An Advanced PMF Model Based on Degradation Process for Pollutant Apportionment in Coastal Areas
Abstract
:1. Introduction
2. Methodology
2.1. Degradation Model and Its Inversion
2.2. Advance of the PMF Receptor Model Based on Degradation Process
2.3. Analysis of Modeling Results Based on Indirect Emission Inventory
3. Case Study
3.1. The Study Area and Pollutants
3.2. Data Sources of the PAHs Concentrations
3.3. Model Settings
3.4. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Wang, H.; Guo, Z.; Lu, P.; Song, F.; Liu, L.; Liu, J.; Rose, N.L.; Wang, F. Positive matrix factorization on source apportionment for typical pollutants in different environmental media: A review. Environ Sci. Processes Impacts. 2020, 22, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.S.; Perron, M.M.G.; Bond, T.C.; Bowie, A.R.; Buchholz, R.R.; Guieu, C.; Ito, A.; Maenhaut, W.; Myriokefalitakis, S.; Olgun, N.; et al. Earth, wind, fire, and pollution: Aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 2022, 14, 303–330. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. 2015, 66, 237–259. [Google Scholar] [CrossRef]
- Barati Moghaddam, M.; Mazaheri, M.; Mohammad Vali Samani, J.; Boano, F. An innovative framework for real-time monitoring of pollutant point sources in river networks. Stoch. Environ. Res. Risk Access. 2022, 1–28. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Wang, B.; Cheng, W.; Zhang, J. A new method for multi-point pollution source identification. Atmos Oceanic Sci. Lett. 2021, 14, 100098. [Google Scholar] [CrossRef]
- Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.; Fujita, E.M.; Wilson, W.E. Receptor modeling application framework for particle source apportionment. Chemosphere 2002, 49, 1093–1136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef]
- Wu, J.; Teng, Y.; Chen, H. Source apportionment for sediment PAHs using hybrid genetic pattern search treatment of a chemical mass balance receptor model: Application to the Pearl River Delta region, China. Environ. Monit. Assess. 2014, 186, 6651–6662. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Li, J.; Wu, J.; Wang, J. Source apportionment of trace metals in river sediments: A comparison of three methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Thakuri, B.; Roy, A.K.; Mondal, N.; Chakraborty, A. Phase partitioning effects on seasonal compositions and distributions of terrigenous polycyclic aromatic hydrocarbons along the South China Sea and East China Sea. Sci. Total Environ. 2022, 828, 154430. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar Jafarabadi, A.; Dashtbozorg, M.; Raudonytė-Svirbutavičienė, E.; Riyahi Bakhtiari, A. First report on polybrominated diphenyl ethers in the Iranian Coral Islands: Concentrations, profiles, source apportionment, and ecological risk assessment. Chemosphere 2020, 251, 126397. [Google Scholar] [CrossRef]
- Odabasi, M.; Dumanoglu, Y.; Kara, M.; Altiok, H.; Elbir, T.; Bayram, A. Spatial variation of PAHs and PCBs in coastal air, seawater, and sediments in a heavily industrialized region. Environ. Sci. Pollut. Res. 2017, 24, 13749–13759. [Google Scholar] [CrossRef]
- Davis, E.; Walker, T.R.; Adams, M.; Willis, R.; Norris, G.A.; Henry, R.C. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Sci. Total Environ. 2019, 691, 528–537. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, V.K.; Kumar, S. Source apportionment and risk of polycyclic aromatic hydrocarbons in Indian sediments: A review. Arab. J. Geosci. 2022, 15, 498. [Google Scholar] [CrossRef]
- An, Y.; Hong, S.; Yoon, S.J.; Cha, J.; Shin, K.; Khim, J.S. Current contamination status of traditional and emerging persistent toxic substances in the sediments of Ulsan Bay, South Korea. Mar. Pollut. Bull. 2020, 160, 111560. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Zhang, Q.; Zhao, H.; Yang, Y.; Zhang, Y.; Xie, Q.; Chen, J. Seasonal variation, air-water exchange, and multivariate source apportionment of polycyclic aromatic hydrocarbons in the coastal area of Dalian, China. Environ. Pollut. 2019, 244, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Dachs, J.; Lohmann, R.; Ockenden, W.A.; Méjanelle, L.; Eisenreich, S.J.; Jones, K.C. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ. Sci. Technol. 2002, 36, 4229–4237. [Google Scholar] [CrossRef]
- González-Gaya, B.; Martínez-Varela, A.; Vila-Costa, M.; Casal, P.; Cerro-Gálvez, E.; Berrojalbiz, N.; Lundin, D.; Vidal, M.; Mompeán, C.; Bode, A.; et al. Biodegradation as an important sink of aromatic hydrocarbons in the oceans. Nat. Geosci. 2019, 12, 119–125. [Google Scholar] [CrossRef]
- Pöschl, U.; Letzel, T.; Schauer, C.; Niessner, R. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with venzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J. Phys. Chem. A 2001, 105, 4029–4041. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, N.; Xue, M.; Lu, S.T.; Tao, S. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Environ. Pollut. 2011, 159, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P.; Tapper, U. Analysis of different modes of factor analysis as least squares fit problems. Chemometr. Intell. Lab. 1993, 18, 183–194. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemometr. Intell. Lab. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, S.; Chen, D.; Lang, J.; Zhao, B.; Wei, W. A new statistical approach for establishing high-resolution emission inventory of primary gaseous air pollutants. Atmos. Environ. 2014, 94, 392–401. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Y.; Liu, Y.; Gong, M. Development of water basin pollution emission inventory: A preliminary literature review and Its implication for China. J. Water Supply Res. Technol.-Aqua 2021, 70, 1–19. [Google Scholar] [CrossRef]
