderchet, M. Alteration in Antioxidant Genes Expression in Some Fish Caught from Jeddah and Yanbu Coast as a Bio-Indicator of Oil Hydrocarbons Pollution. Saudi J. Biol. Sci. 2017, 24, 1580–1587. [Google Scholar] [CrossRef] [Green Version]
- Al-Saad, H.T.; Al-Ali, B.S.; Al-Anber, L.J.; Al-Khion, D.D.; Hantoush, A.A.; Saleh, S.M.; Alaial, A.H. Total Petroleum Hydrocarbon in Selected Fish of Shatt Al-Arab River, Iraq. Int. J. Mar. Sci. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Al-Ali, B.S.; Al-Bidhani, M.F.; Al-Khion, D.D.; Al-Nagar, G.A.; Al-Saad, H.T.; Khwadem, A.A.; Zeidan, A.M.; Mahdi, S.; Hantoush, A.A. Environmental Assessment of Petroleum Hydrocarbons in Fish Species from North-West Arabian Gulf. J. Pharm. Chem. Biol. Sci. 2016, 4, 126–134. [Google Scholar]
- Afifi, M.; Ali, H.A.; Saber, T.M.; El-Murr, A. elhakeem. Lethrinas Nebulosus Fish as a Biomarker for Petroleum Hydrocarbons Pollution in Red Sea: Alterations in Antioxidants MRNA Expression. Jpn. J. Vet. Res. 2016, 64 (Suppl. S2), S123–S129. [Google Scholar]
- Enuneku, A.A.; Ainerua, M.; Erhunmwunse, N.O.; Osakue, O.E. Total Petroleum Hydrocarbons in Organs of Commercially Available Fish; Trachurus trecae (Cadenat, 1949) from Oliha Market, Benin City, Nigeria. Ife J. Sci. 2015, 17, 383–393. [Google Scholar]
- Nozar, S.L.M.; Pauzi, M.Z.; Salarpouri, A.; Daghooghi, B.; Salimizadeh, M. Total Petroleum Hydrocarbons in Edible Marine Biota from Northern Persian Gulf. Environ. Monit. Assess. 2015, 187, 214. [Google Scholar] [CrossRef]
- Thomann, R.V.; Komlos, J. Model of Biota-Sediment Accumulation Factor for Polycyclic Aromatic Hydrocarbons. Environ. Toxicol. Chem. 1999, 18, 1060–1068. [Google Scholar] [CrossRef]
- Incardona, J.P.; Collier, T.K.; Scholz, N.L. Defects in Cardiac Function Precede Morphological Abnormalities in Fish Embryos Exposed to Polycyclic Aromatic Hydrocarbons. Toxicol. Appl. Pharmacol. 2004, 196, 191–205. [Google Scholar] [CrossRef]
- Ikenaka, Y.; Ito, Y.; Eun, H.; Watanabe, E.; Miyabara, Y. Characteristics of Accumulation Patterns of Polycyclic Aromatic Hydrocarbons in the Organisms Inhabited in Lake Suwa. J. Environ. Chem. 2008, 18, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.-W.; Zhang, G.; Liu, G.-Q.; Guo, L.-L.; Li, X.-D.; Wai, O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Water Column and Sediment Core of Deep Bay, South China. Estuar. Coast. Shelf Sci. 2009, 83, 60–66. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, B.; Wang, J.; Shen, H. Pollution Survey of Polycyclic Aromatic Hydrocarbons in Surface Water of Hangzhou, China. Chemosphere 2004, 56, 1085–1095. [Google Scholar] [CrossRef]
- Vrana, B.; Paschke, A.; Popp, P. Polyaromatic Hydrocarbon Concentrations and Patterns in Sediments and Surface Water of the Mansfeld Region, Saxony-Anhalt, Germany. J. Environ. Monit. 2001, 3, 602–609. [Google Scholar] [CrossRef]
- Guo, W.; He, M.; Yang, Z.; Lin, C.; Quan, X.; Wang, H. Distribution of Polycyclic Aromatic Hydrocarbons in Water, Suspended Particulate Matter and Sediment from Daliao River Watershed, China. Chemosphere 2007, 68, 93–104. [Google Scholar] [CrossRef]
