Permafrost Degradation Impact on Water Bodies in the Siberian Tundra (Samoylov and Kurungnakh Islands, Lena Delta) Using GIS Analysis of Remote Sensing Data and a Geochemical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Field Measurements
2.3. GIS-Analysis
2.4. Sampling and Field Measurements
3. Results
3.1. Geomorphological Features of the Studied Water Bodies
3.2. Composition of the Studied Water Bodies
3.2.1. Chemical Composition of Water
3.2.2. Chemical Composition of Bottom Sediments
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchard, F.; Francus, P.; Pienitz, R.; Laurion, I. Sedimentology and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic Quebec. Canada. J. Geophys. Res. Biogeosci. 2011, 116, G00M04. [Google Scholar] [CrossRef] [Green Version]
- Manasypov, R.M.; Pokrovsky, O.S.; Shirokova, L.S.; Auda, Y.; Zinner, N.S.; Vorobyev, S.N.; Kirpotin, S.N. Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of permafrost peatlands, western Siberia. Sci. Total Environ. 2021, 763, 144201. [Google Scholar] [CrossRef]
- Polishchuk, Y.M.; Bogdanov, A.N.; Polishchuk, V.Y.; Manasypov, R.M.; Shirokova, L.S.; Kirpotin, S.N.; Pokrovsky, O.S. Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the Western Siberia Lowland. Water 2017, 9, 228. [Google Scholar] [CrossRef]
- Grosse, G.; Goetz, S.; McGuire, A.D.; Romanovsky, V.E.; Schuur, E.A.G. Changing permafrost in a warming world and feedbacks to the earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billet, M.F.; Canário, J.; Cory, R.M.; et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef] [Green Version]
- Manasypov, R.M.; Lim, A.G.; Krickov, I.V.; Shirokova, L.S.; Vorobyev, S.N.; Kirpotin, S.N.; Pokrovsky, O.S. Spatial and Seasonal Variations of C, Nutrient, and Metal Concentration in Thermokarst Lakes of Western Siberia Across a Permafrost Gradient. Water 2020, 12, 1830. [Google Scholar] [CrossRef]
- Beilman, D.W.; Vitt, D.H.; Halsey, L.A. Localized permafrost peatlands in western Canada: Definition, distributions, and degradation. Arct. Antarct. Alp. Res. 2001, 33, 70–77. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote Sens. 2014, 6, 621–636. [Google Scholar] [CrossRef] [Green Version]
- Selroos, J.O.; Cheng, H.; Vidstrand, P.; Destouni, G. Permafrost thaw with thermokarst wetland-lake and societal-health risks: Dependence on local soil conditions under large-scale warming. Water 2019, 11, 574. [Google Scholar] [CrossRef] [Green Version]
- Zhan, S.; Beck, R.A.; Hinkel, K.M.; Liu, H.; Jones, B.M. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images. Remote Sens. 2014, 6, 9170–9193. [Google Scholar] [CrossRef] [Green Version]
- Antonova, S.; Duguay, C.R.; Kääb, A.; Heim, B.; Langer, M.; Westermann, S.; Boike, J. Monitoring bedfast ice and ice phenology in lakes of the Lena river delta using TerraSAR-X backscatter and coherence time series. Remote Sens. 2016, 8, 903. [Google Scholar] [CrossRef] [Green Version]
