Spatial and Temporal Variations of the Water Quality of the Tiflet River, Province of Khemisset, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Choice of Stations and Sampling Procedures
2.3. Statistical Analysis Methods of Estimated Variables
2.4. Global Assessment of the Water Quality of the River
- where P is the global pollution index.
- Ci: is the measured concentration of the pollutant (mg/L),
- Si: represents the limits authorized by Moroccan standards, [6],
- n: is the number of pollutants selected.
2.5. Multivariate Statistic Alanalysis
3. Results and Discussion
3.1. The Physicochemical Characteristics of Wadi Tiflet Water
3.2. BOD5 (Biochemical Oxygen Demand)
3.3. COD (Chemical Oxygen Demand)
3.4. Nitrogen Nitrates (NO3-N)
3.5. Ammonium Nitrogen (NO4-N)
3.6. Kahdjel Nitrogen (TKN)
3.7. PO4-P and TP
3.8. Assessment of the Physicochemical Pollution of Water via the Pollution Index
3.9. Statistical Analysis of Data
3.9.1. Correlation of Estimated Variables
3.9.2. Principal Component Analysis
3.9.3. Classification According to Projection Plan 1 and 2
3.9.4. Classification According to Axes 1 and 3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Zadeh, H. Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination 2010, 260, 129–136. [Google Scholar] [CrossRef]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef]
- Noori, R.; Karbassi, A.; Khakpour, A.; Shahbazbegian, M.; Badam, H.M.K.; Vesali-Naseh, M. Chemometric Analysis of Surface Water Quality Data: Case Study of the Gorganrud River Basin, Iran. Environ. Modeling Assess. 2011, 17, 411–420. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, X.H.; Yang, Z.F.; Wang, F. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- NMQE. Norme Marocaine Qualité des Eaux. Arrêté conjoint du Ministre de l’équipement et du Ministre chargé de l’aménagement du territoire, de l’urbanisme, de l’habitat et de l’environnement n°1275-02 du Chaabane 1423 définissant lagril. 2002. Available online: http://www.eau-tensift.net/fileadmin/user_files/pdf/reglementation/ControleQualiteEau/Arrete1275_01GrilleQualiteEauxSurface.pdf (accessed on 1 May 2022).
- Moatar, F.; Meybeck, M.; Poirel, A. Daily variability and its implication on long term river water quality surveys: The Middle Loire. Houille Blanche-Rev. Int. De L Eau 2009, 4, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Pejman, A.H.; Bidhendi, G.N.; Karbassi, A.R.; Mehrdadi, N.; Bidhendi, M.E. Evaluation of Spatial and Seasonal Variations in Surface Water Quality Using Multivariate Statistical Techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.N.; Nadeem, M. Spatial and Temporal Characterization of Trace Elements and Nutrients in The Rawal Lake Reservoir, Pakistan Using Multivariate Analysis Techniques Environ. Geochem. Health 2011, 33, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.M. The Diel Oxygen Cycle in Three. Arch. Hydrobiol. 1991, 120, 457–479. [Google Scholar] [CrossRef]
- Ministère de l’urbanisme et de l’aménagement de territoire. Royaume du Maroc. SDAU 2040 Khémisset-Tiflet. Available online: http://www.sdau-khemisset-tiflet.ma/fr/utilisation-du-sol-et-morphologies-spatiales.html/2022 (accessed on 1 May 2022).
- Berdai, H.; Soudi, B.; Bellouti, A. Contribution à l’étude de la pollution nitrique des eaux souterraines en zones irriguées: Cas du Tadla. Proj. INCO-WADEMED Actes Sémin. Mod. L’Agriculture Irriguée Rabat 2004. Volume 19, p. 28. Available online: http://www.abhatoo.net.ma/maalama-textuelle/developpement-durable/environnement/eau-douce/deterioration-des-eaux-douces/pollution-de-l-eau/contribution-a-l-etude-de-la-pollution-nitrique-des-eaux-souterraines-en-zones-irriguees-cas-du-tadla (accessed on 2 May 2022).
