Comparison of Critical Shear Stress of Rill Erosion Estimated from Two Methods
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Sampling
2.2. Determination of Critical Shear Stress
2.3. Data Analysis
3. Results
3.1. Comparison of the Values of τo and τc
3.2. Comparison of the Relationship between τc and τo, and Kr
3.3. Comparison of the Relationship between τc and τo, and Their Influencing Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Panagos, P. Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling. Global Ecol. Biogeogr. 2018, 27, 1155–1167. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Zhu, J.; Xu, C.; Wang, K. Sediment yield is closely related to lithology and landscape properties in heterogeneous karst watersheds. J. Hydrol. 2019, 568, 437–446. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, K.; Cao, Z.; Wei, M.; Yang, Z. Soil detachment by overland flow on steep cropland in the subtropical region of China. Hydrol. Process. 2020, 34, 1810–1820. [Google Scholar] [CrossRef]
- Zhang, K.; Lian, L.; Zhang, Z. Reliability of soil erodibility estimation in areas outside the US: A comparison of erodibility for main agricultural soils in the US and China. Environ. Earth Sci. 2016, 75, 252. [Google Scholar] [CrossRef]
- Trimble, S.W.; Crosson, P. US soil erosion rates—Myth and reality. Science 2000, 289, 248–250. [Google Scholar] [CrossRef] [Green Version]
- Govers, G.; Giménez, R.; van Oost, K. Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth Sci. Rev. 2007, 84, 87–102. [Google Scholar] [CrossRef]
- Lee, J.H.; Heo, J.H. Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. J. Hydrol. 2011, 409, 30–48. [Google Scholar] [CrossRef]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Y.; Huang, Y.H.; Zhao, Y.; Mo, B.; Mi, H.X.; Huang, C.H. Analytical method for determining rill detachment rate of purple soil as compared with that of loess soil. J. Hydrol. 2017, 549, 236–243. [Google Scholar] [CrossRef]
- Nicosia, A.; Di Stefano, C.; Pampalone, V.; Palmeri, V.; Ferro, V.; Nearing, M.A. Testing a new rill flow resistance approach using the Water Erosion Prediction Project experimental database. Hydrol. Process. 2019, 33, 616–626. [Google Scholar] [CrossRef]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans. Am. Soc. Agric. Eng. 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Al-Hamdan, O.Z.; Pierson, F.B.; Nearing, M.A.; Williams, C.J.; Stone, J.J.; Kormos, P.R.; Boll, J.; Weltz, M.A. Concentrated flow erodibility for physically based erosion models: Temporal variability in disturbed and undisturbed rangelands. Water Resour. Res. 2012, 48, W07504. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; He, K.; Huang, M.; Zhang, L.; Lin, G.; Zhan, Z.; Li, H.; Lin, J.; Ge, H.; Huang, Y. Impacts of near soil surface factors on reducing soil detachment process in benggang alluvial fans. J. Hydrol. 2020, 590, 25274. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, K.; Jabro, J.D.; Ren, L.; Liu, H. Freeze–thaw cycles effects on soil physical properties under different de-graded conditions in Northeast China. Environ. Earth Sci. 2019, 78, 321. [Google Scholar] [CrossRef]
- Sheridan, G.J.; So, H.B.; Loch, R.J.; Walker, C.M. Estimation of erosion model erodibility parameters from media properties. Soil Res. 2000, 38, 265–284. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Geng, R.; Zhang, G.H.; Ma, Q.H.; Wang, H. Effects of landscape positions on soil resistance to rill erosion in a small catchment on the loess plateau. Biosyst. Eng. 2017, 160, 95–108. [Google Scholar] [CrossRef]
- Fattet, M.; Fu, Y.; Ghestem, M.; Ma, W.; Foulonneau, M.; Nespoulous, J.; le Bissonnais, Y.; Stokes, A. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena 2011, 87, 60–69. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena 2014, 116, 51–59. [Google Scholar] [CrossRef]
- Geng, R.; Zhang, G.H.; Ma, Q.H.; Wang, L.J. Soil resistance to runoff on steep croplands in Eastern China. Catena 2017, 152, 18–28. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Galindo, P. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surf. Process. Landf. 2007, 32, 1323–1345. [Google Scholar] [CrossRef]
- Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J. 1991, 55, 339–344. [Google Scholar] [CrossRef]
- Wirtz, S.; Seeger, M.; Remke, A.; Wengel, R.; Wagner, J.F.; Ries, J.B. Do deterministic sediment detachment and transport equations adequately represent the process-interactions in eroding rills? An experimental field study. Catena 2013, 101, 61–78. [Google Scholar] [CrossRef]
- Gilley, J.E.; Elliot, W.J.; Laflen, J.M.; Simanton, J.R. Critical shear stress and critical flow rates for initiation of rilling. J. Hydrol. 1993, 142, 251–271. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.R. Modeling the erosion process. In Hydrologic Modeling of Small Watersheds; ASAE Monograph No. 5.; Haan, C.T., Ed.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1982; pp. 296–380. [Google Scholar]
- Mamo, M.; Bubenzer, G.D. Detachment rate, soil erodibility, and soil strength as influenced by living plant roots part I: Laboratory study. Trans. Am. Soc. Agric. Eng. 2001, 44, 1167. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Nearing, M.A. USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; Nserl Rep, 10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995; pp. 1–123.
