Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Adsorption-Desorption Experiments
2.3. Column Experiments
2.4. Data Analysis
3. Results and Discussion
3.1. Adsorption and Desorption Kinetics of CPX
3.2. Adsorption and Desorption Isotherm of CPX
3.3. Effect of Sandy Silt Soil Dosage on the CPX Adsorption and Desorption
3.4. Effect of Solution pH on the CPX Adsorption and Desorption
3.5. Effect of Ionic Strength on the CPX Adsorption and Desorption
3.6. Transport and Retention of CPX in Sandy Silt Soil Column
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Z. Distribution and Ecological Risk Assessment of Typical Antibiotics in the Surface Waters of Seven Major Rivers, China. Environ. Sci. Processes Impacts 2021, 23, 1088–1100. [Google Scholar] [CrossRef] [PubMed]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Kim, J.R.; Roh, H.-S.; Jeon, B.-H. Ciprofloxacin Toxicity and Its Co-Metabolic Removal by a Freshwater Microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017, 323, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Ning, Q.; Wang, D.; You, J. Joint Effects of Antibiotics and Quorum Sensing Inhibitors on Resistance Development in Bacteria. Environ. Sci. Processes Impacts 2021, 23, 995–1005. [Google Scholar] [CrossRef]
- Wang, Z.; Han, M.; Li, E.; Liu, X.; Wei, H.; Yang, C.; Lu, S.; Ning, K. Distribution of Antibiotic Resistance Genes in an Agriculturally Disturbed Lake in China: Their Links with Microbial Communities, Antibiotics, and Water Quality. J. Hazard. Mater. 2020, 393, 122426. [Google Scholar] [CrossRef]
- Cheng, D.; Hao Ngo, H.; Guo, W.; Wang Chang, S.; Duc Nguyen, D.; Liu, Y.; Zhang, X.; Shan, X.; Liu, Y. Contribution of Antibiotics to the Fate of Antibiotic Resistance Genes in Anaerobic Treatment Processes of Swine Wastewater: A Review. Bioresour. Technol. 2020, 299, 122654. [Google Scholar] [CrossRef]
- Gasparrini, A.J.; Markley, J.L.; Kumar, H.; Wang, B.; Fang, L.; Irum, S.; Symister, C.T.; Wallace, M.; Burnham, C.-A.D.; Andleeb, S.; et al. Tetracycline-Inactivating Enzymes from Environmental, Human Commensal, and Pathogenic Bacteria Cause Broad-Spectrum Tetracycline Resistance. Commun. Biol. 2020, 3, 241. [Google Scholar] [CrossRef]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding Human Health Risks Caused by Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARG) in Water Environments: Current Knowledge and Questions to Be Answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Ojkic, N.; Lilja, E.; Direito, S.; Dawson, A.; Allen, R.J.; Waclaw, B. A Roadblock-and-Kill Mechanism of Action Model for the DNA-Targeting Antibiotic Ciprofloxacin. Antimicrob. Agents Chemother. 2020, 64, e02487-19. [Google Scholar] [CrossRef]
- Maszkowska, J.; Kolodziejska, M.; Bialk-Bielinska, A.; Mrozik, W.; Kumirska, J.; Stepnowski, P.; Palavinskas, R.; Krueger, O.; Kalbe, U. Column and Batch Tests of Sulfonamide Leaching from Different Types of Soil. J. Hazard. Mater. 2013, 260, 468–474. [Google Scholar] [CrossRef]
- Sabri, N.A.; van Holst, S.; Schmitt, H.; van der Zaan, B.M.; Gerritsen, H.W.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Fate of Antibiotics and Antibiotic Resistance Genes during Conventional and Additional Treatment Technologies in Wastewater Treatment Plants. Sci. Total Environ. 2020, 741, 140199. [Google Scholar] [CrossRef]
- Arun, S.; Kumar, R.M.; Ruppa, J.; Mukhopadhyay, M.; Ilango, K.; Chakraborty, P. Occurrence, Sources and Risk Assessment of Fluoroquinolones in Dumpsite Soil and Sewage Sludge from Chennai, India. Environ. Toxicol. Pharmacol. 2020, 79, 103410. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and Antibiotic Resistant Genes (ARGs) in Groundwater: A Global Review on Dissemination, Sources, Interactions, Environmental and Human Health Risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef]