- Ouharba, E.H.; Triqui, Z.e.A.; Moussadek, R. Impact of Climate Change on the Bouregreg Watershed Vegetation and Forest of Morocco. Int. J. Adv. Sci. Res. Eng. 2019, 5, 109. [Google Scholar] [CrossRef]
- Capblancq, J.; Décamps, H. L’eutrophisation des eaux continentales: Questions à propos d’un processus complexe. Nat. Sci. Sociétés 2002, 10, 6–17. [Google Scholar] [CrossRef]
- Rezouki, S.; Allali, A.; Touati, N.; Eloutassi, N.; Fadli, M. Spatio-Temporal Evolution of Physico-Chemical Parameters of The Inaouen Wadi And Its Tributaries. Morroccan J. Chem. 2021, 9, 576–587. [Google Scholar]
- Tomas, D.; Čurlin, M.; Marić, A.S. Assessing the Surface Water Status in Pannonian Ecoregion by the Water Quality Index Model. Ecol. Indic. 2017, 79, 182–190. [Google Scholar] [CrossRef]
- Derwich, E.; Benaabidate, L.; Zian, A.; Sadki, O.; Belghity, D. Caractérisation Physico-Chimique Des Eaux De La Nappe Alluviale Du Haut Sebou En Aval De Sa Confluence Avec Oued Fès. Larhyss J. 2010, 8, 101–112. [Google Scholar]
- Medeiros, A.C.; Faial Kr, F.; Faial Kd, C.F.; Da Silva Lopes, I.D.; De Oliveira Lima, M.; Guimarães, R.M.; Mendonça, N.M. Quality Index of The Surface Water of Amazonian Rivers in Industrial Areas in Pará, Brazil. Mar. Pollut. Bull. 2017, 123, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Zeinalzadeh, K.; Rezaei, E. Determining Spatial and Temporal Changes of Surface Water Quality Using Principal Component Analysis. J. Hydrol. Reg. Stud. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- N’diaye, A.D.; Salem, K.M.M. Contribution A L’étude De La Qualité Physico-Chimique De L’eau De La Rive Droite Du Fleuve Sénégal. Larhyss J. 2013, 12, 71–83. [Google Scholar]
- Villeneuve, V.; Légaré, S.; Painchaud, J.; Vincent, W. Dynamique Et Modélisation De L’oxygène Dissous En Rivière. Rev. Des Sci. De L’eau/J. Water Sci. 2006, 19, 259–274. [Google Scholar]
- Akil, A.; Hassan, T.; Lahcen, B.; Abderrahim, L. Etude de la qualité physico-chimique et contamination métallique des eaux de surface du bassin versant de Guigou, Maroc. Eur. Sci. J. 2014, 10, 84–94. [Google Scholar]
- Derradji, F.; Bousnoubra, H.; Kherici, N.; Romeo, M.; Caruba, R. Science Et Changements Planétaires/Sécheresse, Impact De La Pollution Organique Sur La Qualité Des Eaux Superficielles Dans Le Nord-Est Algérien. Sci. Et Changements Planétaires/Sécheresse 2007, 18, 23–27. [Google Scholar]
- Shukla, A.K.; Ojha, C.S.P.; Garg, R.D. Application of Overall Index of Pollution (Oip) for the Assessment of the Surface Water Quality in the Upper Ganga River Basin, India. In Development of Water Resources in India; Springer: Berlin/Heidelberg, Germany, 2017; pp. 135–149. [Google Scholar]
- Oufline, R.; Hakkou, R.; Hanich, L.; Boularbah, A. Impact of Human Activities on The Physico-Chemical Quality of Surface Water and Groundwater in The North of Marrakech (Morocco). Environ. Technol. 2012, 33, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
- Araoye, P.A. The Seasonal Variation of Ph And Dissolved Oxygen (Do2) Concentration in Asa Lake Ilorin, Nigeria. Int. J. Phys. Sci. 2009, 4, 271–274. [Google Scholar]
- Gurjar, S.K.; Tare, V. Spatial-Temporal Assessment of Water Quality and Assimilativecapacity Of River Ramganga, A Tributary of Ganga Using Multivariatenalysis And Quel2k. J. Clean. Prod. 2019, 222, 550–564. [Google Scholar] [CrossRef]
- Singh, K.R.; Goswami, A.P.; Kalamdhad, A.S.; Kumar, B. Assessment of Surface Water Quality of Pagladia, Beki And Kolong River (Assam, India) Using Multivariate Statistical Techniques. Intl. J. River Basin Manag. 2020, 4, 511–520. [Google Scholar] [CrossRef]
- Zhang, D.; Tao, Y.; Liu, X.; Zhou, K.; Yuan, Z.; Wu, Q.; Zhang, X. Spatial and Temporal Variations of Water Quality in An Artificial Urban River Receiving Wwtp Effluent in South China. Water Sci. Technol. 2016, 73, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wu, J.; Li, Z.; Cui, N.; Cheng, S. Water Quality Assessment of An Urban River Receiving Tail Water Using the Single-Factor Index and Principle Component Analysis. Water Supply 2019, 19, 603–609. [Google Scholar] [CrossRef]
- Rassam, A.; Chaouch, A.; Bourkhiss, B.; Ouhssine, M.; Lakhlifi, T.; Bourkhiss, M.; El Watik, L. Caractéristiques Physico-Chimiques Des Eaux Usées Brutes De La Ville D’oujda (Maroc). Les Technol. De Lab. 2012, 7, 28. [Google Scholar]
- Ministère de l’Équipement et de l’eau, Direction Générale de l’Hydraualique. Section Première-Le Conseil Supérieur de l’eau et du Climat–Direction Générale de l’Eau. Available online: http://81.192.10.228/reglementation/au-niveau-national/loi-36-15/chapitre-vi-administration-de-leau/section-premiere-le-conseil-superieur-de-leau-et-du-climat/ (accessed on 1 May 2022).
