Comparison of the Causes of Erosion–Deposition between Yellow River, Yangtze River, and Mekong River Subaqueous Delta l: Model Building
Abstract
:1. Introduction
2. Method
2.1. Mathematical Model
2.2. Model Building
2.2.1. The Yellow River Subaqueous Delta Simulation
2.2.2. The Yangtze River Subaqueous Delta Simulation
3. Simulation Results
3.1. Tidal Model Verification
3.2. Current Velocity Verification
3.3. Diffusion Range of the Water and Sediment
3.3.1. The Diffusion Simulation Results of the water and Sediment in the Yellow River Subaqueous Delta
3.3.2. The Diffusion Simulation Results for the Water and Sediment in the Yangtze River Subaqueous Delta
3.4. Simulation Results of Shear Stress on the Bottom Bed
3.4.1. Simulation Results of the Shear Stress on the Bottom Bed of the Yellow River Subaqueous Delta
3.4.2. Simulation Results of Shear Stress on the Bottom Bed of the Yangtze River Subaqueous Delta
4. Discussion
4.1. The Characteristics of Erosion and Deposition in the Yellow River Subaqueous Delta
4.2. The Characteristics of Erosion and Deposition in the Yangtze River Subaqueous Delta
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Sun, F. Variability of annual sediment load and runoff in the Yellow River for the last 100 years (1919–2018). Sci. Total Environ. 2020, 758, 143715. [Google Scholar] [CrossRef] [PubMed]
- Van Binh, D.; Kantoush, S.; Sumi, T. Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 2019, 353, 107011. [Google Scholar] [CrossRef]
- Lu, J.; Qiao, F.; Wang, X.; Teng, Y.; Jung, K.T.; Liu, Y. Modeling the Yellow River sediment flux and its deposition patterns under climatological conditions. Ocean Dyn. 2013, 63, 709–722. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Pan, S. Variations of Suspended Sediment Concentrations and Loads into the Estuary Area from Yangtze River in Recent 50 Years. Mar. Sci. Bull. 2008, 27, 1–9. (In Chinese) [Google Scholar]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Mashhadi, A.; Jafari, R. Mapping and quantitative identification of sensitive regions to land degradation in south of Isfahan province using modified MEDALUS model. J. Geogr. Environ. Hazards 2022, 11, 57–75. [Google Scholar]
- Wang, H.; Yang, Z.; Li, Y.; Guo, Z.; Sun, X.; Wang, Y. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Cont. Shelf Res. 2007, 27, 854–871. [Google Scholar] [CrossRef]
- Chu, Z.X.; Sun, X.G.; Zhai, S.K.; Xu, K.H. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Mar. Geol. 2006, 227, 13–30. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge into the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.L.; Dong, P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and river delta. Catena 2010, 2–3, 135–147. [Google Scholar] [CrossRef]
- Fan, Y. Seabed Erosion and Its Mechanism in the Littoral Area of Yellow River Delta. Ph.D. Thesis, East China Normal University, Shanghai, China, 2019. (In Chinese). [Google Scholar]
- Peng, J.; Chen, S. The Variation Process of Water and Sediment and Its Effect on the Yellow River Delta over the Six Decades. Acta Geogr. Sin. 2009, 64, 1353–1362. (In Chinese) [Google Scholar]
- Jiang, C.; Pan, S.Q.; Chen, S.L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications. Geomorphology 2017, 293, 93–107. [Google Scholar] [CrossRef]
- Wu, X.; Bi, N.; Yuan, P.; Li, S.; Wang, H. Sediment dispersal and accumulation off the present Huanghe (Yellow River) delta as impacted by the Water-Sediment Regulation Scheme. Cont. Shelf Res. 2015, 111, 126–138. [Google Scholar] [CrossRef]
- Bi, N.S.; Wang, H.J.; Yang, Z.S. Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont. Shelf Res. 2017, 90, 70–78. [Google Scholar] [CrossRef]
- Jia, J.; Gao, J.; Cai, T.; Li, Y.; Yang, Y.; Wang, Y.P.; Xia, X.; Li, J.; Wang, A.; Gao, S. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century. Mar. Geol. 2018, 401, 2–16. [Google Scholar] [CrossRef]