- Chen, H.; Jing, L.; Yao, Z.; Meng, F.; Teng, Y. Prevalence, Source and Risk of Antibiotic Resistance Genes in the Sediments of Lake Tai (China) Deciphered by Metagenomic Assembly: A Comparison with Other Global Lakes. Environ. Int. 2019, 127, 267–275. [Google Scholar] [CrossRef]
- Moles, S.; Gozzo, S.; Ormad, M.P.; Mosteo, R.; Gómez, J.; Laborda, F.; Szpunar, J. Long-Term Study of Antibiotic Presence in Ebro River Basin (Spain): Identification of the Emission Sources. Water 2022, 14, 1033. [Google Scholar] [CrossRef]
- Kaiser, R.A.; Polk, J.S.; Datta, T.; Parekh, R.R.; Agga, G.E. Occurrence of Antibiotic Resistant Bacteria in Urban Karst Groundwater Systems. Water 2022, 14, 960. [Google Scholar] [CrossRef]
- Malakootian, M.; Faraji, M.; Malakootian, M.; Nozari, M.; Malakootian, M. Ciprofloxacin removal from aqueous media by adsorption process: A systematic review and meta-analysis. Desalination Water Treat. 2021, 222, 1–32. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Sci. Total Environ. 2017, 599–600, 500–512. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, X.; Xu, B.; Peng, D.; Guo, X. Sorption of Pharmaceuticals and Personal Care Products on Soil and Soil Components: Influencing Factors and Mechanisms. Sci. Total Environ. 2021, 753, 141891. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Fernández-Calviño, D.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Arias-Estévez, M.; Álvarez-Rodríguez, E. Estimation of Adsorption/Desorption Freundlich’s Affinity Coefficients for Oxytetracycline and Chlortetracycline from Soil Properties: Experimental Data and Pedotransfer Functions. Ecotoxicol. Environ. Saf. 2020, 196, 110584. [Google Scholar] [CrossRef]
- Muendo, B.M.; Shikuku, V.O.; Getenga, Z.M.; Lalah, J.O.; Wandiga, S.O.; Rothballer, M. Adsorption-Desorption and Leaching Behavior of Diuron on Selected Kenyan Agricultural Soils. Heliyon 2021, 7, e06073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, S.K.; Wang, Y.N.; Yang, C.Y.; Chen, Y.Y.; Wang, R.Z.; Wang, Z.Z.; Yuan, X.Y.; Wang, W.K. Adsorption Characteristics of Oxytetracycline by Different Fractions of Organic Matter in Sedimentary Soil. Environ. Sci. Pollut. Res. 2019, 26, 5668–5679. [Google Scholar] [CrossRef] [PubMed]
- Septian, A.; Oh, S.; Shin, W.S. Sorption of Antibiotics onto Montmorillonite and Kaolinite: Competition Modelling. Environ. Technol. 2019, 40, 2940–2953. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, Y.; Zhang, M.; Nan, Z.; Liang, X.; Wang, G. Sorption properties and mechanisms of erythromycin and ampicillin in loess soil: Roles of pH, ionic strength, and temperature. Chem. Eng. J. 2022, 434, 134694. [Google Scholar] [CrossRef]
- Call, J.J.; Rakshit, S.; Essington, M.E. The Adsorption of Tylosin by Montmorillonite and Vermiculite: Exchange Selectivity and Intercalation. Soil Sci. Soc. Am. J. 2019, 83, 584–596. [Google Scholar] [CrossRef]
- Pavlovic, D.M.; Curkovic, L.; Grcic, I.; Simic, I.; Zupan, J. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments. Environ. Sci. Pollut. Res. 2017, 24, 10091–10106. [Google Scholar] [CrossRef]
- Franklin, A.M.; Williams, C.; Andrews, D.M.; Watson, J.E. Sorption and desorption behavior of four antibiotics at concentrations simulating wastewater reuse in agricultural and forested soils. Chemosphere 2022, 289, 133038. [Google Scholar] [CrossRef]
- Xu, X.; Ma, W.; An, B.; Zhou, K.; Mi, K.; Huo, M.; Liu, H.; Wang, H.; Liu, Z.; Cheng, G.; et al. Adsorption/desorption and degradation of doxycycline in three agricultural soils. Ecotoxicol. Environ. Saf. 2021, 224, 112675. [Google Scholar] [CrossRef]