Stations | Description | X | Y |
---|---|---|---|
S1 | Located at the source of untreated domestic-wastewater discharges from the municipality of Tiflet (the nursery). | 33.89839 | −6.30017 |
S2 | Located at the level of rejections from the weekly market and slaughterhouse (Tiflet). | 33.89128 | −6.29706 |
S3 | Located downstream of the discharges of an oil mill (Douar Shraoua), presence of vegetation in the bank of the river. | 33.87489 | −6.29628 |
S4 | Located at a source discharging this water directly into Oued Tiflet (control station), presence of vegetation. | 33.87286 | −6.29622 |
S5 | Located at the level of agricultural discharges of a human and rural agglomeration (Douar El Haj Thami), presence of vegetation in the bank of the river and a red-black color. | 33.95647 | −6.31664 |
S6 | Located at the level of agricultural waste (Sidi Boukhlkhal), presence of vegetation. | 34.10094 | −6.36878 |
S7 | Located downstream of urban waste (Sidi Yahya EI Gharb), presence of a bad odor. | 34.31133 | −6.31353 |
S8 | Located downstream of industrial waste (stationery, etc.). | 34.31358 | −6.31317 |
Global Pollution Index of Pollution (P) | Water Quality Level |
---|---|
≤0.20 | Cleanliness |
0.21–0.40 | Sub-cleanliness |
0.41–1.00 | Slight pollution |
1.01–2.0 | Moderate pollution |
≥2.01 | Severe pollution |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | ||
---|---|---|---|---|---|---|---|---|---|
pH | R | 7.51–7.66 | 7.24–7.95 | 7.2–7.98 | 7.35–7.89 | 7.76–7.97 | 8.13–8.52 | 7.57–8.7 | 7.29–8.35 |
M ± Sd | 7.5825 ± 0.061 | 7.6125 ± 41.45 | 7.6 ± 0.40 | 7.5325 ± 0.25 | 7.8925 ± 0.09 | 8.315 ± 0.16 | 8.205 ± 0.54 | 7.775 ± 0.44 | |
T | R | 15.40–22.70 | 15.50–31.10 | 17.30–22.10 | 0.101–7.20 | 19.10–24.50 | 20.10–33.600 | 21.40–30.90 | 21–33.30 |
°C | M ± Sd | 18.7925 ± 3.69 | 22.675 ± 6.43 | 19.825 ± 1.96 | 18.675 ± 1.64 | 21.45 ± 2.68 | 26.125 ± 6.22 | 25.125 ± 4.64 | 26.2 ± 5.54 |
EC | R | 1433–2470 | 1187–5300 | 1076–1477 | 1048–1102 | 1732–1997.75 | 1711–2040 | 1472–2096 | 1520–2114 |
mS/m | M ± Sd | 1994.25 ± 435.08 | 3169 ± 1940.05 | 1212 ± 184.89 | 1079.25 ± 25.13 | 1997.75 ± 211.34 | 1909 ± 153.42 | 1652 ± 297.08 | 1790.5 ± 310.73 |
DO | R | 0.23–2.81 | 0.12–8.25 | 0.78–8.73 | 4.20–8.14 | 1.92–7.89 | 7.12–8.24 | 2.25–12.22 | 0.14–7.63 |
mg/L | M ± Sd | 0.96 ± 1.23 | 2.5 ± 3.88 | 4.4725 ± 4.25 | 6.0025 ± 1.74 | 4.665 ± 2.50 | 7.4075 ± 0.55 | 6.015 ± 4.35 | 3.31 ± 3.72 |
NO3-N | R | 0.47–1.83 | 1.85–5.70 | 0.30–5.51 | 1.83–6.39 | 1.67–11.10 | 7.64–19.18 | 0.62–14.62 | 1.21–7.77 |
