Identification and Prediction of Crop Waterlogging Risk Areas under the Impact of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area Overview
2.2. Model and Validation
2.2.1. The SWAT-MODFLOW Model
2.2.2. The SWAT Crop Growth Module
2.2.3. The SWAT Crop Irrigation Module
2.2.4. Crop Waterlogging Identification Module
2.2.5. SWAT-MODFLOW Modelling and Validation
- (1)
- Distribute the study to different areas based on observed hydrogeologic conditions and sediment characteristics of the Quaternary System. Then, define the initial values for the specific yield (μ) and transmissibility (T) for each area.
- (2)
- Calibrate the transmissibility (T) for each area based on observed annual average river water leakage, spring spillage in lower reaches, and groundwater level counter.
- (3)
- Calibrate the specific yield (μ) for each area based on the observed annual groundwater variation.
- (4)
- Repeat steps 2 and 3 until the simulated groundwater level better matches the observed groundwater level.
3. Results
3.1. Simulation of Runoff from the Upper Bayin River
3.2. Evaluation of LAI Simulation Results
3.3. Spring Wheat Yield Simulation Effects
3.4. Evaluation of Evapotranspiration (ET) Simulation Results
3.5. Evaluation of Groundwater Level Simulation
3.6. Assessment and Prediction of Crop Waterlogging Risk under Different Climate Scenarios
3.6.1. Variation in Precipitation and Temperature under Different Climate Scenarios
3.6.2. Changes in Upstream Mountain Runoff under Different Climate Scenarios
3.6.3. Changes in Groundwater Recharges under Different Climate Scenarios
3.6.4. Identification and Prediction of Crop Waterlogging Risk Areas in the Middle and Lower Reaches of the Bayin River under Different Climate Scenarios
4. Discussion
5. Conclusions
- (1)
- The SWAT-MODFLOW model had satisfied simulation results for LAI, ET, spring wheat yield, and groundwater level in the middle and lower reaches of the Bayin River. Furthermore, the groundwater generation mechanism and the crop’s root depth were reliable modelling and would make the assessment and prediction of the crop waterlogging risk more efficient.
- (2)
- The precipitation showed an overall increasing trend in the Bayin River watersheds over the next 80 years under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The temperature showed a clear increasing trend over the next 80 years under the SSP2-4.5 and SSP5-8.5 scenarios.
- (3)
- Under the SSP1-2.6 scenario, the mountain runoff from the upper reaches of the Bayin River was substantially higher than in other scenarios after 2041. The mountain runoff in the next 80 years will decrease substantially under the SSP2-4.5 scenario. The mountain runoff over the next 80 years showed an initial decrease and then an increasing trend under the SSP5-8.5 scenario.
- (4)
- During the historical period, the crop waterlogging risk area was 10.9 km2. In the next 80 years, the maximum crop waterlogging area will occur in 2055 under the SSP1-2.6 scenario. The minimum crop waterlogging area, 9.49 km2, occurred in 2042 under the SSP2-4.5 scenario. The changes in the area at risk of crop waterlogging under each scenario are mainly influenced by the mountain runoff from the upper reaches of the Bayin River.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nyarobi, H.A.; Ngondya, I.B.; Munishi, L.K. The effects of extreme climate on the invasive plant, Gutenbergia cordifolia: Implications for its future management in savannah ecosystems. Heliyon 2022, 8, e09172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Influence of frequent flood disaster on agricultural productivity of rice planting and structural optimization strategy. Microprocess. Microsyst. 2021, 82, 103863. [Google Scholar] [CrossRef]
- Essam, D.; Ahmed, M.; Abouelmagd, A.; Farouk, S. Monitoring temporal variations in groundwater levels in urban areas using ground penetrating radar. Sci. Total Environ. 2020, 703, 134986. [Google Scholar] [CrossRef] [PubMed]