- Ke, H.; Chen, M.; Liu, M.; Chen, M.; Duan, M.; Huang, P.; Hong, J.; Lin, Y.; Cheng, S.; Wang, X.; et al. Fate of Polycyclic Aromatic Hydrocarbons from the North Pacific to the Arctic: Field Measurements and Fugacity Model Simulation. Chemosphere 2017, 184, 916–923. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Bigalke, M.; Boamah, L.; Nyarko, E.; Saalia, F.K.; Wilcke, W. Polycyclic Aromatic Compounds (PAHs and Oxygenated PAHs) and Trace Metals in Fish Species from Ghana (West Africa): Bioaccumulation and Health Risk Assessment. Environ. Int. 2014, 65, 135–146. [Google Scholar] [CrossRef]
- Jafarabadi, A.R.; Bakhtiari, A.R.; Yaghoobi, Z.; Yap, C.K.; Maisano, M.; Cappello, T. Distributions and Compositional Patterns of Polycyclic Aromatic Hydrocarbons (PAHs) and Their Derivatives in Three Edible Fishes from Kharg Coral Island, Persian Gulf, Iran. Chemosphere 2019, 215, 835–845. [Google Scholar] [CrossRef]
- Oliva, A.L.; La Colla, N.S.; Arias, A.H.; Blasina, G.E.; Lopez Cazorla, A.; Marcovecchio, J.E. Distribution and Human Health Risk Assessment of PAHs in Four Fish Species from a SW Atlantic Estuary. Environ. Sci. Pollut. Res. 2017, 24, 18979–18990. [Google Scholar] [CrossRef]
- Mashroofeh, A.; Bakhtiari, A.R.; Pourkazemi, M. Distribution and Composition Pattern of Polycyclic Aromatic Hydrocarbons in Different Tissues of Sturgeons Collected from Iranian Coastline of the Caspian Sea. Chemosphere 2015, 120, 575–583. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Q.; Gu, Y.; Du, F.; Wang, X.; Shi, F.; Ke, C.; Xiang, M.; Yu, Y. Bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Wild Marine Fish from the Coastal Waters of the Northern South China Sea: Risk Assessment for Human Health. Ecotoxicol. Environ. Saf. 2019, 180, 742–748. [Google Scholar] [CrossRef]
- Soltani, N.; Moore, F.; Keshavarzi, B.; Sorooshian, A.; Javid, R. Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Fish and Prawn in the Persian Gulf, Iran. Ecotoxicol. Environ. Saf. 2019, 173, 251–265. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Cai, Y.; Chen, Y. Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Residues in Several Tissues of Edible Fishes from the Largest Freshwater Lake in China, Poyang Lake, and Associated Human Health Risk Assessment. Ecotoxicol. Environ. Saf. 2014, 104, 323–331. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Al-Doush, I. Gas Chromatography-Mass Spectrometric Determination of Polycyclic Aromatic Hydrocarbons in Five Species of Fish from Three Sites in the Arabian Gulf. Int. J. Environ. Health Res. 2002, 12, 193–200. [Google Scholar] [CrossRef]
- DouAbul, A.A.-Z.; Heba, H.M.A.; Fareed, K.H. Polynuclear Aromatic Hydrocarbons (PAHs) in Fish from the Red Sea Coast of Yemen. In Proceedings of the Asia-Pacific Conference on Science and Management of Coastal Environment (Developments in Hydrobiology), Hong Kong, China, 25–28 June 1996; Wong, Y.-S., Tam, N.F.-Y., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 251–262. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Muralidharan, S. Polycyclic Aromatic Hydrocarbons in Various Species of Fishes from Mumbai Harbour, India, and Their Dietary Intake Concentration to Human. Int. J. Oceanogr. 