Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy)
Abstract
:1. Introduction
2. Study Area
3. Geological and Hydrogeological Setting of the Study Area
4. Materials and Methods
4.1. SINTACS and SINTACS-LU Methods
4.2. Sensitivity Analysis
4.2.1. Map Removal
4.2.2. Single-Parameter Sensitivity Analysis
5. Results and Discussion
5.1. Conditioning Indicators
5.2. SINTACS Vulnerability Index
5.3. Sensitivity Analysis
5.3.1. Map Removal
5.3.2. Single-Parameter Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO (World Health Organization). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum; WHO: Geneva, Switzerland, 2017; p. 631. [Google Scholar]
- Adams, B.; Foster, S.S.D. Land-surface zoning for groundwater protection. J. Inst. Water Environ. Manag. 1992, 6, 312–320. [Google Scholar] [CrossRef]
- Civita, M.; De Maio, M. SINTACS. Un Sistema Parametrico per la Valutazione e la Cartografia Della Vulnerabilità Degli Acquiferi All’inquinamento. Metodologia e Automazione, Quaderni di Tecniche di Protezione Ambientale; Pitagora Editrice: Bologna, Italy, 1997; p. 191. [Google Scholar]
- Kumar, A.; Krishna, A.P. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int. 2018, 35, 1149–1178. [Google Scholar] [CrossRef]
- Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Kirlas, M.C.; Karpouzos, D.Κ.; Georgiou, P.E.; Katsifarakis, K.L. A comparative study of groundwater vulnerability methods in a porous aquifer in Greece. Appl. Water Sci. 2022, 12, 123. [Google Scholar] [CrossRef]
- Mendoza, J.A.; Barmen, G. Assessment of groundwater vulnerability in the Río Artiguas basin, Nicaragua. Environ. Geol. 2006, 50, 569–580. [Google Scholar] [CrossRef]
- Albinet, M.; Margat, J. Cartographie de la vulnerabilité de à la pollution des nappes d’eau souterraine. Orléans France. Bull. BRGM 1970, 4, 13–22. [Google Scholar]
- Vrba, J.; Zaporozec, A. Guidebook on Mapping Groundwater Vulnerability. In IAH International Contributions to Hydrogeology; Heise Pub.: Hannover, Germany, 1994; Volume 16, p. 131. [Google Scholar]
- National Research Council. Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential under Conditions of Uncertainty; The National Academy Press: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Civita, M. La previsione e la prevenzione del rischio di inquinamento delle acque sotterranee a livello regionale mediante le Carte di Vulnerabilità. In Proceedings of the Conference Inquinamento delle Acque Sotterranee: Previsione e Prevenzione, Mantova, Italy, 11 February 1987; pp. 9–18. [Google Scholar]
- Zwahlen, F. Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers, Final Report (COST Action 620); Report EUR 20912; European Commission: Brussels, Belgium, 2004; p. 297. [Google Scholar]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Paull, D.J.; Kramer, M. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ. 2022, 822, 153486. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdhury, A.; Chowdary, V.M.; Peiffer, S. Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resour. Manag. 2007, 21, 427–467. [Google Scholar] [CrossRef]
- Voss, C.I. A Finite Element Simulation Model for Saturated-Unsaturated Fluid Density-Dependent Groundwater Flow with Energy Transport or Chemically Reactive Single-Species Solute Transport; U.S. Geological Survey: Reston, VA, USA, 1984.
- Carsel, R.F.; Mulkey, L.A.; Lorber, M.N.; Baskin, L.B. The pesticide root zone model (PRZM): A procedure for evaluating pesticide leaching threats to ground water. Ecol. Model. 1985, 30, 49–69. [Google Scholar] [CrossRef]
- Wagenet, R.J.; Hutson, J.L. Predicting the fate of non-volatile pesticides in the unsaturated zone. J. Environ. Qual. 1986, 15, 315–322. [Google Scholar] [CrossRef]
- Leonard, R.A.; Knisel, W.G.; Still, D.A. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. Am. Soc. Agric. Eng. 1987, 30, 1403–1418. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; Contract Report SERDP-99-1; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 1999. [Google Scholar]
- Šimunek, J.; Šejna, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; University of California: Riverside, CA, USA, 2005; p. 240. [Google Scholar]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; U.S. Environmental Protection Agency: Washington, DC, USA, 1987; p. 455.
