Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules
Abstract
:1. Introduction
2. Overview of Deep-Sea Polymetallic Nodules
2.1. Distribution and General Characteristics
2.2. Geological Engineering Characteristics
3. Mining Method
4. Influence of Sediment Migration on Ecological Environment
4.1. Disturbance of Seafloor Sediments
4.2. Migration and Diffusion of Suspended Sediment
4.3. Sedimentation of Suspended Sediment
5. Monitoring and Evaluation
5.1. Monitoring
5.2. Evaluation
6. Conclusions and Prospects
6.1. Conclusions
- Deep-sea polymetallic nodules mostly exist on the surface of the seabed at a water depth of 4000–6000 m, which may be related to the metallogenic model or the external environment. However, there is no doubt that the existence of polymetallic nodules in this form facilitates mining.
- The relationships between micro-topography, sediment engineering geological properties and polymetallic nodule distribution characteristics have not yet been established, which means that the division of engineering geological units in nodule areas and the division of future mining areas lack an important theoretical basis.
- Most of the mining equipment currently being developed is in the theoretical and experimental stages. In real commercial mining, the speed of equipment deployment and recycling, mobile working methods, etc., need to be standardized.
- The existing research on the environmental impact of deep-sea polymetallic nodule mining mostly focuses on biological activity, and rarely considers the changes in sediment properties before and after disturbance. The analysis model for the spatiotemporal distribution characteristics of suspended solids in water is not yet mature, and there is a lack of in situ monitoring data to verify the model results. Current research has not been able to accurately predict the migration and distribution characteristics of resuspended sediments in seabed mining. Regarding the influence of seawater chemical properties and biological activities, the current research has not yet been combined with the temporal and spatial distribution characteristics and the laws of resuspension sediments.
- The current environmental impact assessment model of polymetallic nodule mining is still in the qualitative analysis stage, and its degree of impact cannot be assessed quantitatively.
6.2. Prospects
- In the future, the engineering geological units of the deep-sea polymetallic nodule mining area needs to be refined. The basis of division mainly includes resource distribution, micro-topography and geological sediment engineering characteristics.
- To better understand the spatiotemporal evolution of resuspended sediments from polymetallic nodule mining, reliable in situ observational techniques are essential. In the future, building a model will require a large amount of field monitoring data. At the same time, the calculation results of the model can also provide a basis for the deployment of monitoring equipment.
- In the future, it is necessary to establish a relationship between sediment transport and diffusion, and the chemical properties and biological activities of seawater. Secondly, more attention should be paid to the changes in sediment properties after heavy deposition. Thereby, the environmental impact of deep-sea polymetallic nodule mining can be quantitatively evaluated based on the migration and diffusion of sediments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1. [Google Scholar] [CrossRef]
- Glasby, G.P. Lessons Learned from Deep-Sea Mining. Science 2000, 289, 551–553. [Google Scholar] [CrossRef] [PubMed]
- Glasby, G.P. Deep Seabed Mining: Past Failures and Future Prospects: Marine Georesources & Geotechnology. Mar Geo Geo 2002, 20, 161–176. [Google Scholar]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158. [Google Scholar] [CrossRef]
- Petersen, S.; Krätschell, A.; Augustin, N.; Jamieson, J.; Hein, J.R.; Hannington, M.D. News from the seabed—Geological characteristics and resource potential of deep-sea mineral resources. Mar. Pol. 2016, 70, 175–187. [Google Scholar] [CrossRef]
- Trueblood, D.D. US Cruise Report for BIE II, Cruise I, April 10~May 29; 1992. National Oceanic and Atmospheric Administration, National Ocean Service. 1992. Available online: http://hdl.handle.net/1834/40894 (accessed on 25 June 2022).