2012, 2012, 6. [Google Scholar] [CrossRef]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A Review of Human Carcinogens—Part F: Chemical Agents and Related Occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Wang, X.L.; Tao, S.; Dawson, R.W.; Xu, F.L. Characterizing and Comparing Risks of Polycyclic Aromatic Hydrocarbons in a Tianjin Wastewater-Irrigated Area. Environ. Res. 2002, 90, 201–206. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. In Air Quality Guidelines for Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 1987; pp. 105–117. [Google Scholar]
- Jiang, Y.; Hu, X.; Yves, U.J.; Zhan, H.; Wu, Y. Status, Source and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Street Dust of an Industrial City, NW China. Ecotoxicol. Environ. Saf. 2014, 106, 11–18. [Google Scholar] [CrossRef]
- Chen, S.-C.; Liao, C.-M. Health Risk Assessment on Human Exposed to Environmental Polycyclic Aromatic Hydrocarbons Pollution Sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Bruner, K.A.; Fisher, S.W.; Landrum, P.F. The Role of the Zebra Mussel, Dreissena Polymorpha, in Contaminant Cycling: II. Zebra Mussel Contaminant Accumulation from Algae and Suspended Particles, and Transfer to the Benthic Invertebrate, Gammarus Fasciatus. J. Great Lakes Res. 1994, 20, 735–750. [Google Scholar] [CrossRef]
- de Mora, S.; Fowler, S.W.; Wyse, E.; Azemard, S. Distribution of Heavy Metals in Marine Bivalves, Fish and Coastal Sediments in the Gulf and Gulf of Oman. Mar. Pollut. Bull. 2004, 49, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Okere, U.; Semple, K. Biodegradation of PAHs in ‘Pristine’ Soils from Different Climatic Regions. J. Bioremed. Biodegrad. 2012, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.K.; Pandit, G.G. Estimation of Octanol-Water Partition Coefficients for Polycylic Aromatic Hydrocarbons Using Reverse-Phase HPLC. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 135–146. [Google Scholar] [CrossRef]
Scientific Name | Local Name | Samples (n) | Length 1 (cm) | Weight 1 (g) |
---|---|---|---|---|
Epinephelus tauvina | Tauvina | 14 | 47 ± 8 | 1226 ± 602 |
Cephalopholis argus | Hamour | 12 | 35 ± 4 | 634 ± 68 |
Plectropomus pessuliferus | Najil | 9 | 48 ± 24 | 1765 ± 1390 |
Total Time (min) | A% | B% |
---|---|---|
0.1 | 85 | 15 |
4.0 | 85 | 15 |
5.5 | 80 | 20 |
7.5 | 65 | 35 |
11.5 | 64.5 | 34.5 |
13 | 100 | 0 |
18 | 85 | 15 |
Exposure Factors | Symbol | Unit | Reference | |
---|---|---|---|---|
B[a]Pequi concentration for PAH compounds | Cs | ng B[a]Pequi/g | Present study | |
Ingestion rate | IR | g/day | 850 | [33,34] |
Exposure frequency | EF | days year−1 | 365 | [36,37] |
Exposure duration for each life segment | ED | years | 30 | [39] |
Carcinogenic oral slope factors | CSF | (mg kg−1 day−1)−1 | 7.3 | [37] |
Average life span(years) (70 years × 365 days/year) | AT | days | 25,550 | [40] |
conversion factor | CF | mg·ng−1 | 10−6 | |
bodyweight | BW | kg | 70 | [38] |
Essential Amino Acids | ||||
---|---|---|---|---|