- Nitze, I.; Grosse, G.; Jones, B.M.; Arp, C.D.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Kokelj, S.V.; Lantz, T.C.; McFarlane-Winchester, M.; Olthof, I.; Lacelle, D. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 2018, 10, 954. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, P.; Grosse, G.; Meyer, F.J.; Anthony, K.W. An object-based classification method to detect methane ebullition bubbles in early Winter lake ice. Remote Sens. 2019, 11, 822. [Google Scholar] [CrossRef] [Green Version]
- Veremeeva, A.; Nitze, I.; Günther, F.; Grosse, G.; Rivkina, E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma lowland yedoma region, north-eastern Siberia. Remote Sens. 2021, 13, 178. [Google Scholar] [CrossRef]
- Bergstedt, H.; Jones, B.M.; Hinkel, K.; Farquharson, L.; Gaglioti, B.V.; Parsekian, A.D.; Kanevskiy, M.; Ohara, N.; Breen, A.L.; Rangel, R.C.; et al. Remote sensing-based statistical approach for defining drained lake basins in a continuous permafrost region, North Slope of Alaska. Remote Sens. 2021, 13, 2539. [Google Scholar] [CrossRef]
- Kartoziia, A. Assessment of the ice wedge polygon current state by means of UAV imagery analysis (Samoylov Island, the Lena Delta). Remote Sens. 2019, 11, 1627. [Google Scholar] [CrossRef] [Green Version]
- Kravtsova, V.I.; Mit’kinykh, N.S. Mouths of World Rivers in the Atlas of Space Images. Water Resour. 2011, 38, 1–17. [Google Scholar] [CrossRef]
- Degtyarev, V. Lena River Delta (Russia). In The Wetland Book: II: Distribution, Description, and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 1451–1456. [Google Scholar] [CrossRef]
- Grigoriev, M.N. Criomorphogenesis in the Lena Delta; Permafrost Institute Press: Yakutsk, Russia, 1993; p. 176. (In Russian) [Google Scholar]
- Schwamborn, G.; Rachold, V.; Grigoriev, M.N. Late Quaternary Sedimentation History of the Lena Delta. Quat. Int. 2002, 89, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Bolshiyanov, D.; Makarov, A.; Savelieva, L. Lena River Delta Formation during the Holocene. Biogeosciences 2015, 12, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Schirrmeister, L.; Grosse, G.; Schnelle, M.; Fuchs, M.; Krbetschek, M.; Ulrich, M.; Kunitsky, V.; Grigoriev, M.; Andreev, A.; Kienast, F.; et al. Late Quaternary Paleoenvironmental Records from the Western Lena Delta, Arctic Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 175–196. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, S.; Kuzmina, S.; Andreev, A.A.; Kienast, F.; Meyer, H.; Schirrmeister, L.; Kuznetsova, T.; Sierralta, M. Palaeoenvironmental Dynamics Inferred from Late Quaternary Permafrost Deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia. Quat. Sci. Rev. 2008, 27, 1523–1540. [Google Scholar] [CrossRef] [Green Version]
- Boike, J.; Nitzbon, J.; Anders, K.; Grigoriev, M.; Bolshiyanov, D.; Langer, M.; Lange, S.; Bornemann, N.; Morgenstern, A.; Schreiber, P.; et al. A 16-Year Record (2002–2017) of Permafrost, Active-Layer, and Meteorological Conditions at the Samoylov Island Arctic Permafrost Research Site, Lena River Delta, Northern Siberia: An Opportunity to Validate Remote-Sensing Data and Land Surface, Snow, and Permafrost Models. Earth Syst. Sci. Data 2019, 11, 261–299. [Google Scholar] [CrossRef] [Green Version]
- Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A. Organic Carbon and Total Nitrogen Stocks in Soils of the Lena River Delta. Biogeosciences 2013, 10, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- Schirrmeister, L.; Froese, D.; Tumskoy, V.; Grosse, G.; Wetterich, S. Yedoma: Late Pleistocene Ice-Rich Syngenetic Permafrost of Beringia. In Encyclopedia of Quaternary Science, 2nd ed.; Elias, S.A., Mock, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 542–552. [Google Scholar]
- Antonova, S.; Sudhaus, H.; Strozzi, T.; Zwieback, S.; Kääb, A.; Heim, B.; Langer, M.; Bornemann, N.; Boike, J. Thaw Subsidence of a Yedoma Landscape in Northern Siberia, Measured In Situ and Estimated from TerraSAR-X Interferometry. Remote Sens. 2018, 10, 494. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, A.; Ulrich, M.; Günther, F.; Roessler, S.; Fedorova, I.V.; Rudaya, N.A.; Wetterich, S.; Boike, J.; Schirrmeister, L. Evolution of thermokarst in East Siberian ice-rich permafrost: A case study. Geomorphology 2013, 201, 363–379. [Google Scholar] [CrossRef]
- Morin, P.; Porter, C.; Cloutier, M.; Howat, I.M.; Noh, M.J.; Willis, M.; Bates, B.; Willamson, C.; Peterman, K. ArcticDEM; a publically available, high resolution elevation model of the Arctic. EGU Gen. Assem. Conf. Abstr. 2016, 18, 8396. [Google Scholar]
- Manasypov, R.M.; Vorobyev, S.N.; Loiko, S.V.; Kritzkov, I.V.; Shirokova, L.S.; Shevchenko, V.P.; Kirpotin, S.N.; Kulizhsky, S.P.; Kolesnichenko, L.G.; Zemtzov, V.A.; et al. Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences 2015, 12, 3009–3028. [Google Scholar] [CrossRef] [Green Version]
- Arkhipov, A.Y.; Bugrov, V.A.; Vorobyev, S.A.; Gershman, D.M.; Grigoryan, S.V.; Kiyatovskiy, E.M.; Matveev, A.A.; Milyaev, S.A.; Nikolaev, V.A.; Perelman, A.I.; et al. Handbook of Geochemical Prospecting for Minerals; Solovov, A.P., Ed.; Nedra: Moscow, Russia, 1990; p. 335. (In Russian) [Google Scholar]
- Chetverova, A.; Skorospekhova, T.; Morgenstern, A.; Alekseeva, N.; Spiridonov, I.; Fedorova, I. Hydrological and hydrochemical characteristics of lakes in the Lena River delta (Northeast-Siberia, Russia). Polarforschung 2018, 87, 111–124. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Brookins, D.G. Eh-pH Diagrams for Geochemistry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 176. [Google Scholar]
- Moeller, T. The Chemistry of Lanthanides; Rheinhold Publ. Co.: New York, NY, USA, 1963; p. 177. [Google Scholar]
- German, C.R.; Elderfield, H. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography 1990, 5, 823–833. [Google Scholar] [CrossRef]
- Seto, M.; Akagi, T. Chemical condition for the appearance of a negative Ce anomaly in stream waters and groundwaters. Geochem. J. 2008, 42, 371–380. [Google Scholar] [CrossRef] [Green Version]
Group | Description | Subgroup | Area, m2 | Depth, m | Altitude, m | Points |
---|---|---|---|---|---|---|
I | Water bodies on the Yedoma upland surface | - | 392 | 0.5 | 46 | KY-22 |
1756 | 0.5 | 45 | KY-16 | |||
II | Thermokarst hollow water bodies of the third terrace | II-1 | 122,560 | 1.6 | 23 | KY-21 |