- Ozturgut, E.; Lavelle, J.W.; Burns, R.E. Impacts of manganese nodule mining on the environment: Results from pilot-scale mining tests in the north equatorial pacific. Elsevier Oceanogr. Ser. 1981, 27, 437–474. [Google Scholar]
- Hirota, J. Potential effects of deep-sea minerals mining on macrozooplankton in the north equatorial pacific. Mar. Min. 1981, 3, 19–57. [Google Scholar]
- Amos, A.F.; Roels, O.A. Environmental aspects of manganese nodule mining. Mar. Pol. 1977, 1, 156–163. [Google Scholar] [CrossRef]
- Sparenberg, O. A historical perspective on deep-sea mining for manganese nodules, 1965–2019. Extr. Ind. Soc. 2019, 6, 842–854. [Google Scholar] [CrossRef]
- Toro, N.; Robles, P.; Jeldres, R.I. Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geol. Rev. 2020, 126, 103699. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, S.; Zou, W.; Zhao, H.; Hu, X. Design and analysis of an innovative deep-sea lifting motor pump. Appl. Ocean Res. 2019, 82, 22–31. [Google Scholar] [CrossRef]
- Sharma, R. Deep-Sea impact experiments and their future requirements. Mar. Geores. Geotechnol. 2013, 23, 331–338. [Google Scholar] [CrossRef]
- Vonnahme, T.R.; Molari, M.; Janssen, F.; Wenzhöfer, F.; Haeckel, M.; Titschack, J.; Boetius, A. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Sci. Adv. 2020, 64, eaaz5922. [Google Scholar] [CrossRef] [PubMed]
- Volz, J.B.; Haffert, L.; Haeckel, M.; Koschinsky, A.; Kasten, S. Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion–Clipperton Zone, Pacific Ocean. Biogeosciences 2020, 17, 1113–1131. [Google Scholar]
- Mestre, N.C.; Rocha, T.L.; Canals, M.; Cardoso, C.; Danovaro, R.; Dell’Anno, A.; Gambi, C.; Regoli, F.; Sanchez-Vidal, A.; Bebianno, M.J. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Environ. Pollut. 2017, 228, 169–178. [Google Scholar] [CrossRef]
- Miller, K.A.; Thompson, K.F.; Johnston, P.; Santillo, D. An Overview of Seabed Mining Including the Current State of Development, Environmental Impacts, and Knowledge Gaps. Front. Mar. Sci. 2018, 4, 418. [Google Scholar] [CrossRef]
- Christiansen, B.; Denda, A.; Christiansen, S. Potential effects of deep seabed mining on pelagic and benthopelagic biota. Mar. Pol. 2019, 114, 103442. [Google Scholar] [CrossRef]
- Kaikkonen, L.; Venesjärvi, R.; Nygård, H.; Kuikka, S. Assessing the impacts of seabed mineral extraction in the deep sea and coastal marine environments: Current methods and recommendations for environmental risk assessment. Mar. Pollut. Bull. 2018, 135, 1183–1197. [Google Scholar]
- Vanreusel, A.; Hilario, A.; Ribeiro, P.A.; Menot, L.; Arbizu, P.M. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 2016, 6, 26808. [Google Scholar] [CrossRef]
- Jones, D.O.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.; Arbizu, P.M.; et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 2017, 12, e171750. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.V. A review of some environmental issues affecting marine mining. Mar. Geores. Geotechnol. 2008, 19, 51–63. [Google Scholar] [CrossRef]
- Bourrel, M.; Thiele, T.; Currie, D. The common of heritage of mankind as a means to assess and advance equity in deep sea mining. Mar. Pol. 2018, 95, 311–316. [Google Scholar] [CrossRef]
- International Seabed Authority. Draft Regulations for the Development of Mineral Resources in the Area (ISBA/25/C/WP.1); International Seabed Authority: Kingston, Jamaica, 2019. [Google Scholar]
- International Seabed Authority. Guide Contractors in Assessing Proposals for Possible Environmental Impacts of Marine Mineral Exploration Activities in the Area (ISBA/25/LTC/6/Rev.1); International Seabed Authority: Kingston, Jamaica, 2019. [Google Scholar]
- Federal Institute for Geosciences and Natural Resources. International Seabed Authority Environmental Impact Statement: Small-Scale Testing of Nodule Collector Components on the Seafloor of the Clarion-Clipperton Fracture Zone and Its Environmental Impact; Global Sea Mineral Resources NV: Oostende, Belgium, 2018.
- Spearman, J.; Taylor, J.; Crossouard, N.; Cooper, A.; Turnbull, M.; Manning, A.; Lee, M.; Murton, B. Measurement and modelling of deep-sea sediment plumes and implications for deep sea mining. Sci. Rep. 2020, 10, 5075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, R.; Childs, J.; Steinberg, P.; Mabon, L.; Matsuda, H.; Squire, R.; McLellan, B.; Esteban, M. A critical social perspective on deep sea mining: Lessons from the emergent industry in japan. Ocean. Coast. Manag. 2020, 193, 105242. [Google Scholar] [CrossRef]
