A Socio-Hydrological Unit Division and Confluence Relationship Generation Method for Human–Water Systems
Abstract
:1. Introduction
2. Methodology
2.1. Division into Socio-Hydrological Units
2.2. Determination of Confluence Relationship between Water Resource Zones
2.3. Determination of Confluence Relationship between Socio-Hydrological Units
- Calculation of elevation of river buffer zone
- 2.
- Determination of neighborhoods between socio-hydrological units
- 3.
- Determination of outlet of water resource zone
- 4.
- Confluence of socio-hydrological units and generation of generalized river networks
3. Study Area
4. Results
4.1. Generation of Socio-Hydrological Units
4.2. Calculation of Elevation of River Buffer Zone
4.3. Determination of Confluence Relationship of Jing-Jin-Ji Region and Reliability Analysis
5. Sensitivity Analysis of Length of the River Buffer Zone and River Channel Density
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Yan, D.; Jia, Y.; Hu, D.; Wang, L. Subject system of modern hydrology and water resources and research frontiers and hot issues. Adv. Water Sci. 2010, 21, 479–489. (In Chinese) [Google Scholar]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Qin, D.; Lu, C.; Liu, J.; Wang, H.; Wang, J.; Li, H.; Chu, J.; Chen, G. Theoretical framework of dualistic nature–social water cycle. Chin. Sci. Bull. 2014, 59, 810–820. [Google Scholar] [CrossRef]
- Du, E.; Tian, Y.; Cai, X.; Zheng, Y.; Li, X.; Zheng, C. Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture: A tightly coupled, fully integrated modeling approach. J. Hydrol. 2020, 591, 125313. [Google Scholar] [CrossRef]
- Döll, P.; Schmied, H.M. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 2012, 7, 014037. [Google Scholar] [CrossRef] [Green Version]
- Sang, X.; Wang, H.; Wang, J.; Zhao, Y.; Zhou, Z. Water Resources Comprehensive Allocation and Simulation Model (WAS), part I. Theory and development. J. Hydraul. Eng. 2018, 49, 1451–1459. (In Chinese) [Google Scholar]
- Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.L.; Scolobig, A.; Blöschl, G. Insights from socio-hydrology modelling on dealing with flood risk—Roles of collective memory, risk-taking attitude and trust. J. Hydrol. 2014, 518, 71–82. [Google Scholar] [CrossRef]
- Liu, D.; Tian, F.; Lin, M.; Sivapalan, M. A conceptual socio-hydrological model of the co-evolution of humans and water: Case study of the Tarim River basin, western China. Hydrol. Earth Syst. Sci. 2015, 19, 1035–1054. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Taylor, W.W.; Alberti, M.; Deadman, P.; Redman, C.; Pell, A.; Folke, C.; Ouyang, Z.; et al. Coupled human and natural systems: The evolution and applications of an integrated framework: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Anthropocene. Ambio 2021, 50, 1778–1783. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.; Yang, X.; Haywood, J. A Review of SWAT Applications, Performance and Future Needs for Simulation of Hydro-Climatic Extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Zhou, Z.; Jia, Y.; Qiu, Y.; Liu, J.; Wang, H.; Xu, C.-Y.; Li, J.; Liu, L. Simulation of Dualistic Hydrological Processes Affected by Intensive Human Activities Based on Distributed Hydrological Model. J. Water Resour. Plan. Manag. 2018, 144, 12. [Google Scholar] [CrossRef] [Green Version]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J.L. An introduction to the European Hydrological System—Systeme Hydrologique Europeen‘SHE’, 1: History and philosophy of a physically-based distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Storm, B.; Clausen, T. Systeme Hydrologique Europeen (SHE): Review and perspectives after 30 years development in distributed physically-based hydrological modelling. Hydrol. Res. 2010, 41, 355–377. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Xie, Z. A new surface runoff parameterization with sub grid-scale soil heterogeneity for land surface models. Adv. Water Resour. 2001, 24, 1173–1193. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-time water and sediment-routing model for large basins. J. Hydraul. Eng. -ASCE 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Largearea hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Shrestha, P.K.; Shrestha, M.; Shrestha, S. Evaluation of the SWAT model performance for simulating river discharge in the Himalayan and tropical basins of Asia. Hydrol. Res. 2018, 49, 846–860. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y. Development of WEP model and distributed watershed water cycle simulation. In Proceedings of the Chinese Hydraulic Society Annual Conference, Shenzhen, China, 11–13 November 2003. (In Chinese). [Google Scholar]