- Lei, T.W.; Zhang, Q.W.; Yan, L.J.; Zhao, J.; Pan, Y.H. A rational method for estimating erodibility and critical shear stress of an eroding rill. Geoderma 2008, 144, 628–633. [Google Scholar] [CrossRef]
- Dey, S.; Debnath, K. Influence of streamwise bed slope on sediment threshold under stream flow. J. Irrig. Drain Eng. 2000, 126, 255–263. [Google Scholar] [CrossRef]
- Lamb, M.P.; Dietrich, W.E.; Venditti, J.G. Is the critical Shields stress for incipient sediment motion dependent on chan-nel-bed slope? J. Geophys. Res. 2008, 113, F2. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Lane, L.J.; Lopes, V.L. Modeling soil erosion. In Soil Erosion Research Methods, 2nd ed.; Lal, R., Ed.; Soil and Water Conservation Society and St. Lucie Press: Delray Beach, FL, USA, 1994; pp. 127–156. [Google Scholar]
- Zhu, J.C.; Gantzer, C.J.; Anderson, S.H.; Peyton, R.L.; Alberts, E.E. Comparison of concentrated-flow detachment equations for low shear stress. Soil Tillage Res. 2001, 61, 203–212. [Google Scholar] [CrossRef]
- Lei, T.W.; Nearing, M.K. Laboratory experiments of rill initiation and critical shear stress in loose soil material. Trans. Chin. Soc. Agric. Eng. 2000, 16, 26–30, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.; Wang, B.; Wang, Y.; Wang, Y.; Zhang, W.; Yan, Y. Impact of near-surface hydraulic gradient on the interrill erosion process. Eur. J. Soil Sci. 2020, 71, 598–614. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Huang, C.H.; Bowling, L.; Owens, P. Impact of vertical hydraulic gradient on rill erodibility and critical shear stress. Soil Sci Soc. Am. J. 2010, 74, 1914–1921. [Google Scholar] [CrossRef]
- Lavelle, J.W.; Mofjeld, H.O. Do critical stresses for incipient motion and erosion really exist? J. Hydraul. Eng. 1987, 113, 70–385. [Google Scholar] [CrossRef]
- Buffington, J.M.; Dietrich, W.E.; Kirchner, J.W. Friction angle measurements on a naturally formed gravel streambed: Implications for critical boundary shear stress. Water Resour. Res. 1992, 28, 411–425. [Google Scholar] [CrossRef]
- Righetti, M.; Lucarelli, C. May the Shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res. 2007, 112, C5. [Google Scholar] [CrossRef] [Green Version]
- Buffington, J.M. The legend of AF Shields. J. Hydraul. Eng. 1999, 125, 376–387. [Google Scholar] [CrossRef]
- García, M.H. Discussion of The Legend of AF Shields. J. Hydraul. Eng. 2000, 126, 718–720. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yu, G. Critical conditions of incipient motion of cohesive sediments. Water Resour. Res. 2017, 53, 7798–7815. [Google Scholar] [CrossRef]
- Nearing, M.A.; Norton, L.D.; Bulgakov, D.A.; Larionov, G.A.; West, L.T.; Dontsova, K.M. Hydraulics and erosion in eroding rills. Water Resour. Res. 1997, 33, 865–876. [Google Scholar] [CrossRef]
- Shi, Z.H.; Fang, N.F.; Wu, F.Z.; Wang, L.; Yue, B.J.; Wu, G.L. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J. Hydrol. 2012, 454, 123–130. [Google Scholar] [CrossRef]
- Giménez, R.; Govers, G. Flow detachment by concentrated flow on smooth and irregular beds. Soil Sci. Soc. Am. J. 2002, 66, 1475–1483. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; de Baets, S. The effect of conservation tillage on runoff erosivity and soil erodibility during concentrated flow. Hydrol. Process. 2008, 22, 1497–1508. [Google Scholar] [CrossRef]