- Purkiani, K.; Gillard, B.; Paul, A.; Haeckel, M.; Haalboom, S.; Greinert, J.; de Stigter, H.; Hollstein, M.; Baeye, M.; Vink, A. Numerical simulation of deep-sea sediment transport induced by a dredge experiment in the northeastern Pacific Ocean. Front. Mar. Sci. 2021, 8, 719463. [Google Scholar] [CrossRef]
- Nath, B.N.; Sharma, R. Environment and deep-sea mining: A perspective. Mar. Georesources Geotechnol. 2000, 18, 285–294. [Google Scholar] [CrossRef]
- Jones, D.O.B.; Ardron, J.A.; Colaço, A.; Durden, J.M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Pol. 2020, 118, 103312. [Google Scholar] [CrossRef]
- Durden, J.M.; Lallier, L.E.; Murphy, K.; Jaeckel, A.; Gjerde, K.; Jones, D.O.B. Environmental impact assessment process for deep-sea mining in ‘the Area’. Mar. Pol. 2018, 87, 194. [Google Scholar] [CrossRef] [Green Version]
- Levin, L.A.; Mengerink, K.; Gjerde, K.M.; Rowden, A.A.; Van Dover, C.L.; Clark, M.R.; Ramirez-Llodra, E.; Currie, B.; Smith, C.R.; Sato, K.N.; et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Pol. 2016, 74, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Lallier, L.E.; Maes, F. Environmental impact assessment procedure for deep seabed mining in the area: Independent expert review and public participation. Mar. Pol. 2016, 70, 212–219. [Google Scholar] [CrossRef]
- Collins, P.C.; Croot, P.; Carlsson, J.; Colaço, A.; Grehan, A.; Hyeong, K.; Kennedy, R.; Mohn, C.; Smith, S.; Yamamoto, H.; et al. A primer for the environmental impact assessment of mining at seafloor massive sulfide deposits. Mar. Pol. 2013, 42, 198–209. [Google Scholar] [CrossRef]
- Beaudoin, Y.C.; Baker, E. Deep Sea Minerals: Manganese Nodules, a Physical, Biological, Environmental and Technical Review; Secretariat of the Pacific Community: Nouméa, Nouvelle-Calédonie, 2013. [Google Scholar]
- Martin-Barajas, A.; Lallier-Verges, E.; Leclaire, L. Characteristics of manganese nodules from the Central Indian Basin Relationship with the sedimentary environment. Mar. Geol. 1991, 101, 249–265. [Google Scholar] [CrossRef]
- Roy, S.; Dasgupta, S.; Mukhopadhyay, S.; Fukuoka, M. Atypical ferromanganese nodules from pelagic areas of the Central Indian Basin, equatorial Indian Ocean. Mar. Geol. 1990, 92, 269–283. [Google Scholar] [CrossRef]
- Beaudoin, Y.; Bredbenner, A.; Baker, E.; Roche, C.; Bice, S.; Pendletone, L. Wealth in the Oceans: Deep sea mining on the horizon? Environ. Dev. 2014, 12, 50–61. [Google Scholar]
- Liu, Y.G.; Ren, J.B.; Deng, Y.N.; Lai, P.X.; He, G.W. Geochemical characteristics and genesis of polymetallic nodules in the investigation area in Pacific. Earth Sci. Front. 2020. (In Chinese) [Google Scholar]
- Mel’nikov, M.E.; Avdonin, V.V.; Pletnev, S.P.; Sedysheva, T.E. Buried ferromanganese nodules of the Magellan Seamounts. Lithol. Miner. Resour. 2016, 51, 1–12. [Google Scholar] [CrossRef]
- Von Stackelberg, U. Growth history of manganese nodules and crusts of the Peru Basin. Geol. Soc. Spec. Publ. 2015, 119, 153–176. [Google Scholar] [CrossRef]
- Heller, C.; Kuhn, T.; Versteegh, G.J.M.; Wegorzewski, A.V.; Kasten, S. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2018, 142, 16–33. [Google Scholar] [CrossRef]
- Dutkiewicz, A.; Judge, A.; Müller, R.D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean. Geology 2020, 48, 293–297. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, X.; Ren, Y.; Jiang, X. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the south china sea. Ore Geol. Rev. 2017, 89, 206–227. [Google Scholar] [CrossRef]
- Barash, M.S.; Kruglikova, S.B. Age of manganese nodules of the clarion-clipperton province and the problem of nodule maintenance at the sediment surface. Pacon 99 Proc. 2000, 220–230. [Google Scholar]
- Usui, A.; Nishimura, A.; Mita, N. Composition and growth history of surficial and buried manganese nodules in the Penrhyn Basin, Southwestern Pacific. Mar. Geol. 1993, 114, 133–153. [Google Scholar] [CrossRef]
- Sanderson, B. How bioturbation supports manganese nodules at the sediment-water interface. Deep-Sea Res. Part A 1985, 10, 1281–1285. [Google Scholar] [CrossRef]