- Yang, H.F.; Yang, S.L.; Xu, K.; Wu, H.; Shi, B.W.; Zhu, Q.; Zhang, W.X.; Yang, Z. Erosion potential of the Yangtze Delta under sediment starvation and climate change. Sci. Rep. 2017, 7, 10535. [Google Scholar] [CrossRef] [Green Version]
- Luan, H.L.; Ding, P.X.; Wang, Z.B.; Ge, J.Z. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends. Geomorphology 2017, 290, 347–364. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, Y.; Delang, C.O.; Ma, Y.; Zhou, J.; He, H. Contribution of soil erosion to the evolution of the plateau-plain-delta system in the Yellow River basin over the past 10,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 601, 111133. [Google Scholar] [CrossRef]
- DeMaster, D.; Liu, P.; Eidam, E.; Nittrouer, C.; Nguyen, T. Determining rates of sediment accumulation on the Mekong shelf: Timescales, steady-state assumptions, and radiochemical tracers. Cont. Shelf Res. 2017, 147, 182–196. [Google Scholar] [CrossRef]
- Xue, Z.; He, R.; Liu, J.; Warner, J.C. Modeling transport and deposition of the Mekong River sediment. Cont. Shelf Res. 2012, 37, 66–78. [Google Scholar] [CrossRef]
- Liu, P.; DeMaster, D.; Nguyen, T.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Li, X. Stratigraphic Formation of the Mekong River Delta and Its Recent Shoreline Changes. Oceanography 2017, 30, 72–83. [Google Scholar] [CrossRef]
- Jia, Y.G.; Fu, Y.B.; Xu, G.H.; Shan, H.X.; Cao, X.Q. The fractal character’s change in the Huanghe River Estuary due to the hydrodunamic condition’s variation. Acta Ocean. Sin. 2003, 2, 191–200. [Google Scholar]
- Jia, Y.G.; Liu, X.L.; Shan, H.X.; Zhen, J.W.; Huo, S.X. The effects of hydrodynamic conditions on geotechnical strength of the sediment in Yellow River Delta. Int. J. Sediment Res. 2011, 3, 318–330. [Google Scholar] [CrossRef]
- Zheng, J.W.; Shan, H.X.; Jia, Y.G.; Liu, X.; Hou, W. Field tests and observation of wave-loading influence on erodibility of silty sediments in the Huanghe (Yellow River) Estuary, China. J. Coast. Res. 2011, 27, 706–717. [Google Scholar]
- Meng, X.M.; Jia, Y.G.; Shan, H.X.; Yang, Z.N.; Zheng, J.W. An experimental study on erodibility of inter tidal sediments in the Yellow River delta. Int. J. Sediment Res. 2012, 27, 240–249. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, Y.; Bi, N.; Lei, K.; Wang, H. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison. Estuar. Coast. Shelf Sci. 2011, 93, 173–181. [Google Scholar] [CrossRef]
- Baldock, T.E.; Alsina, J.A.; Caceres, I.; Vicinanza, D.; Contestabile, P.; Power, H.; Sanchez-Arcilla, A. Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coast. Eng. 2011, 58, 214–227. [Google Scholar] [CrossRef]
- Nam, P.T.; Larson, M.; Hanson, H. A numerical model of beach morphological evolution due to waves and currents in the vicinity of coastal structures. Coast. Eng. 2011, 58, 863–876. [Google Scholar] [CrossRef]
- Fan, H.; Huang, H.; Zeng, T.Q.; Wang, K. River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow) River delta, China. Geomorphology 2006, 74, 124–136. [Google Scholar] [CrossRef]
- Burchard, H.; Schuttelaars, H.M.; Ralston, D.K. Sediment trapping in estuaries. Annu. Rev. Mar. Sci. 2018, 10, 371–395. [Google Scholar] [CrossRef]
- Nakanowatari, T.; Nakamura, T.; Mitsudera, H.; Nishioka, J.; Kuroda, H.; Uchimoto, K. Interannual to decadal variability of phosphate in the Oyashio region: Roles of wind-driven ocean current and tidally induced vertical mixing in the Sea of Okhotsk. Prog. Oceanogr. 2021, 197, 102615. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, G.; Yuan, L.; Zhu, L.; Zhang, H. Effects of swell waves on the dynamics of the estuarine turbidity maximum in an idealized convergent partially mixed estuary. J. Mar. Syst. 2022, 235, 103784. [Google Scholar] [CrossRef]