- Weber, A.; Fohrer, N.; Möller, D. Long-term land use changes in a mesoscale watershed due to socio-economic factors—effects on landscape structures and functions. Ecol. Model. 2001, 140, 125–140. [Google Scholar] [CrossRef]
- Goharian, E.; Burian, S.J.; Bardsley, T.; Strong, C. Incorporating Potential Severity into Vulnerability Assessment of Water Supply Systems under Climate Change Conditions. J. Water Resour. Plan. Manag. 2016, 142, 04015051. [Google Scholar] [CrossRef]
- Srinivasa Raju, K.; Sonali, P.; Nagesh Kumar, D. Ranking of CMIP5-based global climate models for India using compromise programming. Theor. Appl. Climatol. 2016, 128, 563–574. [Google Scholar] [CrossRef]
- Jeyrani, F.; Morid, S.; Srinivasan, R. Assessing basin blue–green available water components under different management and climate scenarios using SWAT. Agric. Water Manag. 2021, 256, 107074. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena 2021, 201, 105199. [Google Scholar] [CrossRef]
- Pei, Y.; Zhao, Y.; Lu, C. Rational Allocation of Water Resources in the Broad Sense of Economic Ecosystem; Yellow River Water Press: Zhengzhou, China, 2006. (In Chinese) [Google Scholar]
- Dong, Y. Study on Simulation and Regulation of Ecological Groundwater Level in Irrigated Oasis of Yellow River in Ningxia. Ph.D. Thesis, Tsinghua University, Beijing, China, 2021. (In Chinese). [Google Scholar]
- Pei, Y.; Xu, J.; Xiao, W.; Yang, M.; Hou, B. Development and application of the water amount, quality and efficiency regulation model based on dualistic water cycle. J. Hydraul. Eng. 2020, 51, 1473–1485. (In Chinese) [Google Scholar]
- Wang, K.; Yan, D.; Qin, T.; Weng, B.; Wang, H.; Bi, W.; Li, X.; Dorjsuren, B. A new topological and hierarchical river coding method based on the hydrology structure. J. Hydrol. 2020, 580, 124243. [Google Scholar] [CrossRef]
- Jia, Y.; Ding, X.; Wang, H.; Zhou, Z.; Qiu, Y.; Niu, C. Attribution of water resources evolution in the highly water-stressed Hai River Basin of China. Water Resour. Res. 2012, 48, W02513. [Google Scholar] [CrossRef]
- Jeong, H.; Adamowski, J. A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agric. Water Manag. 2016, 171, 89–107. [Google Scholar] [CrossRef]
- Essenfelder, A.H.; Dionisio, P.C.; Mayer, A.S. Rationalizing Systems Analysis for the Evaluation of Adaptation Strategies in Complex Human-Water Systems. Earth’s Future 2018, 6, 1181–1206. [Google Scholar] [CrossRef] [Green Version]
- Farjad, B.; Pooyandeh, M.; Gupta, A.; Motamedi, M.; Marceau, D. Modelling Interactions between Land Use, Climate, and Hydrology along with Stakeholders’ Negotiation for Water Resources Management. Sustainability 2017, 9, 2022. [Google Scholar] [CrossRef] [Green Version]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef] [Green Version]
- Viola, F.; Caracciolo, D.; Deidda, R. Modelling the mutual interactions between hydrology, society and water supply systems. Hydrol. Sci. J. 2021, 66, 1265–1274. [Google Scholar] [CrossRef]
- Roobavannan, M.; Kandasamy, J.; Pande, S.; Vigneswaran, S.; Sivapalan, M. Sustainability of agricultural basin development under uncertain future climate and economic conditions: A socio-hydrological analysis. Ecol. Econ. 2020, 174, 106665. [Google Scholar] [CrossRef]
- Li, B.; Sivapalan, M.; Xu, X. An Urban Sociohydrologic Model for Exploration of Beijing’s Water Sustainability Challenges and Solution Spaces. Water Resour. Res. 2019, 55, 5918–5940. [Google Scholar] [CrossRef]
- Miller, M.A.; Alfajri Astuti, R.; Middleton, C.; Taylor, D.M. Hydrosocial rupture: Causes and consequences for transboundary governance. Ecol. Soc. 2021, 26, 21. [Google Scholar] [CrossRef]
- Widmer, A.; Herzog, L.; Moser, A.; Ingold, K. Multilevel water quality management in the international rhine catchment area: How to establish social-ecological fit through collaborative governance. Ecol. Soc. 2019, 24, 27. [Google Scholar] [CrossRef] [Green Version]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Luu, T.; Verhallen, M.; Tran, D.; Sea, W.; Binh Thanh Quan, H. Statistically examining the connection between dike development and human perceptions in the floodplains’ socio-hydrology system of Vietnamese Mekong Delta. Sci. Total Environ. 2021, 810, 152207. [Google Scholar] [CrossRef]
- York, A.M.; Sullivan, A.; Bausch, J.C. Cross-scale interactions of socio-hydrological subsystems: Examining the Frontier of Common Pool Resource Governance in Arizona. Environ. Res. Lett. 2019, 14, 125019. [Google Scholar] [CrossRef]
- Campbell, I.C. Integrated management of large rivers and their basins. Ecohydrol. Hydrobiol. 2016, 16, 203–214. [Google Scholar] [CrossRef]