- Glasby, G.P.; Stoffers, P.; Sioulas, A.; Thijssen, T.; Friedrich, G. Manganese nodule formation in the Pacific Ocean a general theory. Geo-Mar. Lett. 1982, 2, 47–53. [Google Scholar] [CrossRef]
- Piper, D.Z.; Bradford, F. New constraint on the maintenance of Mn nodules at the sediment surface. Nature 1980, 29, 13–23. [Google Scholar] [CrossRef]
- Kuzin, I.P.; Barash, M.S. A Possible Mechanism for the Ferromanganese Nodules “Floating” in the Near Equatorial Part of the Pacific Ocean. Oceanology. 2002, 42, 677–681. [Google Scholar]
- Heye, D.; Marchig, V.; Meyer, H. The growth of buried manganese nodules. Deep-Sea Res. 1979, 26, 789–790. [Google Scholar] [CrossRef]
- Liang, D.; He, G.; Zhu, K. The small-scale distributing characteristics of the polymetallic nodules in the west china example area. Acta Oceanol. Sin. 2014, 36, 33–39. (In Chinese) [Google Scholar]
- Li, Z.; Li, H.; Hein, J.R.; Dong, Y.; Wang, M.; Ren, X.; Wu, Z.; Li, X.; Chu, F. A possible link between seamount sector collapse and manganese nodule occurrence in the abyssal plains, NW Pacific Ocean. Ore Geol. Rev. 2021, 138, 104378. [Google Scholar] [CrossRef]
- Tao, C.; Li, H.; Jin, X.; Zhou, J.; Wu, T.; He, Y.; Deng, X.; Gu, C.; Zhang, G.; Liu, W. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin. Sci. Bull. 2014, 59, 2266–2276. [Google Scholar] [CrossRef]
- Lv, W.Z.; Hua, Y.X.; Zhang, G.Z.; Bao, G.S. Geology of the China Pioneer Area of Polymetallic Nodule Deposit in the Pacific Ocean; China Ocean Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Kim, S.; Cho, S.; Lim, W.; Lee, T.H.; Park, S.; Hong, S.; Kim, H.; Min, C.; Choi, J.; Ko, Y.; et al. Probability distribution for size and mass of a nodule in the KR5 area for the development of a manganese nodule miner. Ocean Eng. 2019, 171, 131–138. [Google Scholar] [CrossRef]
- Kersten, O.; Vetter, E.W.; Jungbluth, M.J.; Smith, C.R.; Goetze, E. Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy. PeerJ 2019, 7, e7691. [Google Scholar] [CrossRef] [PubMed]
- Laroche, O.; Kersten, O.; Smith, C.R.; Goetze, E. Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the western Clarion-Clipperton zone. Mol. Ecol. 2020, 29, 4588–4604. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, L.; Ou, D.; Li, W.; Kuang, F.; Lin, C.; He, X.; An, L.; Wang, W. A preliminary evaluation of some elements for designation of preservation and impact reference zones in deep sea in the Clarion-Clipperton Zone: A case study of the China ocean mineral resources association contract area. Ocean. Coal Man. 2020, 188, 105135. [Google Scholar]
- Wu, Y.; Liao, L.; Wang, C.; Ma, W.; Meng, F.; Min, W.; Xu, W. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean. Deep Sea Res Part I 2013, 79, 40–49. [Google Scholar] [CrossRef]
- Yu, Y.J.; Duan, L.C.; Wang, H.F.; Duan, H.; Zhu, K.J. Preliminary Study on Physico-mechanical Properties of Deep-sea Sediments from the Western Pacific. Min. Metall. Eng. 2016, 36, 9. (In Chinese) [Google Scholar]
- Grupe, B.; Becker, H.J.; Oebius, H.U. Geotechnical and sedimentological investigations of deep-sea sediments from a manganese nodule field of the Peru Basin. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2001, 48, 3593–3608. [Google Scholar] [CrossRef]
- Dai, X.; Xu, T.; Chen, J. Physical and Mechanical Properties of Deep Oceanic Sediments Cored from the Bottom of Challenger Deep, Mariana Trench. Geofluids 2021, 2021, 9109132. [Google Scholar] [CrossRef]
- Yamazaki, T.; Nakatani, N.; Arai, R.; Sekimoto, T.; Katayama, H. Combined mining and pulp-lifting of ferromanganese nodules and rare-earth element-rich mud around minamitorishima island in the western north pacific: A prefeasibility study. Minerals 2021, 11, 310. [Google Scholar] [CrossRef]
- Choi, J.; Hong, S.; Chi, S.; Lee, H.; Park, C.; Kim, H.; Yeu, T.; Lee, T.H. Probability distribution for the shear strength of seafloor sediment in the KR5 area for the development of manganese nodule miner. Ocean Eng. 2011, 38, 2033–2041. [Google Scholar] [CrossRef]
- Oebius, H.U.; Becker, H.J.; Rolinski, S.; Jankowski, J.A. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep Sea Res. Part II 2001, 48, 3453. [Google Scholar] [CrossRef]