- Stroosnijder, L. Measurement of erosion: Is it possible? Catena 2005, 64, 162–173. [Google Scholar] [CrossRef]
- Geng, R.; Zhang, G.H.; Hong, D.L.; Ma, Q.H.; Jin, Q.; Shi, Y.Z. Response of soil detachment capacity to landscape positions in hilly and gully regions of the Loess Plateau. Catena 2021, 196, 104852. [Google Scholar] [CrossRef]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197, 67–78. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, X.; Wendroth, O.; Liu, B.; Shi, Y.; Huang, T.; Bai, X. Noise-assisted multivariate empirical mode decomposition of saturated hydraulic conductivity along a south-north transect across the Loess Plateau of China. Soil Sci. Soc. Am. J. 2019, 83, 311–323. [Google Scholar] [CrossRef]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Large-scale spatial variability and distribution of soil organic carbon across the entire Loess Plateau, China. Soil Res. 2012, 50, 114–124. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Zhang, K.; Kong, Y. Effectiveness of geotextiles for road slope protection under simulated rainfall. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Su, Z.-L.; Zhang, G.-H.; Yi, T.; Liu, F. Soil Detachment Capacity by Overland Flow for Soils of the Beijing Region. Soil Sci. 2014, 179, 446–453. [Google Scholar] [CrossRef]
- Salem, H.; Rennie, C.D. Practical determination of critical shear stress in cohesive soils. J. Hydraul. Eng. 2017, 143, 04017045. [Google Scholar] [CrossRef]
- Geng, R.; Zhang, G.H.; Li, Z.W.; Wang, H. Spatial variation in soil resistance to flowing water erosion along a regional transect in the Loess Plateau. Earth Surf. Process. Landf. 2015, 40, 2049–2058. [Google Scholar] [CrossRef]
- Khanal, A.; Klavon, K.R.; Fox, G.A.; Daly, E.R. Comparison of linear and nonlinear models for cohesive sediment detachment: Rill erosion, hole erosion test, and streambank erosion studies. J. Hydraul. Eng. 2016, 142, 04016026. [Google Scholar] [CrossRef]
- Wang, J.G.; Li, Z.X.; Cai, C.F.; Yang, W.; Ma, R.M.; Zhang, G.B. Predicting physical equations of soil detachment by simulated concentrated flow in Ultisols (subtropical China). Earth Surf. Process. Landf. 2012, 37, 633–641. [Google Scholar] [CrossRef]
- Nearing, M.A.; West, L.T.; Brown, L.C. A consolidation model for estimating changes in rill erodibility. Trans. Am. Soc. Agric. Eng. 1988, 31, 696–700. [Google Scholar]
- Knapen, A.; Poesen, J.; de Baets, S. Seasonal variations in soil erosion resistance during concentrated flow for a lo-ess-derived soil under two contrasting tillage practices. Soil Tillage Res. 2007, 94, 425–440. [Google Scholar] [CrossRef]
- Poesen, J.; de Luna, E.; Franca, A.; Nachtergaele, J.; Govers, G. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content. Catena 1999, 36, 315–329. [Google Scholar] [CrossRef]
- De Ploey, J. Threshold conditions for thalweg gullying with special reference to loess areas. Catena 1990, 17, 147–151. [Google Scholar]
- Kimiaghalam, N.; Clark, S.P.; Ahmari, H. An experimental study on the effects of physical, mechanical, and electro-chemical properties of natural cohesive soils on critical shear stress and erosion rate. Int. J. Sediment. Res. 2016, 31, 1–15. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Droppo, I.G.; Wharton, G. Erodibility of cohesive sediment: The importance of sediment properties. Earth Sci. Rev. 2011, 105, 101–120. [Google Scholar] [CrossRef]