- Qiao, F.; Zheng, B.; Lei, K.; Zhou, G.; Liu, Q. Hydrodynamic in the Lower Reaches of the Yangtze River and Its Estuary. Res. Environ. Sci. 2017, 30, 389–397. (In Chinese) [Google Scholar]
- Lettmann, A.K.; Wolff, J.O.; Badewien, H.T. Modeling the impact of wind and waves on suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea). Ocean Dyn. 2009, 59, 239–262. [Google Scholar] [CrossRef]
- Carniello, L.; Defina, A.; Fagherazzi, S.; D’Alpaos, L. A combined wind wave–tidal model for the Venice lagoon, Italy. J. Geophys. Res. 2005, 4, 110. [Google Scholar] [CrossRef]
- Ren, H.; Li, G.; Cui, L.; He, L. Phases and periodic changes of water discharge and sediment load from the Yellow River to the Bohai Sea during 1950–2011. Acta Geogr. Sin. 2014, 69, 619–631. (In Chinese) [Google Scholar]
- Li, B.; Jia, Y.; Liu, J.P.; Liu, X.; Wang, Z. Effect of Wave, Current and Lutoclines on Sediment Resuspension in the Yellow River Delta-Front. Water 2020, 12, 845. [Google Scholar] [CrossRef]
- Dai, R.; Zhu, J. Statistical analysis of the wind at the Chongming eastern beach. J. East China Norm. Univ. (Nat. Sci.) 2015, 4, 17–25. (In Chinese) [Google Scholar]
- Li, P. Mechanism and Division of Typical Geological Hazards on the Surface and Shall of Seabed of the Yellow River Delta Offshore. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2015. (In Chinese). [Google Scholar]
- Qiao, S.; Shi, X.; Zhu, A.; Liu, Y.; Bi, N.; Fang, X.; Yang, G. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuar. Coast. Shelf Sci. 2010, 86, 337–344. [Google Scholar] [CrossRef]
- Song, W. Research on the geological hazard in the sea aera of the Yangtze River Mouth. Shanghai Land Resour. 2005, 3, 10–15. (In Chinese) [Google Scholar]
- Li, B.; Jia, Y.; Liu, J.P.; Su, J.; Liu, X.; Wen, M. The controlling factors of high suspended sediment concentration in the intertidal flat off the Huanghe River Estuary. Acta Oceanol. Sin. 2020, 39, 96–106. [Google Scholar] [CrossRef]
- Yi, S. Accretion-Erosion Evolution and its Driving Mechanisms of Yangtze Underwater Delta Over the Past Nearly 20 Years. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2018. (In Chinese). [Google Scholar]
- Guo, Z.; Yang, Z.; Fan, D.; Pan, Y. Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area. Acta Geogr. Sin. 2003, 4, 591–597. (In Chinese) [Google Scholar]
Summer Flood (2016) | Summer Flood (2017) | Winter Flood (2017) | |
---|---|---|---|
Average water flux | 680 m3/s | 380 m3/s | 430 m3/s |
Average suspended sediment concentration | 2.4 g/L | 0.5 g/L | 1.5 g/L |
Wind velocity | 3 m/s | 3 m/s | 5 m/s |
Wind direction | 130° | 130° | 310° |
Flood Season (July, August) | Dry Season (January, February) | |
---|---|---|
Average water flux | 39,000 m3/s | 17,000 m3/s |
Average suspended sediment concentration | 0.2 g/L | 0.05 g/L |
Wind velocity | 4.9 m/s | 4.4 m/s |
Wind direction | 180° | 0° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Liu, J.P.; Jia, Y. Comparison of the Causes of Erosion–Deposition between Yellow River, Yangtze River, and Mekong River Subaqueous Delta l: Model Building. Water 2022, 14, 3208. https://doi.org/10.3390/w14203208
Li B, Liu JP, Jia Y. Comparison of the Causes of Erosion–Deposition between Yellow River, Yangtze River, and Mekong River Subaqueous Delta l: Model Building. Water. 2022; 14(20):3208. https://doi.org/10.3390/w14203208
Chicago/Turabian StyleLi, Bowen, Jing Paul Liu, and Yonggang Jia. 2022. "Comparison of the Causes of Erosion–Deposition between Yellow River, Yangtze River, and Mekong River Subaqueous Delta l: Model Building" Water 14, no. 20: 3208. https://doi.org/10.3390/w14203208
APA StyleLi, B., Liu, J. P., & Jia, Y. (2022). Comparison of the Causes of Erosion–Deposition between Yellow River, Yangtze River, and Mekong River Subaqueous Delta l: Model Building. Water, 14(20), 3208. https://doi.org/10.3390/w14203208