- Gollner, S.; Kaiser, S.; Menzel, L.; Jones, D.O.B.; Brown, A.; Mestre, N.C.; van Oevelen, D.; Menot, L.; Colaço, A.; Canals, M.; et al. Resilience of benthic deep-sea fauna to mining activities. Mar. Environ. Res. 2017, 129, 76–101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Xu, J.S.; Liu, Y.; Li, G.X.; Li, A.L.; Cao, L.H.; Zhai, K.; Quan, Y.Z. Effects of biological components on geotechnical properties of seafloor surface sediments in the Western Pacific Warm Pool. Earth Sci. Front. 2021. (In Chinese) [Google Scholar]
- Banerjee, R.; Lyer, S.D.; Dutta, P. Buried nodules and associated sediments from the Central Indian Basin. Geo-Mar. Lett. 1991, 11, 103–107. [Google Scholar] [CrossRef]
- Becker, H.J.; Grupe, B.; Oebius, H.U.; Liu, F. The behaviour of deep-sea sediments under the impact of nodule mining processes. Deep Sea Res. Part II 2001, 48, 3609–3627. [Google Scholar] [CrossRef]
- Ji, F.D.; Jia, Y.G.; Liu, X.L.; Guo, L.; Zhang, M.S.; Shan, H.X. In-situ measurement of the engineering mechanical properties of seafloor sediment. Mar. Geo. Quat. Geo. 2016, 36, 191–200. (In Chinese) [Google Scholar]
- Leng, D.; Shao, S.; Xie, Y.; Wang, H.; Liu, G. A brief review of recent progress on deep sea mining vehicle. Ocean Eng. 2021, 228, 108565. [Google Scholar] [CrossRef]
- Yue, Z.Y.; Zhao, G.C.; Xiao, L.F.; Liu, M.Y. Comparative Study on Collection Performance of Three Nodule Collection Methods in Seawater and Sediment-seawater Mixture. Appl. Ocean Res. 2021, 110, 102606. [Google Scholar] [CrossRef]
- Kang, Y.J.; Liu, S.J. Development history and prospect of deep sea polymetallic nodules mining technology. Chin. J. Nonferrous Met. 2021. (In Chinese) [Google Scholar]
- Wu, Q.; Yang, J.; Lu, H.; Lu, W.; Liu, L. Effects of heave motion on the dynamic performance of vertical transport system for deep sea mining. Appl. Ocean Res. 2020, 101, 102188. [Google Scholar] [CrossRef]
- Oh, J.-W.; Lee, C.-H.; Hong, S.; Bae, D.-S.; Cho, H.-J.; Kim, H.-W. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system. Int. J. Nav. Arch. Ocean Eng. 2014, 6, 652–669. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.G.; Park, S.Y.; Oh, J.; Min, C.; Kim, H.; Hong, S.; Jang, J.; Lee, T.H. Design optimization of deep-seabed pilot miner system with coupled relations between constraints. J. Terramech. 2019, 83, 25–34. [Google Scholar] [CrossRef]
- Montserrat, F.; Guilhon, M.; Corrêa, P.V.F.; Bergo, N.M.; Signori, C.N.; Tura, P.M.; Maly, M.D.; Moura, D.; Jovane, L.; Pellizari, V.; et al. Deep-sea mining on the Rio Grande Rise (Southwestern Atlantic): A review on environmental baseline, ecosystem services and potential impacts. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2019, 145, 31–58. [Google Scholar] [CrossRef]
- Ma, W.; Rao, Q.; Li, P.; Guo, S.; Feng, K. Shear creep parameters of simulative soil for deep-sea sediment. J. Cent. South Univ. 2014, 21, 4682–4689. [Google Scholar] [CrossRef]
- Dai, Y.; Xue, C.; Su, Q. An integrated dynamic model and optimized fuzzy controller for path tracking of deep-sea mining vehicle. J. Mar. Sci. Eng. 2021, 9, 249. [Google Scholar] [CrossRef]
- Spagnoli, G.; Jahn, A.; Halbach, P. First results regarding the influence of mineralogy on the mechanical properties of seafloor massive sulfide samples. Eng. Geol. 2016, 214, 127–135. [Google Scholar] [CrossRef]
- Van Wijk, J.M.; Haalboom, S.; de Hoog, E.; de Stigter, H.; Smit, M.G. Impact fragmentation of polymetallic nodules under deep ocean pressure conditions. Miner. Eng. 2019, 134, 250–260. [Google Scholar] [CrossRef]
- Sung, K.Y.; Min, C.H.; Kim, H.W.; Lee, C.H.; Hong, S. Performance test for the manganese nodule crushing equipment of the deep seabed mining robot ‘MineRo’. Ocean Polar Res. 2014, 36, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.W.; Jung, J.Y.; Kim, H.W.; Hong, S.; Sung, K.Y.; Bae, D.S. Gap size effect on the tribological characteristics of the roller for deep-sea mining robot. Mar. Geores. Geotechnol. 2017, 35, 120–126. [Google Scholar] [CrossRef]
- Yang, H.L.; Liu, S.J. A new lifting pump for deep-sea mining. J. Mar. Eng. Technol. 2020, 19, 102–108. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, S. The development history and latest progress of deep-sea polymetallic nodule mining technology. Minerals 2021, 11, 1132. [Google Scholar] [CrossRef]
- Hong, S.; Kim, H.W.; Yeu, T.; Choi, J.S.; Lee, T.H.; Lee, J.K. Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals. In Environmental Issues of Deep-Sea Mining: Impacts, Consequences and Policy Perspectives; Sharma, R., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–143. [Google Scholar]