- Vannoppen, W.; Vanmaercke, M.; de Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Ternat, F.; Boyer, P.; Anselmet, F.; Amielh, M. Erosion threshold of saturated natural cohesive sediments: Modeling and experiments. Water Resour. Res. 2008, 44, W11434. [Google Scholar] [CrossRef]
Sampling Site | Longitude | Latitude | Elevation (m) | Temperature (°C) | Precipitation (mm) | Coverage (%) | Crop |
---|---|---|---|---|---|---|---|
Yijun | 109°22′40″ | 35°23′22″ | 1002 | 10.3 | 591 | 1 | Corn |
Fuxian | 109°27′19″ | 35°57′50″ | 1183 | 10.2 | 542 | 2 | Corn |
Yanan | 109°34′34″ | 36°40′37″ | 980 | 9.9 | 514 | 5 | Corn |
Zichang | 109°40′15″ | 37°10′31″ | 1058 | 9.6 | 437 | 3 | Corn |
Zizhou | 109°44′19″ | 37°42′40″ | 1077 | 9.3 | 411 | 5 | Corn |
Yulin | 109°48′10″ | 38°12′42″ | 1132 | 8.8 | 383 | 3 | Corn |
Items | Minimum | Maximum | Mean | Standard Deviation | CV |
---|---|---|---|---|---|
Qo (m3 s−1) | 0.000040 | 0.000140 | 0.000065 | 0.000039 | 0.59 |
Ho (m) | 0.00060 | 0.00133 | 0.00078 | 0.00028 | 0.35 |
Vo (m s−1) | 0.18 | 0.25 | 0.21 | 0.03 | 0.13 |
τo (Pa) | 1.08 | 1.78 | 1.34 | 0.24 | 0.18 |
Q (m3 s−1) | V (m s−1) | H (m) | τ (Pa) |
---|---|---|---|
0.00025 | 0.53 | 0.0014 | 3.45 |
0.0005 | 0.73 | 0.0020 | 5.00 |
0.001 | 1.01 | 0.0028 | 7.20 |
0.0015 | 1.26 | 0.0034 | 8.62 |
0.002 | 1.42 | 0.0040 | 10.22 |
0.0025 | 1.61 | 0.0044 | 11.26 |
Sampling Sites | Regression Equations | R2 | NSE |
---|---|---|---|
Yijun | Dc = 0.31 (τ − 1.59) | 0.88 | 0.88 |
Fuxian | Dc = 0.30 (τ − 2.96) | 0.95 | 0.95 |
Yanan | Dc = 0.33 (τ − 2.44) | 0.98 | 0.98 |
Zichang | Dc = 0.35 (τ − 2.17) | 0.96 | 0.98 |
Zizhou | Dc = 0.65 (τ − 2.48) | 0.98 | 0.98 |
Yulin | Dc = 1.97 (τ − 3.65) | 0.98 | 0.97 |
Sampling Site | Clay Content (%) | Silt Content (%) | Sand Content (%) | SOM (g kg−1) |
---|---|---|---|---|
Yijun | 10.11 | 77.36 | 12.53 | 12.37 |
Fuxian | 9.47 | 76.66 | 13.87 | 12.69 |
Yanan | 13.55 | 76.67 | 9.79 | 6.05 |
Zichang | 11.56 | 62.33 | 26.11 | 6.37 |
Zizhou | 5.43 | 39.97 | 54.60 | 1.19 |
Yulin | 1.12 | 4.68 | 94.20 | 0.59 |
Items | Clay Content (%) | Silt Content (%) | Sand Content (%) | SOM (g kg−1) |
---|---|---|---|---|
Kr | −0.884 * | −0.946 ** | 0.947 ** | −0.687 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, R.; Jin, Q.; Lei, S.; Liu, H.; Lu, B.; Xie, M. Comparison of Critical Shear Stress of Rill Erosion Estimated from Two Methods. Water 2022, 14, 1949. https://doi.org/10.3390/w14121949
Geng R, Jin Q, Lei S, Liu H, Lu B, Xie M. Comparison of Critical Shear Stress of Rill Erosion Estimated from Two Methods. Water. 2022; 14(12):1949. https://doi.org/10.3390/w14121949
Chicago/Turabian StyleGeng, Ren, Qiu Jin, Shaohua Lei, Hongyuan Liu, Bin Lu, and Meixiang Xie. 2022. "Comparison of Critical Shear Stress of Rill Erosion Estimated from Two Methods" Water 14, no. 12: 1949. https://doi.org/10.3390/w14121949
APA StyleGeng, R., Jin, Q., Lei, S., Liu, H., Lu, B., & Xie, M. (2022). Comparison of Critical Shear Stress of Rill Erosion Estimated from Two Methods. Water, 14(12), 1949. https://doi.org/10.3390/w14121949