- Civita, M. Idrogeologia Applicata e Ambientale; CEA: Milano, Italy, 2005; pp. 1–794. [Google Scholar]
- Civita, M.; De Maio, M. SINTACS R5 a New Parametric System for the Assessment and Automatic Mapping of Groundwater Vulnerability to Contamination; Pitagora Editrice: Bologna, Italy, 2000; p. 226. [Google Scholar]
- Civita, M.; De Maio, M. Assessing and mapping groundwater vulnerability to contamination: The Italian “combined” approach. Geofísica Int. 2004, 43, 513–532. [Google Scholar] [CrossRef] [Green Version]
- Doerfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Vías, J.; Andreo, B.; Perles, M.; Carrasco, F.; Vadillo, I.; Jiménez, P. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–925. [Google Scholar] [CrossRef]
- Nolan, B.T.; Hitt, K.J.; Ruddy, B.C. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ. Sci. Technol. 2002, 36, 2138–2145. [Google Scholar] [CrossRef] [Green Version]
- Twarakavi, N.K.C.; Kaluarachchi, J.J. Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Ground Water 2005, 43, 200–214. [Google Scholar] [CrossRef]
- Rupert, M.G. Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water 2001, 39, 625–630. [Google Scholar] [CrossRef]
- Gupta, P.K.; Kumari, B.; Gupta, S.K.; Kumar, D. Nitrate-leaching and groundwater vulnerability mapping in North Bihar, India. Sustain. Water Resour. Manag. 2020, 6, 48. [Google Scholar] [CrossRef]
- Javadinejad, S.; Ostad-Ali-Askari, K.; Jafary, F. Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Model. Earth Syst. Environ. 2019, 5, 1015–1023. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh-Kharazi, H. Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J. Civ. Eng. 2017, 21, 134–140. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Shayannejad, M. Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer. Environ. Dev. Sustain. 2021, 23, 15943–15959. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Voss, F.D. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability. Groundwater 1997, 35, 1029–1039. [Google Scholar] [CrossRef]
- Stevenazzi, S.; Bonfanti, M.; Masetti, M.; Nghiem, S.V.; Sorichetta, A. A versatile method for groundwater vulnerability projections in future scenarios. J. Environ. Manag. 2017, 187, 365–374. [Google Scholar] [CrossRef]
- Sahoo, S.; Dhar, A.; Kar, A.; Chakraborty, D. Index-based groundwater vulnerability mapping using quantitative parameters. Environ. Earth Sci. 2016, 75, 522. [Google Scholar] [CrossRef]
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Panagopoulos, G.; Antonakos, A.; Lambrakis, N. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. J. 2006, 14, 894–911. [Google Scholar] [CrossRef]
- Brindha, K.; Elango, L. Cross comparison of five popular groundwater pollution vulnerability index approaches. J. Hydrol. 2015, 524, 597–613. [Google Scholar] [CrossRef]
- Jahromi, M.N.; Gomeh, Z.; Busico, G.; Barzegar, R.; Samany, N.N.; Aalami, M.T.; Tedesco, D.; Mastrocicco, M.; Kazakis, N. Developing a SINTACS-based method to map groundwater multi-pollutant vulnerability using evolutionary algorithms. Environ. Sci. Pollut. Res. 2021, 28, 7854–7869. [Google Scholar] [CrossRef]
- Civita, M. Le Carte della Vulnerabilità Degli Acquiferi All’inquinamento: Teoria e Pratica, Quaderni di Tecniche di Protezione Ambientale; Pitagora Editrice: Bologna, Italy, 1994; pp. 325–333. [Google Scholar]
- Civita, M. The combined approach when assessing and mapping groundwater vulnerability to contamination. J. Water Resour. Prot. 2010, 2, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Noori, R.; Ghahremanzadeh, H.; Kløve, B.; Adamowski, F.J.; Baghvand, A. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J. Environ. Sci. Health 2019, 54, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, M.; Akbari, M. Evaluation of the SINTACS-LU model capability in the analysis of aquifer vulnerability potential in semiarid regions. J. Appl. Res. Water Wastewater 2020, 7, 111–119. [Google Scholar]