- Yamazaki, T. Economic Validation Analyses of Japan’s Proposed Nodule, Crust, and Kuroko-Type SMS Mining in 2006. In Proceedings of the IEEE Xplore, Vancouver, BC, Canada, 29 September–4 October 2007. [Google Scholar]
- Van Wijk, J.M.; Talmon, A.M.; Rhee, C.V. Stability of vertical hydraulic transport processes for deep ocean mining: An experimental study. Ocean Eng. 2016, 125, 203–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.B.; Zhang, X.H.; Chen, Y.X.; Xiong, H.; Zhang, L.H. Experimental investigation of critical suction velocity of coarse solid particles in hydraulic collecting. Acta Mech. Sin. 2021, 37, 613–619. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Y.; Li, X. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining. Ocean Eng. 2021, 220, 108411. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, J.M.; Guo, X.X.; Liu, L. Influence of irregular waves on the dynamic response of a vertical transport system for deep sea mining. Ocean Eng. 2021, 229, 108443. [Google Scholar] [CrossRef]
- Xu, H.L.; Zhou, G.; Wu, B.; Wu, W.R. Influence of wave and current on deep-sea mining transporting system. J. Cent. South Univ. 2012, 19, 144–149. [Google Scholar] [CrossRef]
- Zhao, G.; Xiao, L.; Yue, Z.; Liu, M.; Zhao, W. Performance characteristics of nodule pick-up device based on spiral flow principle for deep-sea hydraulic collection. Ocean Eng. 2021, 226, 108818. [Google Scholar] [CrossRef]
- Wang, R.; Guan, Y.; Jin, X.; Tang, Z.; Su, X. Impact of particle sizes on flow characteristics of slurry pump for deep-sea mining. Shock. Vib. 2021, 2021. [Google Scholar] [CrossRef]
- Oh, J.; Jung, J.; Hong, S. On-board measurement methodology for the liquid-solid slurry production of deep-seabed mining. Ocean Eng. 2018, 149, 170–182. [Google Scholar] [CrossRef]
- De, S.H.; Haalboom, S.; Mohn, C.; Vandorpe, T.S.; Smit, M.; De, J.L.; Reichart, G.J. Monitoring environmental effects of a deep-sea mining test in shallow water. EGU 2020. [Google Scholar]
- Yang, J.M.; Liu, L.; Lv, H.N.; Lin, Z.Q. Deep-Sea Mining Equipment in China: Current Status and Prospect. Strateg. Study CAE 2020, 22, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Halfar, J.; Fujita, R.M. ECOLOGY: Danger of Deep-Sea Mining. Science 2007, 5827, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiel, H.; Schriever, G.; Ahnert, A.; Bluhm, H.; Borowski, C.; Vopel, K. The large-scale environmental impact experiment DISCOL—Reflection and foresight. Deep-Sea Res II 2001, 48, 3869–3882. [Google Scholar] [CrossRef]
- Smith, C.R.; Tunnicliffe, V.; Colaço, A.; Drazen, J.C.; Gollner, S.; Lisa, A.; Levin, L.A.; Mestre, N.C.; Metaxas, A.; Molodtsova, T.N.; et al. Deep-sea misconceptions cause underestimation of seabed-mining impacts. Trends Ecol. Evol. 2020, 35, 853–857. [Google Scholar] [CrossRef]
- Burkett, A.; Rathburn, A.; Pratt, R.B.; Holzmann, M. Insight into the ecology of epibenthic calcareous foraminifera from a colonization study at 4000 m (Station M) in the NE Pacific Ocean. Deep Sea Res. II. 2020, 173, 104709. [Google Scholar] [CrossRef]
- Uhlenkott, K.; Vink, A.; Thomas, K.; Arbizu, P.M. Predicting meiofauna abundance to define preservation and impact zones in a deep-sea mining context using random forest modelling. J. Appl. Ecol. 2020, 7, 1210–1221. [Google Scholar] [CrossRef]
- Pinheiro, M.; Oliveira, A.; Barros, S.; Alves, N.; Raimundo, J.; Caetano, M.; Coimbra, J.; Neuparth, T.; Miguel, M. Santos. Functional, biochemical and molecular impact of sediment plumes from deep-sea mining on Mytilus galloprovincialis under hyperbaric conditions. Environ. Res. 2021, 195, 110753. [Google Scholar] [CrossRef]
- Leduc, D.; Pilditch, C.A. Effect of a physical disturbance event on deep-sea nematode community structure and ecosystem function. J. Exp. Mar. Biol. Ecol. 2013, 440, 35–41. [Google Scholar] [CrossRef]
- Ramirez, M.; Massolo, S.; Frache, R.; Correa, J.A. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar. Pollut. Bul. 2005, 1, 62–72. [Google Scholar] [CrossRef]
- Gillard, B.; Chatzievangelou, D.; Thomsen, L.; Ullrich, M.S. Heavy-metal-resistant microorganisms in deep-sea sediments disturbed by mining activity: An Application Toward the Development of Experimental in vitro Systems. Front. Mar. Sci. 2019, 6, 462. [Google Scholar] [CrossRef] [Green Version]