mg/L | M ± Sd | 0.98525 ± 0.60 | 3.291 ± 1.72 | 2.3955 ± 2.51 | 4.964 ± 2.15 | 4.87975 ± 4.23 | 12.25075 ± 4.96 | 7.35775 ± 5.74 | 5.06275 ± 2.76 |
NH4-N | R | 0.95–30.90 | 0.07–75 | 0.05–11.80 | 0.04–0.40 | 0.97–63.80 | 0.03–4.70 | 0–28.80 | 3.73–17.10 |
mg/L | M ± Sd | 10.29275 ± 14.14 | 20.05425 ± 36.67 | 3.415 ± 5.62 | 0.199 ± 0.15 | 21.20025 ± 29.5 | 1.54375 ± 2.13 | 9.3655 ± 13.55 | 8.7075 ± 5.84 |
TKN | R | 17.26–156.37 | 19.43–443.22 | 9.40–19.60 | 0.04–3.18 | 31.84–64.58 | 0.03–24.12 | 00–86.03 | 3.90–92.42 |
mg/L | M ± Sd | 74.0675 ± 58.67 | 218.375 ± 202.70 | 13.79 ± 4.31 | 1.595 ± 1.31 | 51.8625 ± 14.05 | 13.65 ± 10.84 | 26.7305 ± 40.28 | 28.47 ± 42.72 |
BOD5 | R | 19–200 | 75–420 | 1–12 | 1–3 | 37–80 | 4–80 | 5–70 | 20–200 |
mg/L | M ± Sd | 127.25 ± 80.50 | 221.25 ± 159.9 | 6.25 ± 5.56 | 1.75 ± 0.95 | 49.25 ± 20.54 | 26 ± 36.11 | 22.5 ± 31.75 | 102.5 ± 91.05 |
COD | R | 33.75–384 | 84–1056 | 12–48 | 9.65–43.20 | 55.2–84 | 31.20–60 | 31.20–163.20 | 57.60–2664 |
mg/L | M ± Sd | 233.4375 ± 149.75 | 451.8 ± 420 | 25 ± 16.12 | 25.826 ± 18.70 | 69 ± 14.71 | 45 ± 11.81 | 73.925 ± 60.70 | 740.4 ± 1283.59 |
COD/BOD5 | 1.83 | 2.042 | 4 | 14.75 | 1.4 | 1.73 | 2.33 | 7.22 | |
PO4-P | R | 0.46–7.60 | 0.36–22.20 | 0.00–0.01 | 0.01–0.09 | 1.52–4.50 | 0.69–1.63 | 0.03–9.00 | 0.17–10.00 |
mg/L | M ± Sd | 3.3370 ± 3.18060 | 9.2730 ± 9.21696 | 0.0078 ± 0.00450 | 0.3525 ± 0.40143 | 3.4790 ± 1.38541 | 1.1843 ± 0.38540 | 2.6905 ± 4.25112 | 3.0590 ± 4.65956 |
TP | R | 0.94–12.36 | 0.85–40.96 | 0.18–0.30 | 0.07–0.95 | 3.38–6.20 | 1.60–30.32 | 0.51–10.20 | 0.21–31.48 |
mg/L | M ± Sd | 6.7460 ± 4.79225 | 20.1190 ± 18.5694 | 0.2270 ± 0.05988 | 0.3525 ± 0.40143 | 5.2310 ± 1.26146 | 9.2140 ± 14.08425 | 3.3220 ± 4.64378 | 11.0550 ± 14.6282 |
PDO | PNO3-N | PNH4-N | PTKN | PDBO5 | PCOD | PP04P | PTP | P | Water Quality | |
---|---|---|---|---|---|---|---|---|---|---|
S1 s | 0.046 | 0.01868 | 1.9 | 30.17 | 23 | 6.171429 | 15.2 | 27.33333 | 12.97993 | Severe pollution |
S1 a | 0.088 | 0.03856 | 2.242 | 78.185 | 40 | 8.571429 | 2.86 | 41.2 | 21.64812 | Severe pollution |
S1 w | 0.562 | 0.07308 | 16.4 | 8.63 | 3.8 | 0.964286 | 0.92 | 3.133333 | 4.310337 | Severe pollution |
S1 p | 0.072 | 0.02732 | 61.8 | 31.15 | 35 | 10.97143 | 7.72 | 18.26667 | 20.62593 | Severe pollution |
S2 s | 0.036 | 0.0904 | 1.7 | 221.61 | 22 | 8.914286 | 44.4 | 100 | 49.84384 | Severe pollution |
S2 a | 0.024 | 0.13428 | 0.134 | 166.745 | 56 | 10.14857 | 13.74 | 136.5333 | 47.9324 | Severe pollution |
S2 w | 1.65 | 0.22784 | 8.6 | 9.715 | 15 | 2.4 | 0.72 | 2.833333 | 5.143272 | Severe pollution |