- Berthiaume, A.; Galarneau, E.; Marson, G. Polycyclic aromatic compounds (PACs) in the Canadian environment: Sources and emissions. Environ. Pollut. 2021, 269, 116008. [Google Scholar] [CrossRef] [PubMed]
- Corbett, J.J. Emissions from ships in the northwestern United States. Environ. Sci. Technol. 2002, 36, 1299–1306. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, Z.; Li, J.; Shang, B.; Wu, Y.; Lin, J.; Huang, X. Characteristics of nutrients and heavy metals and potential influence of their benthic fluxes in the Pearl River Estuary, South China. Mar. Pollut. Bull. 2022, 179, 113685. [Google Scholar] [CrossRef]
- Niu, L.; van Gelder, P.; Luo, X.; Cai, H.; Zhang, T.; Yang, Q. Implications of nutrient enrichment and related environmental impacts in the Pearl River Estuary, China: Characterizing the seasonal influence of riverine input. Water 2020, 12, 3245. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, J.; Zhao, Y.; Shou, Y. Numerical model research on the oil spill in channel of anchorage outside Pearl River Estuary. J. Coast. Res. 2020, 111, 130–139. [Google Scholar] [CrossRef]
- Long, Y.; Sun, Q.; Yang, K. Research on trend of nutrients and its response to human activities in the Pearl River Estuary. E3S Web Conf. 2020, 145, 2081. [Google Scholar] [CrossRef]
- Li, Y.; Guo, N.; Zou, X.; Li, P.; Zou, S.; Luo, J.; Yang, Y. Pollution level and health risk assessment of polycyclic aromatic hydrocarbons in marine fish from two coastal regions, the South China Sea. Mar. Pollut. Bull. 2021, 168, 112376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, F.; Gu, Y.; Huang, H.; Gong, X.; Liao, X. Polycyclic Aromatic Hydrocarbons (PAHs) in the intertidal sediments of Pearl River Estuary: Characterization, source diagnostics, and ecological risk assessment. Mar. Pollut. Bull. 2021, 173, 113140. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, J.; Shi, X.; You, X.; Cao, Z. Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China: Distribution, seasonal variations and ecological risk assessment. Mar. Pollut. Bull. 2016, 109, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Wang, X.; Lin, L.; Zou, S.; Li, Y.; Yang, Q.; Luan, T. Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the Pearl River Estuary, Daya Bay and northern South China Sea: Influence of riverine input. Environ. Pollut. 2015, 199, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Cheng, H.; Jiang, Z.; Sun, C.; Wu, M. Distribution and sources of the polycyclic aromatic hydrocarbons in the sediments of the Pearl River estuary, China. Ecotoxicology 2015, 24, 1643–1649. [Google Scholar] [CrossRef]
- De Voogt, P. Reviews of Environmental Contamination and Toxicology; Springer Nature Switzerland AG: Cham, Switzerland, 2020; Volume 251. [Google Scholar]
- Zhang, L.; Yin, K.; Wang, L.; Chen, F.; Zhang, D.; Yang, Y. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China. Estuar. Coast. Shelf Sci. 2009, 85, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Xu, M.; Liu, Q.; Xie, S. Polycyclic aromatic hydrocarbons in seawater, surface sediment, and marine organisms of Haizhou Bay in Yellow Sea, China: Distribution, source apportionment, and health risk assessment. Mar. Pollut. Bull. 2022, 174, 113280. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Zhang, Q.; Wang, H.; Wang, Y. Characteristics and source apportionment of polycyclic aromatic hydrocarbons of groundwater in Hutuo River alluvial-pluvial fan, China, based on PMF model. Environ. Sci. Pollut. R. 2021, 28, 9647–9656. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.; Jeong, M.; Song, B. Source identification of atmospheric polycyclic aromatic hydrocarbons in industrial complex using diagnostic ratios and multivariate factor analysis. Arch. Environ. Contam. Toxicol. 2011, 60, 576–589. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Sun, J.; Zhang, Y.; Liu, C. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Front. Earth Sci. 2019, 13, 33–42. [Google Scholar] [CrossRef]
- Achten, C.; Hofmann, T. Native polycyclic aromatic hydrocarbons (PAH) in coals–A hardly recognized source of environmental contamination. Sci. Total Environ. 2009, 407, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; He, W.; Kong, X.; Liu, W.; He, Q.; Yang, B.; Wang, Q.; Yang, C.; Jiang, Y.; Jorgensen, S.E.; et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water–SPM–sediment system of Lake Chaohu, China. Sci. Total Environ. 2014, 496, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Connell, D.; Miller, G.J.; Farrington, J.W. Petroleum hydrocarbons in aquatic ecosystems. Behavior and effects of sublethal concentrations: Part I. Crit. Rev. Environ. Control 1981, 11, 37–45. [Google Scholar] [CrossRef]
- China Statistical Publishing House. Guangdong Statistical Yearbook. 2011. Available online: http://tjnj.gdstats.gov.cn:8080/tjnj/2011/ (accessed on 21 May 2022).