- Thiel, H. Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep. -Sea Res. Part II Top. Stud. Oceanogr. 2001, 17, 3433–3452. [Google Scholar] [CrossRef]
- Ahmed, A.; Christian, B. Environmental risk assessment of anthropogenic activity in the deep-sea. J. Aquat. Ecosyst. Stress Recovery 2000, 4, 299–315. [Google Scholar]
- Brian, D.B.; Ping, R.; David, B.P. High-frequency turbidity currents in British Columbia fjords. Geo-Mar. Let. 1994, 4, 238–243. [Google Scholar]
- Florian, G.; Anne, H.; Timm, S.; Kevin, K.G. Scars in the abyss: Reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin. Biogeosciences 2020, 6, 1463–1493. [Google Scholar]
- Carina, L.L.; Bastos, L.; Caetano, M.; Martins, L.; Miguel, M. SantosandIsabel Iglesias. Development of physical modelling tools in support of risk scenarios: A new framework focused on deep-sea mining. Sci. Total Envir. 2019, 650, 2294–2306. [Google Scholar]
- Benjamin, G.; Kaveh, P.; Damianos, C.; Annemiek, V.; Morten, H.I.; Laurenz, T. Physical and hydrodynamic properties of deep-sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Elem. Sci. Anth. 2019, 1, 5. [Google Scholar]
- Eva, R.L.; Hilde, C.T.; Anita, E.; Lisa, A.L.; Malin, A.; Tor, E.F.; Ana, H.; Belinda, F.; Guttorm, C.; Morten, S.; et al. Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Mar. Pollut. Bul. 2015, 97, 13–35. [Google Scholar]
- Prisetiahadi, K.; Yanagi, T. Seasonal variation in the behavior of tailing wastes in Buyat Bay, Indonesia. Mar. Pollut. Bul. 2008, 57, 170–181. [Google Scholar] [CrossRef]
- Dong, D.; Li, X.Z.; Yang, M.; Gong, L.; Li, Y.; Sui, J.X.; Gan, Z.B.; Kou, Q.; Xiao, N.; Zhang, J.L. Report of epibenthic macrofauna found from Haima cold seeps and adjacent deep-sea habitats, South China Sea. Mar. Life Sci. Tec. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Daniel, M.F.; David, V.B.; Claire, M.; Côteand, D.R. Mulligan. Sustainable development principles for the disposal of mining and mineral processing wastes. Resour. Pol. 2011, 36, 114–122. [Google Scholar]
- Fan, Z.H.; Jia, Y.G.; Teng, X.Y.; Sun, Z.W.; Song, X.S.; Wang, L.S.; Li, B.W. Review on potential engineering geological environment impacts of deep-sea polymetallic nodules mining. J. Eng. Geo. 2021, 29, 1676–1691. (In Chinese) [Google Scholar]
- Canals, M.; Pham, C.; Bergmann, K.; Gutow, M.; Giorgetti, L.A. The quest for seafloor macrolitter: A critical review of background knowledge, current methods and future prospects. Environ. Res. Let. 2021, 2, 16. [Google Scholar] [CrossRef]
- Sanae, C.; Hideaki, S.; Ruth, F.; Takayuki, Y.; Makino, K.; Shin, M.; Moritaka, O.; Katsunori, F. Human footprint in the abyss: 30 years records of deep-sea plastic debris. Mar. Pol. 2018, 96, 204–212. [Google Scholar]
- Nicola, M.; Rew, W.W. Stokes settling and particle-laden plumes: Implications for deep-sea mining and volcanic eruption plumes. Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences. Philos. Trans. R. Soc. A 2020, 378, 20190532. [Google Scholar]
- Smit, M.; Holthaus, K.; Trannum, H.C.; Neff, J.M.; Kjeilen-Eilertsen, G.; Jak, R.G.; Singsaas, I.; Huijbregts, A.J.M.; Hendriks, A.J. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment. Envir. Toxicol. Chem. 2008, 27, 1006–1012. [Google Scholar] [CrossRef]
- Dmitry, M.M.; Maria, A.M.; Martínez, P.; Galéron, A. Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep. Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 885–897. [Google Scholar]
- Levin, L.A.; Wei, C.-L.; Dunn, D.C.; Amon, D.J.; Ashford, O.S.; Cheung, W.W.L.; Yasuhara, M. Climate change considerations are fundamental to management of deep-sea resource extraction. Glob. Chang. Biol. 2020, 26, 4664–4678. [Google Scholar] [CrossRef]
- Ros, Z.D.; Dell’Anno, A.; Morato, T.; Andrew, K.S.; Carreiro-Silva, M.; Chris, J.S.; Papadopoulou, N.; Corinaldesi, C.; Bianchelli, S.; Gambi, C.; et al. The deep sea: The new frontier for ecological restoration. Mar. Policy 2019, 108, 103642. [Google Scholar] [CrossRef]
- Sharma, R.S.; Sankar, J.; Samanta, S.; Sardar, A.A.; Gracious, D. Image analysis of seafloor photographs for estimation of deep-sea minerals. Geo-Mar. Let. 2010, 30, 617–626. [Google Scholar] [CrossRef]