S2 p | 0.29 | 0.07404 | 150 | 38.68 | 84 | 30.17143 | 15.32 | 28.9 | 43.42943 | Severe pollution |
S3 s | 0.168 | 0.016 | 0.62 | 9.8 | 2 | 0.342857 | 0.02 | 1 | 1.745857 | Moderate pollution |
S3 a | 0.156 | 0.012 | 3 | 7 | 2.4 | 0.457143 | 0 | 0.6 | 1.703143 | Moderate pollution |
S3 w | 1.746 | 0.22048 | 0.1 | 4.7 | 0.4 | 0.685714 | 0.02 | 0.833333 | 1.088191 | Moderate pollution |
S3 p | 1.508 | 0.1348 | 23.6 | 6.08 | 0.2 | 1.371429 | 0.02 | 0.6 | 4.189279 | Moderate pollution |
S4 s | 1.008 | 0.2556 | 0.08 | 0.02 | 0.6 | 0.275714 | 0.02 | 0.666667 | 0.365748 | Slight pollution |
S4 a | 0.84 | 0.25504 | 0.232 | 0.6 | 0.2 | 0.275829 | 0.18 | 3.166667 | 0.718692 | Slight pollution |
S4 w | 1.628 | 0.07308 | 0.48 | 1.59 | 0.2 | 1.165714 | 0.04 | 0.633333 | 0.726266 | Slight pollution |
S4 p | 1.326 | 0.21052 | 0.8 | 0.98 | 0.4 | 1.234286 | 0.06 | 0.233333 | 0.655517 | Slight pollution |
S5 s | 0.998 | 0.444 | 3.66 | 27.11 | 7.4 | 1.577143 | 9 | 19 | 8.648643 | Severe pollution |
S5 a | 0.384 | 0.11952 | 1.942 | 28.405 | 16 | 2.262857 | 8.84 | 20.66667 | 9.827505 | Severe pollution |
S5 w | 1.578 | 0.15056 | 36.4 | 15.92 | 8 | 2.4 | 3.04 | 11.26667 | 9.844403 | Severe pollution |
S5 p | 0.772 | 0.06668 | 127.6 | 32.29 | 8 | 1.645714 | 6.96 | 18.83333 | 24.52097 | Severe pollution |
S6 s | 1.648 | 0.4032 | 0.06 | 0.015 | 0.8 | 0.891429 | 2.4 | 5.333333 | 1.44387 | Moderate pollution |
S6 a | 1.424 | 0.7672 | 1.75 | 5.05 | 16 | 1.714286 | 2.44 | 101.0667 | 16.27652 | Severe pollution |
S6 w | 1.426 | 0.30572 | 1.14 | 10.175 | 2 | 1.302857 | 1.38 | 6.333333 | 3.007864 | Severe pollution |
S6 p | 1.428 | 0.484 | 9.4 | 12,06 | 2 | 1.234286 | 3.26 | 10.13333 | 4.999952 | Severe pollution |
S7 s | 0.796 | 0.0248 | 57.6 | 43.015 | 14 | 4.662857 | 18 | 34 | 21.51233 | Severe pollution |
S7 a | 0.45 | 0.5848 | 0.322 | 1.555 | 1 | 0.891429 | 2.9 | 6.9 | 1.825404 | Moderate pollution |
S7 w | 1.122 | 0.30572 | 17 | 8.89 | 1 | 1.714286 | 0.06 | 1.7 | 3.974001 | Severe pollution |
S7 p | 2.444 | 0.26192 | 0.002 | 0 | 2 | 1.18 | 0.58 | 1.7 | 1.02099 | Moderate pollution |
S8 s | 0.028 | 0.3108 | 34.2 | 46.21 | 40 | 76.11429 | 20 | 39.33333 | 32.02455 | Severe pollution |
S8 a | 0.054 | 0.04856 | 7.46 | 1.95 | 32 | 5.074286 | 2.96 | 104.9333 | 19.31002 | Severe pollution |
S8 w | 1.04 | 0.2142 | 15.6 | 5.28 | 6 | 1.782857 | 1.18 | 2.433333 | 4.191299 | Severe pollution |
S8 p | 1.526 | 0.23648 | 12.4 | 3.5 | 4 | 1.645714 | 0.34 | 0.7 | 3.043524 | Severe pollution |
pH | T | EC | DO | NO3-N | NH4-N | NKT | BOD5 | COD | PO4-P | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||