N° | Amino Acid | Epinephelus tauvina * | Cephalopholis argus * | Plectropomus pessuliferus * |
1 | Histidine | - | 1.90 ± 0.04 | 2.40 ± 0.10 |
2 | Isoleucine | 3.08 ± 0.16 | 2.04 ± 1.58 | 5.93 ± 0.32 |
3 | Leucine | 4.83 ± 0.18 | 5.69 ± 0.13 | 10.33 ± 0.49 |
4 | Lysine | 5.36 ± 0.18 | 6.28 ± 0.17 | 11.27 ± 0.46 |
5 | Methionine | 2.13 ± 0.12 | 2.64 ± 0.07 | 4.10 ± 0.26 |
6 | Phenylalanine | 2.71 ± 0.13 | 3.40 ± 0.10 | 4.83 ± 0.06 |
7 | Threonine | 2.93 ± 0.13 | 3.52 ± 0.08 | 4.40 ± 0.17 |
Non-essential Amino Acids | ||||
1 | Alanine | 4.02 ± 0.33 | 5.33 ± 0.13 | 10.70 ± 0.61 |
2 | Aspartic acid | 6.06 ± 0.20 | 7.26 ± 0.20 | 8.27 ± 1.02 |
3 | Glutamic acid | 8.32 ± 0.33 | 10.54 ± 0.18 | 11.10 ± 1.39 |
4 | Serine | 2.29 ± 0.13 | 2.87 ± 0.02 | 1.97 ± 0.06 |
Conditional Amino Acids | ||||
1 | Arginine | 4.06 ± 0.19 | 4.95 ± 0.09 | 9.80 ± 0.10 |
2 | Glycine | 2.69 ± 0.15 | 3.75 ± 0.12 | 7.17 ± 0.67 |
3 | Tyrosine | 0.64 ± 0.08 | 1.83 ± 0.08 | 2.73 ± 0.32 |
Scientific Name | Local Name | Samples (n) | Lipid (%) * | TPHs (μg g−1) * |
---|---|---|---|---|
Epinephelus tauvina | Tauvina | 14 | 1.2 ± 0.6 | 4.2 ± 2.3 |
Cephalopholis argus | Hamour | 12 | 0.6 ± 0.3 | 6.8 ± 3.6 |
Plectropomus pessuliferus | Najil | 9 | 1.0 ± 0.8 | 7.4 ± 3.2 |
Species | Sampling Location | Region | Sampling Year | TPHs (μg g−1, Dry Weight) | Reference |
---|---|---|---|---|---|
Epinephelus coioides | Basrah (Irak) | North-West Arabian Gulf | 2014–2015 | 4.36–5.23 | [74] |
Epinephelus morio | Jeddah (KSA) | Eastern shore of the Red Sea | 2014 | 10–156 | [72] |
Epinephelus tauvina | Jeddah (KSA) | Eastern shore of the Red Sea | 2021 | 4.2 ± 2.3 | This study |
Cephalopholis argus | Jeddah (KSA) | Eastern shore of the Red Sea | 2021 | 6.8 ± 3.6 | This study |
Plectropomus pessuliferus | Jeddah (KSA) | Eastern shore of the Red Sea | 2021 | 7.4 ± 3.2 | This study |
Epinephelus morio | Yanbu (KSA) | Eastern shore of the Red Sea | 2014 | 6–84 | [72] |
Lethrinas nebulosus | Jeddah (KSA) | Eastern shore of the Red Sea | 2014 | 6–94 | [75] |
Lethrinas nebulosus | Yanbu (KSA) | Eastern shore of the Red Sea | 2014 | 3.6–50 | [75] |
Trachurus trecae | Benin (Nigeria) | Benin | 2014 | 21–30 | [76] |
Leuciscus vorax | Basrah (Irak) | Shatt Al-Arab River Iraq | 2015 | 5.12–21.52 | [73] |
Silver pomfret | Hormozgan (Iran) | Northern Persian Gulf | 2011 | 0.67–3.36 | [77] |
Grouper | Hormozgan (Iran) | Northern Persian Gulf | 2011 | 0.25–1.20 | [77] |
Ratio | Petrogenic Source | Pyrogenic Source | References |
---|---|---|---|
Fluoranthene (FLUE)/Pyrene (PYR) | <1 | >1 | [81] |
Phenanthrene (PHE)/Anthracene (ANT) | <1 | - | [82] |
1 LMW/HMW 2 | >1 | <1 | [83] |
ANT/(ANT + PHE) | <0.1 | >0.1 | [84] |
benzo(a)anthracene/(benzo(a)anthracene+chrysene) | <0.2 | >0.35 | [84,85] |
Compound Name | Epinephelus tauvina | Cephalopholis argus | Plectropomus pessuliferus |
---|---|---|---|
Naphthalene (NAP) | 14.04 ± 6.23 | 25.7 ± 7.33 | 12.03 ± 5.64 |
Acenaphthylene (ACY) | <DL 1 | <DL 1 | <DL 1 |
Acenaphthene (ACE) | 4.05 ± 3.23 | 5.2 ± 3.24 | 2.86 ± 1.22 |
Fluorene (FLU) | 2.1 ± 1.72 | 6.7 ± 4.56 | 0.33 ± 0.43 |
Phenanthrene (PHE) | 1.63 ± 1.45 | 2.3 ± 1.43 | 0.42 ± 0.56 |