- Álvarez-Esmorís, C.; Conde-Cid, M.; Fernández-Calviño, D.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M. Adsorption-desorption of doxycycline in agricultural soils: Batch and stirred-flow-chamber experiments. Environ. Res. 2020, 186, 109565. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Arias-Estévez, M.; Álvarez-Rodríguez, E. Experimental Data and Model Prediction of Tetracycline Adsorption and Desorption in Agricultural Soils. Environ. Res. 2019, 177, 108607. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Z.; Hong, H.; Li, R.; Jiang, W.-T. Desorption of Ciprofloxacin from Clay Mineral Surfaces. Water Res. 2013, 47, 259–268. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Sun, C.; Wu, J.; Wu, Y. Experimental Study of Conservative Solute Transport in Heterogeneous Aquifers. Environ. Earth Sci. 2017, 76, 421. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Klute, A., Ed.; SSSA: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- Zhang, Y.; Price, G.W.; Jamieson, R.; Burton, D.; Khosravi, K. Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. Chemosphere 2017, 174, 628–637. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.; Lin, Q. Influence of Metal Cation and SurfaceIron Oxide on the Transport of Sulfadiazine in Saturated Porous Media. Sci. Total Environ. 2021, 758, 143621. [Google Scholar] [CrossRef]
- Park, I.; Shin, J.; Seong, H.; Rhee, D.S. Comparisons of Two Types of Particle Tracking Models Including the Effects of Vertical Velocity Shear. Water 2020, 12, 3535. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Simunek, J.; Leij, F.J.; Toride, N.; Sejna, M. Stanmod: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1353–1366. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, J.G.; Pan, B.C. Mathematically Modeling Fixed-Bed Adsorption in Aqueous Systems. J. Zhejiang Univ. Sci. A 2013, 14, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.Y.; Viraraghavan, T.; Chen, M. A New Model for Heavy Metal Removal in a Biosorption Column. Adsorpt. Sci. Technol. 2001, 19, 25–43. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Arsenic Removal in an Iron Oxide-Coated Fungal Biomass Column: Analysis of Breakthrough Curves. Bioresour. Technol. 2008, 99, 2067–2071. [Google Scholar] [CrossRef]
- Yan, B.; Niu, C.H. Modeling and Site Energy Distribution Analysis of Levofloxacin Sorption by Biosorbents. Chem. Eng. J. 2017, 307, 631–642. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Z.; Hong, H.; Yin, K.; Tie, L. Adsorption and Intercalation of Ciprofloxacin on Montmorillonite. Appl. Clay Sci. 2010, 50, 204–211. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, S.; Jing, R.; Shao, Y.; Liu, X.; Lv, F.; Hu, X.; Zhang, Q.; Meng, Z.; Liu, A. Competitive Adsorption of Antibiotic Tetracycline and Ciprofloxacin on Montmorillonite. Appl. Clay Sci. 2019, 180, 105175. [Google Scholar] [CrossRef]
- Wang, C.-J.; Li, Z.; Jiang, W.-T.; Jean, J.-S.; Liu, C.-C. Cation Exchange Interaction between Antibiotic Ciprofloxacin and Montmorillonite. J. Hazard. Mater. 2010, 183, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hong, H.; Liao, L.; Ackley, C.J.; Schulz, L.A.; MacDonald, R.A.; Miheliche, A.L.; Emard, S.M. A Mechanistic Study of Ciprofloxacin Removal by Kaolinite. Colloids Surf. B Biointerfaces 2011, 88, 339–344. [Google Scholar] [CrossRef]
- Gu, C.; Karthikeyan, K.G. Sorption of the Antimicrobial Ciprofloxacin to Aluminum and Iron Hydrous Oxides. Environ. Sci. Technol. 2005, 39, 9166–9173. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.-H. Adsorption and Oxidation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines with Goethite. Chemosphere 2007, 66, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate Adsorption Using Modified Iron Oxide-Based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests. Chem. Eng. J. 2016, 284, 1386–1396. [Google Scholar] [CrossRef]