T | 0.206 | 1 | |||||||||
EC | −0.083 | 0.353 * | 1 | ||||||||
DO | 0.657 ** | −0.034 | −0.474 ** | 1 | |||||||
NO3-N | 0.642 ** | 0.199 | −0.11 | 0.428 * | 1 | ||||||
NH4-N | −0.226 | 0.08 | 0.013 | −0.186 | −0.289 | 1 | |||||
NKT | −0.248 | 0.227 | 0.943 ** | −0.492 ** | −0.252 | 0.039 | 1 | ||||
BOD5 | −0.433 * | 0.166 | 0.494 ** | −0.577 ** | −0.275 | 0.507 ** | 0.500 ** | 1 | |||
COD | −0.366 * | 0.392 * | 0.19 | −0.389 * | −0.03 | 0.33 | 0.24 | 0.590 ** | 1 | ||
PO4-P | −0.262 | 0.348 | 0.816 ** | −0.503 ** | −0.201 | 0.229 | 0.827 ** | 0.491 ** | 0.451 ** | 1 | |
TP | −0.149 | 0.265 | 0.786 ** | −0.458 ** | 0.02 | −0.019 | 0.688 ** | 0.583 ** | 0.222 | 0.553 ** | 1 |
Component | |||
---|---|---|---|
1 | 2 | 3 | |
pH | −0.519 | 0.701 | 0.014 |
T | 0.293 | 0.623 | 0.500 |
EC | 0.821 | 0.444 | −0.294 |
DO | −0.754 | 0.319 | 0.077 |
NO3-N | −0.376 | 0.644 | 0.116 |
NH4-N | 0.321 | −0.349 | 0.602 |
NTK | 0.846 | 0.259 | −0.333 |
BOD5 | 0.793 | −0.149 | 0.297 |
COD | 0.555 | −0.059 | 0.615 |
PO4-P | 0.845 | 0.227 | −0.036 |
TP | 0.736 | 0.343 | −0.255 |
eigenvalues | 4.787 | 2.255 | 1.481 |
% of variance | 39.892 | 18.789 | 12.340 |
Cumulative % | 39.892 | 58.681 | 71.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elassassi, Z.; Ougrad, I.; Bedoui, I.; Kara, M.; El Bouch, M.; Assouguem, A.; Fadli, M.; Almeer, R.; Mohamed, H.R.H.; Peluso, I.; et al. Spatial and Temporal Variations of the Water Quality of the Tiflet River, Province of Khemisset, Morocco. Water 2022, 14, 1829. https://doi.org/10.3390/w14121829
Elassassi Z, Ougrad I, Bedoui I, Kara M, El Bouch M, Assouguem A, Fadli M, Almeer R, Mohamed HRH, Peluso I, et al. Spatial and Temporal Variations of the Water Quality of the Tiflet River, Province of Khemisset, Morocco. Water. 2022; 14(12):1829. https://doi.org/10.3390/w14121829
Chicago/Turabian StyleElassassi, Zahra, Ihsane Ougrad, Imane Bedoui, Mohammed Kara, Mohmed El Bouch, Amine Assouguem, Mohmed Fadli, Rafa Almeer, Hanan R. H. Mohamed, Ilaria Peluso, and et al. 2022. "Spatial and Temporal Variations of the Water Quality of the Tiflet River, Province of Khemisset, Morocco" Water 14, no. 12: 1829. https://doi.org/10.3390/w14121829
APA StyleElassassi, Z., Ougrad, I., Bedoui, I., Kara, M., El Bouch, M., Assouguem, A., Fadli, M., Almeer, R., Mohamed, H. R. H., Peluso, I., & Chaouch, A. (2022). Spatial and Temporal Variations of the Water Quality of the Tiflet River, Province of Khemisset, Morocco. Water, 14(12), 1829. https://doi.org/10.3390/w14121829