Anthracene (ANT) | <DL 1 | <DL 1 | <DL 1 |
Fluoranthene (FLUE) | 1.20 ± 1.32 | 1.64 ± 0.93 | 0.75 ± 0.47 |
Pyrene (PYR) | 2.8 ± 1.25 | 3.24 ± 2.17 | 1.08 ± 0.92 |
Benzo(a)anthracene (BaA) | <DL 1 | 0.02 ± 0.09 | 0.07 ± 0.04 |
Chrysene (CHY) | 1.8 ± 0.92 | 1.57 ± 0.87 | 1.42 ± 0.91 |
Benzo(b)fluoranthene (BbF) | 3.46 ± 2.09 | 4.23 ± 2.40 | 0.65 ± 0.43 |
Benzo(k)fluoranthene (BkF) | 1.14 ± 0.93 | 2.45 ± 1.69 | 0.7 ± 0.54 |
Benzo(a)pyrene (BaP) | 1.74 ± 0.67 | 3.02 ± 1.85 | 0.21 ± 0.32 |
Dibenzo(a,h)anthracene (DahA) | 2.65 ± 1.72 | 3.25 ± 2.33 | 0.24 ± 0.41 |
Benzo(g,h,i)perylene (BPY) | <DL 1 | 3.45 ± 2.45 | 1.09 ± 0.87 |
Indeno[1,2,3-cd]pyrene (InP) | <DL 1 | <DL 1 | <DL 1 |
ΣPAHs | 36.61 | 59.44 | 21.78 |
FLU/PYR | 0.69 | 0.50 | 0.69 |
2 Low Molecular Weight/High Molecular Weight 3 | 18.26 | 30.87 | 23.29 |
BaA/BaA + CHY | 0.04 | 0.01 | 0.04 |
Species | Sampling Location | Region | Sampling Year | ∑ PAHs (ng·g−1, Dry Weight) | Reference |
---|---|---|---|---|---|
Epinephelus tauvina | Dammam and Sharq Dareen | Arabian Gulf waters of the Eastern province | 2001–2002 | 6.273 | [93] |
Solea solea | Yemen coast | Gulf of Aden | 1995–1996 | 48.0–50.3 | [94] |
Coilia dussumieri | Mumbai | western coast of India | 2006–2008 | 70.44 | [95] |
Cephalopholis argus | Xisha Islands | Yongle Atoll (South China Sea) | 2017 | 409.28 | [7] |
Epinephelus quoyanus | Xisha Islands | Yongle Atoll (South China Sea) | 2017 | 57.37 | [7] |
Plectorhinchus chaetodonoides | Xisha Islands | Yongle Atoll (South China Sea) | 2017 | 24.75 | [7] |
Epinephelus tauvina | Eastern shore of the Red Sea | Eastern shore of the Red Sea | 2021 | 36.61 | This study |
Cephalopholis argus | Eastern shore of the Red Sea | Eastern shore of the Red Sea | 2021 | 59.44 | This study |
Plectropomus pessuliferus | Eastern shore of the Red Sea | Eastern shore of the Red Sea | 2021 | 21.78 | This study |
PAHs | TEF | E. tauvina | C. argus | P. pessuliferus | |||
---|---|---|---|---|---|---|---|
ng/g | ng BaPequiv/g | ng/g | BaPequiv/g | ng/g | BaPequiv/g | ||
NAP | 0.001 | 14.04 | 0.014 | 25.7 | 0.025 | 12.03 | 0.012 |
ACY | 0.001 | - | - | - | - | - | - |
ACE | 0.001 | 4.05 | 0.004 | 5.2 | 0.005 | 2.86 | 0.003 |
FLU | 0.001 | 2.1 | 0.002 | 6.7 | 0.007 | 0.33 | - |
PHE | 0.001 | 1.63 | 0.002 | 2.3 | 0.002 | 0.42 | - |
ANT | 0.01 | - | - | - | - | - | - |
FLUE | 0.001 | 1.2 | 0.001 | 1.64 | 0.002 | 0.75 | - |
PYR | 0.001 | 2.8 | 0.003 | 3.24 | 0.003 | 1.08 | 0.001 |
BaA | 0.1 | - | - | 0.02 | 0.002 | 0.07 | 0.007 |
CHY | 0.01 | 1.8 | 0.018 | 1.57 | 0.016 | 1.42 | 0.014 |
BbF | 0.1 | 3.46 | 0.346 | 4.23 | 0.423 | 0.65 | 0.065 |
BkF | 0.1 | 1.14 | 0.114 | 2.45 | 0.245 | 0.7 | 0.07 |
BaP | 1 | 1.74 | 1.74 | 3.02 | 3.02 | 0.21 | 0.21 |
DahA | 1 | 2.65 | 2.65 | 3.25 | 3.25 | 0.24 | 0.24 |
BPY | 0.01 | - | - | 3.45 | 0.0345 | 1.09 | 0.011 |
InP | 0.1 | - | - | - | - | - | - |
Total carcinogenic activity (TCA) | 4.894 | 7.035 | 0.633 | ||||
Contribution of BaA to the TCA (%) | 0.000 | 0.028 | 1.106 | ||||
Contribution of BbF to the TCA (%) | 7.070 | 6.013 | 10.269 | ||||