1,791,884 | 1–3 | 16 | KY-19, KY-20, KY-20.1, KY-18 | |||
242,572 | 3.5 | 18 | KY-17 | |||
II-2 | 512,804 | 1.2 | 25 | KY-14 | ||
6416 | 0.7 | 22 | KY-15 | |||
II-3 | 454,224 | 1–5 | 19 | KY-2, KY-1, KY-3, KY-4, KY-5 | ||
II-4 | 1,244,356 | 4.5 | 12 | KY-6, KY-7, KY-25 | ||
II-5 | 179,052 | 3.5 | 14 | KY-8, KY-9 | ||
II-6 | 289,908 | 0.5–7.8 | 8 | KY-23, KY-24, KY-26, KY-10, KY-11 | ||
III | Water bodies on the 1st terrace | - | 46,868 | 7.2 | 6 | KY-12 |
40,780 | 3.5 | 8 | KY-29 | |||
169,460 | 3–7 | 8 | KY-27,28 |
Element | Average Samoylov (n = 25) | Average Kurungnakh (n = 27) | Clark [32] | Lena River | Average Thermokarst | Average Thermokarst in Summer, Water Body Size 100–500,000 m2 [31] | Average Thermokarst in Summer, Water Body Size > 500,000 m2 [31] | Average Thermokarst in Summer, Continous Permafrost [6] |
---|---|---|---|---|---|---|---|---|
mg∙L−1 | ||||||||
Ca | 27 | 9.7 | 12 | 15 | 8.9 [33] | 0.29 ± 0.16 | 0.47 ± 0.37 | 1.9 ± 1.4 |
Mg | 7.8 | 3.6 | 2.9 | 4.2 | 4.2 [33] | 0.23 ± 0.19 | 0.13 ± 0.012 | 0.81 ± 1.1 |
K | 3.0 | 0.53 | 2.0 | 0.61 | 0.21 ± 0.20 | 0.27 ± 0.095 | 0.082 ± 0.058 | |
Na | 7.4 | 1.1 | 5.0 | 4.9 | 2.4 [33] | 1.2 ± 1.2 | 0.90 ± 0.35 | 0.68 ± 0.39 |
Al | 3.9 | 0.076 | 0.16 | 0.49 | 0.10 ± 0.069 | 0.14 ± 0.077 | 0.0400.037 | |
Si | 3.7 | 0.31 | 6.0 | 2.2 | 0.57 [33] | 0.29 ± 0.36 | ||
Fe | 2.9 | 0.86 | 0.040 | 1.2 | 0.25 ± 0.16 | 0.27 ± 0.24 | 0.19 ± 0.43 | |
Mn | 0.77 | 0.036 | 0.010 | 0.047 | 0.016 ± 0.01 | 0.018 ± 0.004 | 0.007 ± 0.015 | |
P | 0.48 | 0.024 | 0.04 | 0.049 | 0.012 ± 0.01 | |||
μg∙L−1 | ||||||||
Li | 5.1 | 1.2 | 2.5 | 2.1 | 0.97 ± 0.63 | |||
Be | 260 | 0.056 | 0.005 | 0.050 | 0.007 ± 0.004 | 0.012 ± 0.003 | ||
Sc | 7.3 | 5.0 | 0.0 | 5.0 | ||||
Ti | 7.9 | 3.3 | 3.0 | 14 | 1.2 ± 0.66 | 4.5 ± 2.8 | 3.6 ± 5.4 | |
V | 12 | 0.28 | 1.0 | 1.7 | 0.36 ± 0.25 | 0.84 ± 0.37 | 0.47 ± 0.38 | |
Cr | 43 | 1.0 | 1.0 | 2.1 | 0.37 ± 0.17 | 0.46 ± 0.13 | 0.31 ± 0.27 | |
Co | 11 | 0.44 | 0.30 | 0.57 | 0.10 ± 0.05 | 0.095 ± 0.035 | 0.23 ± 0.27 | |
Ni | 24 | 0.44 | 2.5 | 1.0 | 0.32 ± 0.15 | 0.56 ± 0.43 | 1.5 ± 0.69 | |
Cu | 11 | 0.68 | 7.0 | 1.9 | 0.47 ± 0.29 | 0.63 ± 0.44 | 0.72 ± 0.97 | |
Zn | 55 | 2.2 | 20 | 3.6 | 62 ± 47 | 108 ± 97 | 24.5 ± 60 | |
Ga | 1.2 | 0.041 | 0.10 | 0.19 | 0.023 ± 0.016 | 0.037 ± 0.023 | 0.01 ± 0.006 | |
Ge | 0.40 | 0.008 | 0.070 | 0.037 | ||||
As | 3.1 | 0.39 | 2.0 | 0.65 | 0.64 ± 0.19 | 0.63 ± 0.057 | 0.72 ± 0.24 | |
Se | 0.54 | 0.10 | 0.20 | 0.010 | 38 ± 15 | |||
Rb | 8.3 | 0.29 | 0.0 | 1.1 | 0.21 ± 0.205 | 0.388 ± 0.166 | 0.03 ± 0.13 | |
Sr | 210 | 47 | 50 | 75 | 50 [33] | 5.9 ± 4.0 | 8.9 ± 4.7 | 11 ± 7.1 |
Y | 13 | 0.14 | 0.70 | 0.83 | 0.12 ± 0.09 | |||
Zr | 1.4 | 0.055 | 2.6 | 0.24 | 0.1 ± 0.068 | 0.309 ± 0.138 | 0.11 ± 0.11 | |
Nb | 0.044 | 0.0041 | 0.001 | 0.025 | 0.014 ± 0.012 | 0.024 ± 0.012 | 0.004 ± 0.003 | |
Mo | 0.18 | 0.077 | 1.0 | 0.27 | 0.01 ± 0.009 | 0.021 ± 0.003 | 0.03 ± 0.06 | |
Ag | 0.014 | 0.002 | 0.20 | 0.0073 | ||||
Cd | 0.31 | 0.026 | 0.20 | 0.018 | 0.024 ± 0.015 | 0.017 ± 0.01 | 0.003 ± 0.003 | |
In | 0.013 | 0.004 | n.d. | 0.0010 | ||||
Sb | 0.097 | 0.030 | 1.0 | 0.15 | 0.046 ± 0.012 | 0.064 ± 0.015 | 0.017 ± 0.012 | |