- China Statistical Publishing House. Guangdong Statistical Yearbook. 2012. Available online: http://tjnj.gdstats.gov.cn:8080/tjnj/2012/ (accessed on 21 May 2022).
- Agarry, S.; Oghenejoboh, K.M. Enhanced aerobic biodegradation of naphthalene in soil: Kinetic modelling and half-life study. Int. J. Environ. Bioremediation Biodegrad. 2015, 3, 48–53. [Google Scholar]
- Rogers, S.W.; Ong, S.K.; Kjartanson, B.H.; Golchin, J.; Stenback, G.A. Natural attenuation of polycyclic aromatic hydrocarbon-contaminated sites: Review. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2002, 6, 141–155. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S.; Brümmer, G.W. Kinetics of polycyclic aromatic hydrocarbon (PAH) degradation in long-term polluted soils during bioremediation. Plant Soil 2005, 275, 31–42. [Google Scholar] [CrossRef]
- Baltrons, O.; López-Mesas, M.; Vilaseca, M.; Gutiérrez-Bouzán, C.; Le Derf, F.; Portet-Koltalo, F.; Palet, C. Influence of a mixture of metals on PAHs biodegradation processes in soils. Sci. Total Environ. 2018, 628–629, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.R.; Berrow, M.L.; Jones, K.C. The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ. Pollut. 1991, 72, 141–157. [Google Scholar] [CrossRef]
Emission Sources | Oil Spill | Biomass and Coal Combustion | Traffic Emission |
---|---|---|---|
Emission inventory | Oil refinery Oil spill or oily water from tanker or vessel * Leakage or spill from pipeline * | Coal for power plants or industry Coal for community Coal for coking Straw burning Wood burning Forest fire | Gasoline combustion Diesel combustion Combustion of other fuel oils |
Source of PAHs | Year | Change from 2011 to 2012 (%) | ||
---|---|---|---|---|
2011 | 2012 | |||
Oil spill | Crude consumption (ton/day) | 462 | 437 | 94.59 |
Cargo throughput (106 ton/year) | 133,704 | 140,776 | 105.29 | |
Total length of pipeline (km) | 6436.91 | 6448.01 | 100.17 | |
Biomass and coal combustion | Consumption of coal and coke (ton/day) | 169,244 | 165,864 | 98.00 |
Rice production (103 ton/year) | 10,969.0 | 11,265.7 | 102.70 | |
Traffic emission | Gasoline consumption (ton/day) | 32,995 | 34,379 | 104.19 |
Diesel consumption (ton/day) | 40,812 | 42,122 | 103.21 | |
Consumption of other fuel oils (ton/day) | 10,634 | 8427 | 79.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Chen, X.; Niu, H.; Lu, Z.; Zhang, Z.; Lin, G.; Yuan, K. An Advanced PMF Model Based on Degradation Process for Pollutant Apportionment in Coastal Areas. Water 2022, 14, 1823. https://doi.org/10.3390/w14111823
Li P, Chen X, Niu H, Lu Z, Zhang Z, Lin G, Yuan K. An Advanced PMF Model Based on Degradation Process for Pollutant Apportionment in Coastal Areas. Water. 2022; 14(11):1823. https://doi.org/10.3390/w14111823
Chicago/Turabian StyleLi, Pu, Xiayu Chen, Haibo Niu, Zhenhua Lu, Zekun Zhang, Ge Lin, and Ke Yuan. 2022. "An Advanced PMF Model Based on Degradation Process for Pollutant Apportionment in Coastal Areas" Water 14, no. 11: 1823. https://doi.org/10.3390/w14111823
APA StyleLi, P., Chen, X., Niu, H., Lu, Z., Zhang, Z., Lin, G., & Yuan, K. (2022). An Advanced PMF Model Based on Degradation Process for Pollutant Apportionment in Coastal Areas. Water, 14(11), 1823. https://doi.org/10.3390/w14111823