Contribution of BkF to the TCA (%) | 2.329 | 3.483 | 11.058 | ||||
Contribution of BaP to the TCA (%) | 35.554 | 42.931 | 33.175 | ||||
Contribution of DahA to the TCA (%) | 54.148 | 46.201 | 37.915 | ||||
Contribution of CHY to the TCA (%) | 0.368 | 0.227 | 2.212 |
Factor Number | Eigenvalue | Percentage of Variance | Cumulative Percentage |
---|---|---|---|
1 | 6.63686 | 66.369 | 66.369 |
2 | 3.36314 | 33.631 | 100.000 |
3 | 4.39234 × 10−16 | 0.000 | 100.000 |
4 | 3.97859 × 10−16 | 0.000 | 100.000 |
5 | 2.51672 × 10−16 | 0.000 | 100.000 |
6 | 5.55669 × 10−17 | 0.000 | 100.000 |
7 | −6.48359 × 10−17 | 0.000 | 100.000 |
8 | −3.24332 × 10−16 | 0.000 | 100.000 |
9 | −3.99903 × 10−16 | 0.000 | 100.000 |
10 | −1.36544 × 10−15 | 0.000 | 100.000 |
Factor 1 | Factor 2 | |
---|---|---|
Lipid | −0.291525 | −0.956563 |
TPHs | 0.937449 | 0.348123 |
Benzo(g,h,i)perylene (BPY) | 0.300214 | 0.953872 |
Aspartic acid | 0.998268 | 0.0588275 |
Glutamic acid | 0.942335 | 0.33467 |
Chrysene (CHY) | −0.991533 | −0.129852 |
Pyrene (PYR) | −0.759481 | 0.65053 |
Benzo(b)fluoranthene (BbF) | −0.751745 | 0.659454 |
Dibenzo(a,h)anthracene(DahA) | −0.762406 | 0.647099 |
Tyrosine | 0.996024 | 0.0890876 |
Specie | Factor 1 | Factor 2 |
---|---|---|
Epinephelus tauvina | −6.78724 | 1.18294 |
Cephalopholis argus | 1.67075 | 3.50619 |
Plectropomus pessuliferus | 5.11649 | −4.68913 |
Cluster | Lipids | TPHs | Isoleucine | Aspartic Acid | Glutamic Acid | Tyrosine |
Epinephelus tauvina | 0.916667 | 6.13333 | 3.68667 | 7.19667 | 9.98667 | 1.73333 |
Cluster | Chrysene (CHY) | Pyrene (PYR) | Benzo(g,h,i)perylene (BPY) | |||
Cephalopholus argus | 1.59667 | 2.37333 | 1.51333 | |||
Cluster | Dibenzo(a,h)anthracene(DahA) | |||||
Plectromus pessuferus | 2.04667 |
Regulatory Act | Threshold Values |
---|---|
Regulation (EC) N0 1272/2013 (REACH) | ≥2000 = bioaccumulative ≥5000 = very bioaccumulative |
US EPA Toxic Substances Control Act (TSCA) | ≥1000 = bioaccumulative ≥5000 = very bioaccumulative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamoussi, B.; Chakroun, R.; Al-Mur, B. Assessment of Total Petroleum Hydrocarbon Contamination of the Red Sea with Endemic Fish from Jeddah (Saudi Arabia) as Bioindicator of Aquatic Environmental Pollution. Water 2022, 14, 1706. https://doi.org/10.3390/w14111706
Jamoussi B, Chakroun R, Al-Mur B. Assessment of Total Petroleum Hydrocarbon Contamination of the Red Sea with Endemic Fish from Jeddah (Saudi Arabia) as Bioindicator of Aquatic Environmental Pollution. Water. 2022; 14(11):1706. https://doi.org/10.3390/w14111706
Chicago/Turabian StyleJamoussi, Bassem, Radhouane Chakroun, and Bandar Al-Mur. 2022. "Assessment of Total Petroleum Hydrocarbon Contamination of the Red Sea with Endemic Fish from Jeddah (Saudi Arabia) as Bioindicator of Aquatic Environmental Pollution" Water 14, no. 11: 1706. https://doi.org/10.3390/w14111706
APA StyleJamoussi, B., Chakroun, R., & Al-Mur, B. (2022). Assessment of Total Petroleum Hydrocarbon Contamination of the Red Sea with Endemic Fish from Jeddah (Saudi Arabia) as Bioindicator of Aquatic Environmental Pollution. Water, 14(11), 1706. https://doi.org/10.3390/w14111706