- Perrino, E.V.; Ladisa, G.; Calabrese, G. Flora and plant genetic resources of ancient olive groves of Apulia (southern Italy). Genet. Resour. Crop Evol. 2014, 61, 23–53. [Google Scholar] [CrossRef]
- Perrino, E.V.; Wagensommer, R.P. Crop Wild Relatives (CWRs) Threatened and Endemic to Italy: Urgent Actions for Protection and Use. Biology 2022, 11, 193. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol. Biochem. 2020, 148, 228–236. [Google Scholar] [CrossRef]
- Santhi, C.; Muttiah, R.S.; Arnold, J.G.; Srinivasan, R. A GIS-based regional planning tool for irrigation demand assessment and savings using SWAT. Trans. ASABE 2005, 48, 137–147. [Google Scholar] [CrossRef]
- Huang, C.; Gao, Y.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Ma, S.; Duan, A.; Liu, Z. Effects of waterlogging at different stages and durations on maize growth and grain yields. Agric. Water Manag. 2022, 261, 107334. [Google Scholar] [CrossRef]
- Mandal, U.K.; Burman, D.; Bhardwaj, A.K.; Nayak, D.B.; Raut, S. Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans. Agric. Water Manag. 2019, 216, 12–26. [Google Scholar] [CrossRef]
- Baffour-Ata, F.; Antwi-Agyei, P.; Nkiaka, E.; Dougill, A.J.; Anning, A.K.; Kwakye, S.O. Effect of climate variability on yields of selected staple food crops in northern Ghana. J. Agric. Food Res. 2021, 6, 100205. [Google Scholar] [CrossRef]
- Sun, M.; Chou, J.; Xu, Y.; Yang, F.; Li, J. Study on the thresholds of grain production risk from climate change in China’s main grain-producing areas. Phys. Chem. Earth Parts A/B/C 2020, 116, 102837. [Google Scholar] [CrossRef]
- Cochand, F.; Brunner, P.; Hunkeler, D.; Rösslerb, O.; Holzkämpercd, A. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Sci. Total Environ. 2021, 798, 148759. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Lin, Y.; Zhou, P.; Wang, G.; Dang, X.; Gu, X. Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geol. 2021, 4, 377–388. [Google Scholar] [CrossRef]
- Frederiksen, R.R.; Molina-Navarro, E. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW. Agric. Water Manag. 2021, 255, 107058. [Google Scholar] [CrossRef]
- Lai, G.; Luo, J.; Li, Q.; Qiu, L.; Yi, F. Modification and validation of the SWAT model based on multi-plant growth mode: A case study of the Meijiang River Basin, China. J. Hydrol. 2020, 585, 124778. [Google Scholar] [CrossRef]
- Rajib, A.; Liu, Z.; Merwade, V.; Tavakolyde, A.A.; Follume, M.L. Towards a large-scale locally relevant flood inundation modeling framework using SWAT and LISFLOOD-FP. J. Hydrol. 2020, 581, 124406. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yu, Z.; Yao, H.; Li, W.; Zhang, D. Assessing the impact of human regulations on hydrological drought development and recovery based on a ‘simulated-observed’ comparison of the SWAT model. J. Hydrol. 2019, 577, 123990. [Google Scholar] [CrossRef]
- Wang, H.; Xie, T.; Yu, X.; Zhang, C. Simulation of soil loss under different climatic conditions and farming economic benefits: The example of Yulin City on Loess Plateau. Agric. Water Manag. 2021, 244, 106462. [Google Scholar] [CrossRef]
- Jafari, T.; Kiem, A.S.; Javadi, S.; Nakamura, N.; Nishida, K. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool. J. Hydrol. Reg. Stud. 2021, 35, 100822. [Google Scholar] [CrossRef]
- Aliyari, F.; Bailey, R.T.; Tasdighi, A.; Doziera, A.; Arabia, M.; Zeilerb, K. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environ. Model. Softw. 2019, 115, 200–210. [Google Scholar] [CrossRef]