Te | 0.50 | 0.50 | 3.0 | 0.50 | ||||
Cs | 0.058 | 0.007 | 0.030 | 0.042 | 0.008 ± 0.007 | 0.013 ± 0.007 | 0.001 ± 0.0006 | |
Ba | 370 | 7.1 | 30 | 16 | 15 [33] | 126 ± 81 | 139 ± 77 | 78 ± 117 |
La | 18 | 0.21 | 0.05 | 1.5 | 0.037 ± 0.031 | 0.072 ± 0.02 | 0.09 ± 0.06 | |
Ce | 39 | 0.41 | 0.08 | 3.0 | 0.09 ± 0.083 | 0.15 ± 0.052 | 0.18 ± 0.17 | |
Pr | 4.2 | 0.050 | 0.007 | 0.35 | 0.011 ± 0.01 | 0.018 ± 0.006 | 0.024 ± 0.02 | |
Nd | 16.0 | 0.19 | 0.040 | 1.3 | 0.047 ± 0.045 | 0.078 ± 0.026 | 0.101 ± 0.09 | |
Sm | 3.5 | 0.039 | n.d. | 0.24 | 0.012 ± 0.011 | 0.019 ± 0.007 | 0.024 ± 0.02 | |
Eu | 0.76 | 0.009 | 0.001 | 0.05 | 0.019 ± 0.018 | 0.014 ± 0.005 | 0.011 ± 0.01 | |
Gd | 3.8 | 0.041 | 0.008 | 0.26 | 0.013 ± 0.011 | 0.019 ± 0.007 | 0.027 ± 0.02 | |
Tb | 0.51 | 0.005 | 0.001 | 0.04 | 0.004 ± 0.003 | |||
Dy | 2.4 | 0.027 | 0.005 | 0.19 | 0.012 ± 0.009 | 0.019 ± 0.005 | 0.021 ± 0.02 | |
Ho | 0.45 | 0.005 | 0.001 | 0.028 | 0.003 ± 0.002 | 0.004 ± 0.002 | 0.004 ± 0.003 | |
Er | 1.2 | 0.011 | 0.004 | 0.068 | 0.006 ± 0.005 | 0.012 ± 0.003 | 0.012 ± 0.01 | |
Tm | 0.16 | 0.003 | 0.001 | 0.013 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 | |
Yb | 1.0 | 0.009 | n.d. | 0.056 | 0.006 ± 0.005 | 0.01 ± 0.003 | 0.01 ± 0.008 | |
Lu | 0.15 | 0.002 | 0.0010 | 0.007 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 | |
Hf | 0.060 | 0.001 | n.d. | 0.0040 | 0.007 ± 0.006 | 0.012 ± 0.003 | 0.02 ± 0.01 | |
W | 0.0 | 0.002 | 0.030 | 0.0079 | 0.083 ± 0.081 | 0.059 ± 0.046 | ||
Au | 0.0 | 0.006 | 0.0020 | 0.0050 | ||||
Tl | 0.0 | 0.0 | 1.0 | 0.0078 | ||||
Pb | 7.1 | 0.1 | 1.0 | 0.84 | 0.27 ± 0.18 | 0.18 ± 0.067 | 0.05 ± 0.06 | |
Bi | 0.009 | 0.001 | 0.030 | 0.006 | ||||
Th | 0.70 | 0.013 | 0.10 | 0.060 | 0.011 ± 0.009 | 0.023 ± 0.007 | 0.01 ± 0.01 | |
U | 0.94 | 0.027 | 0.50 | 0.17 | 0.006 ± 0.005 | 0.01 ± 0.005 | 0.01 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurkevich, N.; Kartoziia, A.; Tsibizova, E. Permafrost Degradation Impact on Water Bodies in the Siberian Tundra (Samoylov and Kurungnakh Islands, Lena Delta) Using GIS Analysis of Remote Sensing Data and a Geochemical Approach. Water 2022, 14, 2322. https://doi.org/10.3390/w14152322
Yurkevich N, Kartoziia A, Tsibizova E. Permafrost Degradation Impact on Water Bodies in the Siberian Tundra (Samoylov and Kurungnakh Islands, Lena Delta) Using GIS Analysis of Remote Sensing Data and a Geochemical Approach. Water. 2022; 14(15):2322. https://doi.org/10.3390/w14152322
Chicago/Turabian StyleYurkevich, Nataliya, Andrei Kartoziia, and Ekaterina Tsibizova. 2022. "Permafrost Degradation Impact on Water Bodies in the Siberian Tundra (Samoylov and Kurungnakh Islands, Lena Delta) Using GIS Analysis of Remote Sensing Data and a Geochemical Approach" Water 14, no. 15: 2322. https://doi.org/10.3390/w14152322
APA StyleYurkevich, N., Kartoziia, A., & Tsibizova, E. (2022). Permafrost Degradation Impact on Water Bodies in the Siberian Tundra (Samoylov and Kurungnakh Islands, Lena Delta) Using GIS Analysis of Remote Sensing Data and a Geochemical Approach. Water, 14(15), 2322. https://doi.org/10.3390/w14152322