- Jesudhas, C.J.; Chinnasamy, A.; Muniraj, K.; Sundaram, A. Assessment of vulnerability in the aquifers of rapidly growing sub-urban: A case study with special reference to land use. Arab. J. Geosci. 2021, 14, 60. [Google Scholar] [CrossRef]
- Longhitano, S.G. Short-Term Assessment of Retreating vs. Advancing Microtidal Beaches Based on the Backshore/Foreshore Length Ratio: Examples from the Basilicata Coasts (Southern Italy). Open J. Mar. Sci. 2015, 5, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Cilumbriello, A.; Sabato, L.; Tropeano, M.; Gallicchio, S.; Grippa, A.; Maiorano, P.; Mateu-Vicens, G.; Rossi, C.A.; Spilotro, G.; Calcagnile, L.; et al. Sedimentology, stratigraphic architecture and preliminary hydrostratigraphy of the Metaponto coastal-plain subsurface (Southern Italy). In Proceedings of the National Workshop Multidisciplinary Approach for Porous Aquifer Characterization; Bersezio, R., Amanti, M., Eds.; Memorie Descrittive della Carta Geologica d’Italia: Rome, Italy, 2010; pp. 67–84. [Google Scholar]
- Gioia, D.; Bavusi, M.; Di Leo, P.; Giammatteo, T.; Schiattarella, M. Geoarchaeology and geomorphology of the Metaponto area, Ionian coastal belt, Italy. J. Maps 2020, 16, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Pescatore, T.; Pieri, P.; Sabato, L.; Senatore, M.R.; Gallicchio, S.; Boscaino, M.; Cilumbriello, A.; Quarantiello, R.; Capretto, G. Stratigrafia dei depositi pleistocenico-olocenici dell’area costiera di Metaponto compresa fra Marina di Ginosa ed il Torrente Cavone (Italia meridionale): Carta geologica in scala 1:25,000. Il Quat. 2009, 22, 307–324. [Google Scholar]
- Tropeano, M.; Sabato, L.; Pieri, P. The Quaternary «Post-turbidite» sedimentation in the South-Apennines Foredeep (Bradanic Trough-Southern Italy). Boll. Soc. Geol. Ital. 2002, 1, 449–454. [Google Scholar]
- Tropeano, M.; Cilumbriello, A.; Sabato, L.; Gallicchio, S.; Grippa, A.; Longhitano, S.G.; Bianca, M.; Gallipoli, M.R.; Mucciarelli, M.; Spilotro, G. Surface and subsurface of the Metaponto coastal plain (Gulf of Taranto—Southern Italy): Present-day- vs. LGM landscape. Geomorphol. 2013, 203, 115–131. [Google Scholar] [CrossRef]
- Geological Survey of Italy. Geological Map of Italy, 1:100,000 Scale; ISPRA—Land Protection and Georesources Department: Rome, Italy, 1976. [Google Scholar]
- Geological Survey of Italy. Geological Map of Italy, 1:50,000 Scale; ISPRA—Land Protection and Georesources Department: Rome, Italy, 2016. [Google Scholar]
- Parea, G.C. I terrazzi marini tardo-pleistocenici del fronte della catena appenninica in relazione alla geologia dell’avanfossa adriatica (The Late Pleistocene marine terraces in front of the Apennines in relation to the geology of Adriatic Foredeep). Mem. Soc. Geol. Ital. 1986, 35, 913–936. [Google Scholar]
- Cocco, E.; Cravero, E.; Di Geronimo, S.; Mezzadri, G.; Parea, G.C.; Pescatore, T.; Valloni, R.; Vinci, A. Lineamenti geomorfologici e sedimentologici del litorale alto ionico (Golfo di Taranto). Boll. Soc. Geol. Ital. 1975, 94, 993–1051. [Google Scholar]
- Radina, B. Idrogeologia del Bacino del fiume Basento. Mem. Sc. Geol. 1969, 21, 52. [Google Scholar]
- Polemio, M.; Limoni, P.P.; Mitolo, D.; Santaloia, F. Characterisation of the ionian-lucanian coastal plain aquifer (Italy). Bol. Geol. Y Min. 2003, 114, 225–236. [Google Scholar]