- Mosase, E.; Ahiablame, L.; Park, S.; Baily, R. Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW. Groundw. Sustain. Dev. 2019, 9, 100260. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, X.; Wang, J.; Robinson, B.H.; Zhao, X. Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agric. Water Manag. 2021, 255, 107010. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; An, S.; Li, H.; Deng, X.; Wang, P.; Fan, M. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. J. Hazard. Mater. 2022, 426, 127806. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhou, P.; Wang, G.; Zhang, B.; Gu, X. Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China. J. Hydrol. 2021, 598, 126243. [Google Scholar] [CrossRef]
- Malik, W.; Jiménez-Aguirre, M.T.; Dechmi, F. Coupled DSSAT-SWAT models to reduce off-site N pollution in Mediterranean irrigated watershed. Sci. Total Environ. 2020, 745, 141000. [Google Scholar] [CrossRef] [PubMed]
- Eini, M.R.; Javadi, S.; Delavar, M.; Gassman, P.W.; Jarihani, B. Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena 2020, 195, 104801. [Google Scholar] [CrossRef]
- Li, S.; Wallington, K.; Niroula, S.; Cai, X. A modified response matrix method to approximate SWAT for computationally intense applications. Environ. Model. Softw. 2021, 148, 105269. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Modeling land-use and land-cover change and hydrological responses under consistent climate change scenarios in the Heihe River Basin, China. Water Resour. Manag. 2015, 29, 4701–4717. [Google Scholar] [CrossRef]
- Patil, N.S.; Chetan, N.L.; Nataraja, M.; Suthar, S. Climate change scenarios and its effect on groundwater level in the Hiranyakeshi watershed. Groundw. Sustain. Dev. 2020, 10, 100323. [Google Scholar] [CrossRef]
- Hughes, J.D.; Langevin, C.D.; White, J.T. MODFLOW-based coupled surface water routing and groundwater-flow simulation. Ground Water 2015, 53, 452. [Google Scholar] [CrossRef] [PubMed]
- Ou, G.; Li, R.; Pun, M.; Osborn, C.; Bradley, J.; Schneider, J.; Chen, X. A MODFLOW package to linearize stream depletion analysis. J. Hydrol. 2016, 532, 9–15. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Jafari, T.; Kiem, A.S.; Javadi, S.; Nakamura, T.; Nishida, K. Using insights from water isotopes to improve simulation of surface water-groundwater interactions. Sci. Total Environ. 2021, 798, 149253. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Singh, A.G.; Gadhiya, A.R.; Kumar, S.; Mehta, R. Current approaches in horticultural crops to mitigate waterlogging stress. In Stress Tolerance in Horticultural Crops; Woodhead Publishing: Sawston, UK, 2021; pp. 289–299. [Google Scholar]
- Agricultural Resources Division Office of Qinghai Province. Qinghai Soil; China Agricultural Press: Beijing, China, 1997. [Google Scholar]
- Feng, L. Study on Groundwater Resource Development of Piedmont Alluvial Plain in Bayin River[D]; Changan University: Xi’an, China, 2011; (In Chinese with English abstract). [Google Scholar]
- Delingha Local Chronicles Compilation Committee. Delingha City Chronicle; Local Chronicles Publishing House: Beijing, China, 2004. [Google Scholar]
- Ouyang, W.; Wei, P.; Gao, X.; Srinivasan, R.; Yen, H.; Xie, X.; Liu, L.; Liu, H. Optimization of SWAT-Paddy for modeling hydrology and diffuse pollution of large rice paddy fields. Environ. Model. Softw. 2020, 130, 104736. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Moradian, S.; Izadi, A.; Aghakouchak, A. Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmos. Res. 2021, 250, 105369. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Sharma, T.P.P.; Nanzad, L.; Zhang, D.; Seka, A.M.; Ahmed, N.; Hasan, S.S.; Hoque, M.M.; Mohana, H.P. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Sci. Total Environ. 2021, 807, 151029. [Google Scholar] [CrossRef]
- Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Ren, H.; Ouyang, Z. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X.; Zhai, J.; Fu, D. Modelling the impact of vegetation change on hydrological processes in Bayin River Basin, Northwest China. Water 2021, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, S.; Harmon, T.; Guan, B. Analyzing the suitability of remotely sensed ET for calibrating a watershed model of a Mediterranean montane forest. Remote Sens. 2021, 13, 1258. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y. Calibration of a distributed hydrological model in a data-scarce basin based on GLEAM datasets. Water 2020, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Park, S.; Bailey, R.T.; Molina-Navarro, E.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen, E.; Jensen, J.S.; Jensen, J.B.; et al. Comparing SWAT with SWAT-MODFLOW hydrological simulations when assessing the impacts of groundwater abstractions for irrigation and drinking water. Hydrol. Earth Syst. Sci. Discuss. 2019, 232, 1–51. [Google Scholar]
- Wen, G.; Wang, W.; Duan, L.; Gu, X.; Li, Y.; Zhao, J. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope. Arid. Land Geogr. 2018, 41, 734–743, (In Chinese with English abstract). [Google Scholar]
- Doble, R.; Simmons, C.; Jolly, I.; Walker, G. Spatial relationships between vegetation cover and irrigation-induced groundwater discharge on a semi-arid floodplain, Australia. J. Hydrol. 2006, 329, 75–97. [Google Scholar] [CrossRef]
- Arnold, J.; Moriasi, D.; Gassman, P.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
Parameter Name | Parameter Description |
---|---|
BLAI | Potential maximum LAI |
LAIMX_1 | The ratio of LAI corresponding to the first point on the LAI curve |
FRGRW1 | The ratio of accumulated temperature corresponding to the first point on the LAI curve |
LAIMX_2 | The ratio of LAI corresponding to the second point on the LAI curve |
FRGRW2 | Proportion of accumulated temperature corresponding to the second point on the LAI curve |
DLAI | The ratio of accumulated temperature at which the LAI begins to decay |
BIO_E | Photosynthetic radiation utilization rate |
EXT_COEF | Extinction coefficient |
GSI | Maximum stomatal conductance |
HVSTI | Harvest index (HI) |
T-BASE | Crop basal temperature |
Parameter Name | Parameter Description |
---|---|
BIO_E | Photosynthetic radiation utilization rate |
EXT_COEF | Extinction coefficient |
GSI | Maximum stomatal conductance |
HVSTI | Harvest index (HI) |
T-BASE | Crop basal temperature |
IRR_EFM | Irrigation efficiency |
Parameter Name | Parameter Description |
---|---|
SOL_BD | Soil wet bulk density |
SLSUBBSN | Mean slope length |
SOL_K | Soil saturation permeability coefficient |
ESCO | Soil evaporation compensation factor |
CH_K2 | Effective permeability coefficient of the main river channel |
SOL_AWC | Effective soil water content |
SNOCOVMX | Minimum snow water content at 100% snow cover |
ALPHA_BF | Baseflow factor |
CH_N2 | Manning’s coefficient for the main channel |
CN2 | Number of initial SCS runoff curves at moisture condition II |
Parameter Name | Parameter Description |
---|---|
ALPHA_BF | Baseflow factor |
GW_DELAY | Groundwater time delay |
GWQMN | Shallow water level threshold required for return flow to occur |
GW_REVAP | Groundwater revap factor |
CH_K2 | Effective permeability coefficient of the main river channel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Jin, Y.; Zhai, J.; Fu, D.; Mao, X. Identification and Prediction of Crop Waterlogging Risk Areas under the Impact of Climate Change. Water 2022, 14, 1956. https://doi.org/10.3390/w14121956
Jin X, Jin Y, Zhai J, Fu D, Mao X. Identification and Prediction of Crop Waterlogging Risk Areas under the Impact of Climate Change. Water. 2022; 14(12):1956. https://doi.org/10.3390/w14121956
Chicago/Turabian StyleJin, Xin, Yanxiang Jin, Jingya Zhai, Di Fu, and Xufeng Mao. 2022. "Identification and Prediction of Crop Waterlogging Risk Areas under the Impact of Climate Change" Water 14, no. 12: 1956. https://doi.org/10.3390/w14121956
APA StyleJin, X., Jin, Y., Zhai, J., Fu, D., & Mao, X. (2022). Identification and Prediction of Crop Waterlogging Risk Areas under the Impact of Climate Change. Water, 14(12), 1956. https://doi.org/10.3390/w14121956