- Perelman, J.N.; Firing, E.; Jesse, M.A.; van der Grient, B.A.; Jones, B.A.; Drazen, J.C. Mesopelagic scattering layer behaviors across the Clarion-Clipperton Zone: Implications for Deep-Sea Mining. Front. Mar. Sci. 2021, 8, 632764. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Goodell, W.; Giddens, J.; Easton, E.E.; Wagner, D. Deep-sea biodiversity at the extremes of the Salas y Gómez and Nazca ridges with implications for conservation. PLoS ONE 2021, 16, e0253213. [Google Scholar]
- Ji, C.S.; Jia, Y.G.; Zhu, J.J.; Hu, N.L.; Fan, Z.H.; Hu, C.; Feng, X.Z.; Xu, H.Y.; Liu, B. Development and Application of In-situ Observation System for Bottom Boundary Layer in Abyssal Sea. Earth Sci. Fro. 2021. (In Chinese) [Google Scholar]
- Zhu, X.M.; Sun, L.P.; Li, B. Dynamic analysis of vessel/riser/equipment system for deep-sea mining with RBF neural network approximations. Mar. Georesources Geotechnol. 2019, 38, 174–192. [Google Scholar] [CrossRef]
- Mcquaid, K.A.; Attrill, M.J.; Clark, M.R.; Cobley, A.; Howell, K.L. Using Habitat Classification to Assess Representativity of a Protected Area Network in a Large, Data-Poor Area Targeted for Deep-Sea Mining. Front. Mar. Sci. 2020, 7, 558860. [Google Scholar] [CrossRef]
- Kaikkonen, L.; Helle, I.; Kostamo, K.; Kuikka, S.; Törnroos, A.; Nygård, H.; Venesjärvi, R.; Uusitalo, L. Causal Approach to Determining the Environmental Risks of Seabed Mining. Environ. Sci. Technol. 2021, 55, 8502–8513. [Google Scholar] [CrossRef] [PubMed]
- Marine Technology—Marine Environment Impact Assessment (MEIA)—Performance Specification for in situ Image-Based Surveys in Deep Seafloor Environments. 2021. Available online: https://www.doc88.com/p-91761762087582.html?r=1 (accessed on 25 June 2022).
- Marine Technology—Marine Environment Impact Assessment (MEIA)—General Protocol for Observation of Meiofaunal Community. 2021. Available online: https://www.iso.org/standard/76788.html (accessed on 25 June 2022).
- Marine Technology—Marine Environment Impact Assessment (MEIA—On-Board Bioassay to Monitor Seawater Quality Using Delayed Fluorescence of Microalga. 2021. Available online: https://www.iso.org/standard/76789.html (accessed on 25 June 2022).
- Marine Technology—Marine Environment Impact Assessment (MEIA)—General Technical Requirements. 2021. Available online: https://www.iso.org/standard/76786.html (accessed on 25 June 2022).
Different Areas. | Water Content (%) | Void Ratio | Internal Friction Angle | Wet Density (g/cm3) | Shear Strength (kPa) |
---|---|---|---|---|---|
CCZ [53] | 215–284 | 3.15–3.93 | 3.9–5.7 | 1.18–1.49 | 4.2–6.6 |
Western Pacific [62] | 133–178 | 5.56–7.21 | 3.6 | 1.16–1.38 | 2.6–7.6 |
Peru Basin | 7–13 [14] | 0.29–0.39 [14] | 3–5 [63] | ||
Mariana Trench [64] | 246.2 | 6.03 | 5.384 | 1.249 |
Test Method | Test Parameters | Advantages | Disadvantages |
---|---|---|---|
Indoor test | Shear strength, cohesion, internal friction angle, etc. | Strong controllability and accurate test results | Sample preparation is troublesome; long test period |
Cone penetration test | Penetration resistance and side friction resistance Pore water pressure | Wide range of applications and high measurement accuracy | Needs to cooperate with penetration device |
Dynamic cone penetration test | Easy to test without additional power | Average measurement accuracy | |
Consumable dynamic penetrometers | Penetration resistance | Easy to use | Only suitable for shallow seas |
Full flow penetrometers | High precision for measuring soft soil on the seabed | Probes need to be replaced for different sediment | |
Vane shear test | Shear strength | Can reflect small deformations of sediment | Average measurement accuracy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Jia, Y.; Chu, F.; Zhu, X.; Zhu, N.; Li, B.; Quan, Y. Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules. Water 2022, 14, 2073. https://doi.org/10.3390/w14132073
Fan Z, Jia Y, Chu F, Zhu X, Zhu N, Li B, Quan Y. Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules. Water. 2022; 14(13):2073. https://doi.org/10.3390/w14132073
Chicago/Turabian StyleFan, Zhihan, Yonggang Jia, Fengyou Chu, Xianming Zhu, Na Zhu, Bowen Li, and Yongzheng Quan. 2022. "Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules" Water 14, no. 13: 2073. https://doi.org/10.3390/w14132073
APA StyleFan, Z., Jia, Y., Chu, F., Zhu, X., Zhu, N., Li, B., & Quan, Y. (2022). Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules. Water, 14(13), 2073. https://doi.org/10.3390/w14132073