- Coelho, A.C.; Labadie, J.W.; Fontane, D.G. Multicriteria Decision Support System for Regionalization of Integrated Water Resources Management. Water Resour. Manag. 2012, 26, 1325–1346. [Google Scholar] [CrossRef]
- Aghaie, V.; Afshar, A.; Alizadeh, H. Socio-hydrological agent-based modelling for analysing the impacts of supply enhancement strategies on the cap-and-trade scheme. Hydrol. Sci. J. 2021, 66, 555–564. [Google Scholar] [CrossRef]
- Roozbahani, A.; Ghased, H.; Shahdany, S. Inter-basin water transfer planning with grey COPRAS and fuzzy COPRAS techniques: A case study in Iranian Central Plateau. Sci. Total Environ. 2020, 726, 138499. [Google Scholar] [CrossRef]
- Borgohain, P.L. Downstream impacts of the Ranganadi hydel project in Brahmaputra Basin, India: Implications for design of future projects. Environ. Dev. 2019, 30, 114–128. [Google Scholar] [CrossRef]
- Esselman, P.C.; Opperman, J.J. Overcoming information limitations for the prescription of an environmental flow regime for a Central American River. Ecol. Soc. 2010, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Callegary, J.B.; Megdal, S.B.; Villaseñor, E.M.; Petersen-Perlman, J.D.; Minjárez, S.; Monreal, R.; Gray, F.; Noriega, F. Findings and lessons learned from the assessment of the mexico-united states transboundary san pedro and santa cruz aquifers: The utility of social science in applied hydrologic research. J. Hydrol. Reg. Stud. 2018, 20, 60–73. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, B.; Zhao, Y.; Wang, K.; Zhao, M.M.; Ma, J.; Wu, J.; Xu, C.; Liu, W.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121233. [Google Scholar] [CrossRef]
- Gober, P.; Wheater, H.S. Socio-hydrology and the science-policy interface: A case study of the saskatchewan river basin. Hydrol. Earth Syst. Sci. 2014, 18, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Smolenaars, W.J.; Dhaubanjar, S.; Jamil, M.K.; Lutz, A.; Immerzeel, W.; Ludwig, F.; Biemans, H. Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin. Hydrol. Earth Syst. Sci. 2022, 26, 861–883. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, F.Q.; Guo, L.Y.; Borzi, I.; Patil, R.; Wei, J.; Liu, D.F.; Wei, Y.P.; Yu, D.J.; Sivapalan, M. Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang-Mekong River. Hydrol. Earth Syst. Sci. 2021, 25, 1883–1903. [Google Scholar] [CrossRef]
- Sorg, A.; Mosello, B.; Shalpykova, G.; Allan, A.; Clarvis, M.H.; Stoffel, M. Coping with changing water resources: The case of the syr darya river basin in central asia. Environ. Sci. Policy 2014, 43, 68–77. [Google Scholar] [CrossRef]
- Hellweger, R. Agree-DEM Surface Reconditioning System. 1997. Available online: http://www.ce.utexas.edu/prof/maidment/gishydro/ferdi/research/agree/agree.html (accessed on 29 July 2021).
- Turcotte, R.; Fortin, J.P.; Rousseau, A.N.; Massicotte, S.; Villeneuve, J.P. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J. Hydrol. 2021, 240, 225–242. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Najafzadeh, M.; Mehrpooya, A. Receiving More Accurate Predictions for Longitudinal Dispersion Coefficientsin Water Pipelines: Training Group Method of Data Handling Using Extreme Learning Machine Conceptions. Water Resour. Manag. 2020, 34, 529–561. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Zahiri, A. Neuro-fuzzy GMDH-based evolutionary algorithms to predict flow discharge in straight compoundchannels. J. Hydrol. Eng. 2015, 20, 4015035. [Google Scholar] [CrossRef]
Area | Average Elevation | Elevation of River Buffer Zone |
---|---|---|
Mountain | 850 | 742 |
Plain | 28 | 26 |
Jing-Jin-Ji | 503 | 440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Sang, X.; He, G.; Wang, Q.; Chang, J.; Liu, R.; Li, H.; Zhao, Y. A Socio-Hydrological Unit Division and Confluence Relationship Generation Method for Human–Water Systems. Water 2022, 14, 2074. https://doi.org/10.3390/w14132074
Chang H, Sang X, He G, Wang Q, Chang J, Liu R, Li H, Zhao Y. A Socio-Hydrological Unit Division and Confluence Relationship Generation Method for Human–Water Systems. Water. 2022; 14(13):2074. https://doi.org/10.3390/w14132074
Chicago/Turabian StyleChang, Huanyu, Xuefeng Sang, Guohua He, Qingming Wang, Jiaxuan Chang, Rong Liu, Haihong Li, and Yong Zhao. 2022. "A Socio-Hydrological Unit Division and Confluence Relationship Generation Method for Human–Water Systems" Water 14, no. 13: 2074. https://doi.org/10.3390/w14132074
APA StyleChang, H., Sang, X., He, G., Wang, Q., Chang, J., Liu, R., Li, H., & Zhao, Y. (2022). A Socio-Hydrological Unit Division and Confluence Relationship Generation Method for Human–Water Systems. Water, 14(13), 2074. https://doi.org/10.3390/w14132074