- Li, S.Q.; Zhang, X.D.; Huang, Y.M. Zeolitic Imidazolate Framework-8 Derived Nanoporous Carbon as an Effective and Recyclable Adsorbent for Removal of Ciprofloxacin Antibiotics from Water. J. Hazard. Mater. 2017, 321, 711–719. [Google Scholar] [CrossRef]
- Valizadeh, S.; Younesi, H.; Bahramifar, N. Highly Mesoporous K2CO3 and KOH/Activated Carbon for SDBS Removal from Water Samples: Batch and Fixed-Bed Column Adsorption Process. Environ. Nanotechnol. Monit. Manag. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Li, M.-f.; Liu, Y.-g.; Liu, S.-b.; Shu, D.; Zeng, G.-m.; Hu, X.-j.; Tan, X.-f.; Jiang, L.-h.; Yan, Z.-l.; Cai, X.-x. Cu(II)-Influenced Adsorption of Ciprofloxacin from Aqueous Solutions by Magnetic Graphene Oxide/Nitrilotriacetic Acid Nanocomposite: Competition and Enhancement Mechanisms. Chem. Eng. J. 2017, 319, 219–228. [Google Scholar] [CrossRef]
- Chen, H.; Gao, B.; Li, H. Removal of Sulfamethoxazole and Ciprofloxacin from Aqueous Solutions by Graphene Oxide. J. Hazard. Mater. 2015, 282, 201–207. [Google Scholar] [CrossRef]
- Toride, N.; Leij, F.J.; Van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. version 2.1; U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture: Riverside, CA, USA, 1999. [Google Scholar]
- Zhou, D.; Li, Y.; Zhang, Y.; Zhang, C.; Li, X.; Chen, Z.; Huang, J.; Li, X.; Flores, G.; Kamon, M. Column Test-Based Optimization of the Permeable Reactive Barrier (PRB) Technique for Remediating Groundwater Contaminated by Landfill Leachates. J. Contam. Hydrol. 2014, 168, 1–16. [Google Scholar] [CrossRef]
Particle Size Fraction | Specific Surface Area (m2 kg) | Total Organic Carbon (g kg−1) | Total Porosity, θ | Bulk Density, ρ (g cm−3) | Hydraulic Conductivity, K (cm h−1) | ||
---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |||||
3 | 59 | 38 | 321 | 3.34 | 0.362 | 1.44 | 0.058 |
Kinetic Model | k1 | k2 (g mg−1h−1) | Calculated qe (mg g−1) | Experimental qe (mg g−1) | R2 |
---|---|---|---|---|---|
pseudo-first- order adsorption | 0.100 | - | 0.315 | 3.55 | 0.909 |
pseudo-second- order adsorption | 1.74 | 3.55 | 3.55 | 0.999 | |
pseudo-first- order desorption | 0.116 | - | 0.0535 | 1.34 | 0.170 |
pseudo-second- order desorption | - | 1.84 | 1.34 | 1.34 | 0.999 |
Process | Isotherm Model | qm (mg g−1) | KL (L mg−1) | RL | KF (L mg−1) | n | R2 |
---|---|---|---|---|---|---|---|
Adsorption | Langmuir | 5.50 | 0.0329 | 0.378 | - | - | 0.991 |
Freundlich | - | - | - | 0.433 | 1.92 | 0.907 | |
Desorption | Langmuir | 19.6 | 0.0179 | 0.527 | - | - | 0.982 |
Freundlich | - | - | - | 0.378 | 0.88 | 0.974 |
Model | Parameters | KCl | CPX |
---|---|---|---|
ADE | (cm h−1) | 24.6 | - |
D (cm2 h−1) | 4.82 | - | |
R2 | 0.999 | - | |
Two-region model | (cm h−1) | 24.6 | - |
D (cm2 h−1) | 4.90 | - | |
β | 0.999 | - | |
ω | 100 | - | |
R2 | 0.999 | - | |
Two-site model | (cm h−1) | 24.6 | - |
D (cm2 h−1) | - | 4.82 | |
R | - | 345 | |
β | - | 0.248 | |
ω | - | 100 | |
R2 | - | 0.986 | |
P | 173.5 | ||
Thomas model | KT (L2 g−1h−1) | - | 0.000280 |
qT (mg g−1) | - | 4.67 | |
R2 | - | 0.902 | |
Yan model | a | - | 4.87 |
qY (mg g−1) | - | 4.05 | |
R2 | - | 0.755 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Wu, Y.; Yu, F. Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil. Water 2022, 14, 1728. https://doi.org/10.3390/w14111728
Zhao P, Wu Y, Yu F. Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil. Water. 2022; 14(11):1728. https://doi.org/10.3390/w14111728
Chicago/Turabian StyleZhao, Pingping, Yanqing Wu, and Fei Yu. 2022. "Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil" Water 14, no. 11: 1728. https://doi.org/10.3390/w14111728
APA StyleZhao, P., Wu, Y., & Yu, F. (2022). Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil. Water, 14(11), 1728. https://doi.org/10.3390/w14111728