- Muzzillo, R.; Zuffianò, L.E.; Rizzo, E.; Canora, F.; Capozzoli, L.; Giampaolo, V.; De Giorgio, G.; Sdao, F.; Polemio, M. Seawater Intrusion Proneness and Geophysical Investigations in the Metaponto Coastal Plain (Basilicata, Italy). Water 2021, 13, 53. [Google Scholar] [CrossRef]
- Polemio, M.; Limoni, P.P.; Mitolo, D.; Santaloia, F.; Virga, R. Nitrate pollution and quality degradation of Ionian coastal groundwater (Southern Italy). In Nitrates in Groundwater; Razowska-Jaworek, L., Sadurski, A., Eds.; CRC Press: Rotterdam, The Netherlands, 2005; pp. 163–176. [Google Scholar]
- Hamza, M.H.; Added, A.; Francés, A.; Rodríguez, R. Validité de l’application des méthodes de vulnérabilité drastic, sintacs et SI à l’étude de la pollution par les nitrates dans la nappe phréatique de Metline–Ras Jebel–Raf Raf (Nord-Est tunisien). Comptes. Rendus Geosci. 2007, 339, 493–505. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Chichester, UK, 2007; p. 330. [Google Scholar]
- De Marsily, G. Spatial Variability of Properties in Porous Media: A Stochastic Approach. In Fundamentals of Transport in Porous Media; Bear, J., Corapcioglu, M.Y., Eds.; Martinus Nijhoff: Leiden, The Netherlands, 1984; pp. 719–769. [Google Scholar]
- Canora, F.; Musto, M.A.; Sdao, F. Groundwater recharge assessment in the carbonate aquifer system of the Lauria Mounts (southern Italy) by GIS-based distributed hydrogeological balance method. In Computational Science and Its Applications; ICCSA 2018, Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10961, pp. 166–181. [Google Scholar] [CrossRef]
- Canora, F.; Sdao, F. Hydrogeological characterization and groundwater vulnerability to pollution assessment of the High Basento River Valley carbonate hydrostructure (Southern Italy). Ital. J. Eng. Geol. Environ. 2020, 1, 25–44. [Google Scholar]
- Muzzillo, R.; Zuffiano, L.E.; Canora, F.; De Giorgio, G.; Limoni, P.P.; Polemio, M.; Sdao, F. Hydrogeology and seawater intrusion proneness in the Metaponto plain aquifer (Basilicata, Italy). Ital. J. Eng. Geol. Environ. 2021, 1, 139–149. [Google Scholar] [CrossRef]
- Regione Basilicata. I Suoli Della Basilicata; S.E.L.C.A.: Firenze, Italy, 2006; p. 340. [Google Scholar]
- CORINE Land Cover (C.L.C.). European Union, Copernicus Land Monitoring Service 2018; European Environment Agency (EEA): Copenhagen, Denmark, 2018.
- Napolitano, P.; Fabbri, A.G. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In HydroGIS 96: Application of Geographical Information Systems in Hydrology and Water Resources Management, Proceedings of the Vienna Conference, Vienna, Austria, 16–19 April 1996; IAHS Pub.: Wallingford, UK, 1996; Volume 235, pp. 559–566. [Google Scholar]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef]
- Majandang, J.; Sarapirome, S. Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-based SINTACS model. Environ. Earth Sci. 2013, 68, 2025–2039. [Google Scholar] [CrossRef]
- Celico, P. Prospezioni Idrogeologiche; Liguori: Napoli, Italy, 1988; pp. 1–536. [Google Scholar]
- Ckakraborty, S.; Paul, P.K.; Sikdar, P.K. Assessing aquifer vulnerability to arsenic pollution using DRASTIC and GIS of North Bengal Plain: A case study of English Bazar Block, Malda District, West Bengal, India. J. Spat. Hydrol. 2007, 7, 101–121. [Google Scholar]
- Canora, F.; D’Angella, A.; Aiello, A. Quantitative assessment of the sensitivity to desertification in the Bradano River basin (Basilicata, southern Italy). J. Maps 2015, 11, 745–759. [Google Scholar] [CrossRef]
SINTACS Parameters | Range | Rating | Weight |
---|---|---|---|
S—water table depth (m) | 5.0–10 | 6 | 5 |
3.0–5.0 | 7 | ||
1.5–2.0 | 9 | ||
1.5 | 10 | ||
I—effective infiltration (mm/year) | 0–50 | 1 | 5 |
50–65 | 2 | ||
>65 | 3 | ||
N—unsaturated zone | Clay deposits | 2 | 4 |
Fine alluvial deposits | 4 | ||
Medium-fine alluvial deposits | 5 | ||
Coarse alluvial deposits | 6 | ||
Sandy coastal deposits | 7 | ||
T—soil media | Clay loam | 3 | 5 |
Silty-clay loam | 4 | ||
Loam | 5 | ||
Sandy loam | 6 | ||
Sandy | 8 | ||
Coarse sand | 9 | ||
A—aquifer media | Clay | 3 | 2 |
Medium-fine alluvial complex | 6 | ||
Coarse alluvial complex | 7 | ||
Sandy complex | 8 | ||
C—hydraulic conductivity (m/s) | 6.53∙10−5 | 5 | 2 |
2.28∙10−4 | 7 | ||
5.69∙10−3 | 9 | ||
S—topographic slope (%) | >25 | 1 | 3 |
20–25 | 2 | ||
17–20 | 3 | ||
14–17 | 4 | ||
11–14 | 5 | ||
8–11 | 6 | ||
6–8 | 7 | ||
4–6 | 8 | ||
2–4 | 9 | ||
<2 | 10 | ||
LU—land use | Pastures, Forests | 3 | 5 |
Beaches, Dunes, Sands | 4 | ||
Olive groves, Vineyards | 5 | ||
Mining areas | 6 | ||
Annual crops, Fruit trees, Urban areas | 7 | ||
Industrial areas, Wetlands | 8 | ||
Intensive agriculture | 9 |
Parameter | Normal | Severe | Seepage | Karst | Fissured | Nitrates |
---|---|---|---|---|---|---|
S | 5 | 5 | 4 | 2 | 3 | 5 |
I | 4 | 5 | 4 | 5 | 3 | 5 |
N | 5 | 4 | 4 | 1 | 3 | 4 |
T | 3 | 5 | 2 | 3 | 4 | 5 |
A | 3 | 3 | 5 | 5 | 4 | 2 |
C | 3 | 2 | 5 | 5 | 5 | 2 |
S | 3 | 2 | 2 | 5 | 4 | 3 |
LU | 5 | 5 | 5 | 5 | 5 | 5 |
Variation Index (%) | Variable Removed | ||||||
---|---|---|---|---|---|---|---|
S | I | N | T | A | C | S | |
Mean | 1.44 | 2.99 | 1.37 | 1.22 | 2.23 | 1.90 | 0.78 |
Minimum | 0.00 | 0.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Maximum | 4.56 | 8.01 | 7.38 | 5.92 | 7.80 | 5.30 | 7.76 |
SD | 0.82 | 1.02 | 1.28 | 1.13 | 1.08 | 0.96 | 0.82 |
Variation Index (%) | Variable Removed | |||||||
---|---|---|---|---|---|---|---|---|
S | I | N | T | A | C | S | LU | |
Mean | 1.08 | 1.26 | 0.27 | 0.46 | 0.78 | 0.58 | 0.46 | 2.03 |
Minimum | 0.30 | 0.14 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.01 |
Maximum | 2.98 | 1.48 | 1.08 | 2.47 | 1.31 | 1.16 | 1.55 | 5.41 |
SD | 0.52 | 0.22 | 0.17 | 0.38 | 0.14 | 0.27 | 0.22 | 1.01 |
Parameter | Theoretical Weight | Theoretical Weight (%) | Average Effective Weight (%) | Standard Deviation (%) | Minimum Value (%) | Maximum Value (%) |
---|---|---|---|---|---|---|
S | 5 | 19.23 | 27.17 | 3.33 | 19.87 | 48.39 |
I | 5 | 19.23 | 5.17 | 2.55 | 2.63 | 15.63 |
N | 4 | 15.38 | 14.99 | 1.74 | 8.42 | 24.10 |
T | 5 | 19.23 | 19.36 | 4.12 | 9.26 | 39.13 |
A | 2 | 7.69 | 9.70 | 1.84 | 5.36 | 16.28 |
C | 2 | 7.69 | 11.69 | 3.39 | 5.62 | 29.03 |
S | 3 | 11.54 | 20.71 | 4.30 | 2.10 | 37.50 |
Parameter | Theoretical Weight | Theoretical Weight (%) | Average Effective Weight (%) | Standard Deviation (%) | Minimum Value (%) | Maximum Value (%) |
---|---|---|---|---|---|---|
S | 5 | 16.13 | 23.35 | 3.19 | 16.85 | 50.85 |
I | 5 | 16.13 | 4.41 | 2.10 | 2.30 | 16.13 |
N | 4 | 12.90 | 12.89 | 1.67 | 6.90 | 25.00 |
T | 5 | 16.13 | 16.69 | 3.99 | 7.94 | 40.18 |
A | 2 | 6.45 | 8.31 | 1.50 | 4.48 | 16.87 |
C | 2 | 6.45 | 10.00 | 2.83 | 4.61 | 30.51 |
S | 3 | 9.68 | 17.74 | 3.48 | 1.76 | 32.88 |
LU | 5 | 16.13 | 23.95 | 6.40 | 8.02 | 47.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canora, F.; Muzzillo, R.; Sdao, F. Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy). Water 2022, 14, 1851. https://doi.org/10.3390/w14121851
Canora F, Muzzillo R, Sdao F. Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy). Water. 2022; 14(12):1851. https://doi.org/10.3390/w14121851
Chicago/Turabian StyleCanora, Filomena, Rosalba Muzzillo, and Francesco Sdao. 2022. "Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy)" Water 14, no. 12: 1851. https://doi.org/10.3390/w14121851
APA StyleCanora, F., Muzzillo, R., & Sdao, F. (2022). Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy). Water, 14(12), 1851. https://doi.org/10.3390/w14121851