The Impacts of Precipitation on Fluorescent Dissolved Organic Matter (FDOM) in an Urban River System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Pretreatment and Instrument Analysis
2.3. Quality Control and Quality Assurance (QC/QA)
2.4. Statistical Analysis
2.4.1. Parallel Factor Analysis (PARAFAC)
2.4.2. Principal Coordinates Analysis (PCoA)
3. Results and Discussion
3.1. Optical Properties of FDOM Components
3.2. Temporal Variations of FDOM during Dry and Wet Seasons
3.3. Spatial Distribution of FDOM
3.4. Source of Apportionment of FDOM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sisman, E.E.; Bolu, E. An ecological approach for the planning of urban river green ways. A meric (maritza/evros) river case study, Turkey. J. Environ. Prot. Ecol. 2015, 16, 372–384. [Google Scholar]
- Everard, M.; Moggridge, H.L. Rediscovering the value of urban rivers. Urban Ecosyst. 2012, 15, 293–314. [Google Scholar] [CrossRef]
- Huang, J.; Xie, R.; Yin, H.; Zhou, Q. Assessment of water quality and source apportionment in a typical urban river in China using multivariate statistical methods. Water Supply 2018, 18, 1841–1851. [Google Scholar] [CrossRef]
- Akoteyon, I.S.; Omotayo, A.O.; Soladoye, O.; Olaoye, H.O. Determination of water quality index and suitability of urban river for municipal water supply in Lagos-Nigeria. Eur. J. Sci. Res. 2011, 54, 263–271. [Google Scholar]
- Hasan, M.F.; Nur-E-Alam, M.; Salam, M.A.; Rahman, H.; Paul, S.C.; Rak, A.E.; Ambade, B.; Towfiqul Islam, A.R.M. Health Risk and Water Quality Assessment of Surface Water in an Urban River of Bangladesh. Sustainability 2021, 13, 6832. [Google Scholar] [CrossRef]
- Yue, J. Urban Rivers: A Landscape Ecological Perspective. Hydrol. Curr. Res. 2012, 3, 1000125. [Google Scholar] [CrossRef]
- Ceballos, B.; Soares, N.; Moraes, M.; Catão, R.; Konig, A. Microbiological aspects of an urban river used for unrestricted irrigation in the semi-arid region of north-east Brazil. Water Sci. Technol. 2003, 47, 51–57. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Asawa, T.; Murakami, A.; Kim, H.G.; Lee, M.K.; Lee, H.S. Influence of urban form on the cooling effect of a small urban river. Landsc. Urban Plan. 2019, 183, 26–35. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Yan, W.; Chen, C. Effects of Landscape Development Intensity on River Water Quality in Urbanized Areas. Sustainability 2019, 11, 7120. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, C.L.; Kwik, J.T.; Ow, A.M.; Lim, R.B.; Liu, S.; Tan, C.L.; Saw, A.C.; Liew, J.H.; Yeo, D.C. Rehabilitation of a tropical storm-water drain creates a novel fish assemblage. Ecol. Eng. 2021, 161, 106150. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Romanescu, G.; Stoleriu, C. An inter-basin backwater overflow (the Buhai Brook and the Ezer reservoir on the Jijia River, Romania). Hydrol. Process. 2014, 28, 3118–3131. [Google Scholar] [CrossRef]
- Zerega, A.; Simões, N.; Feio, M. How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates. Water 2021, 13, 2087. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- McFarland, A.R.; Larsen, L.; Yeshitela, K.; Engida, A.N.; Love, N.G. Guide for using green infrastructure in urban environments for stormwater management. Environ. Sci. Water Res. Technol. 2019, 5, 643–659. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Bhaskar, A.S.; Hopkins, K.G.; Fanelli, R.; Avellaneda, P.M.; McMillan, S.K. Stormwater management network effectiveness and implications for urban watershed function: A critical review. Hydrol. Process. 2017, 31, 4056–4080. [Google Scholar] [CrossRef]
- Ivanovsky, A.; Criquet, J.; Dumoulin, D.; Alary, C.; Prygiel, J.; Duponchel, L.; Billon, G. Water quality assessment of a small peri-urban river using low and high frequency monitoring. Environ. Sci. Process. Impacts 2016, 18, 624–637. [Google Scholar] [CrossRef]
- Carstea, E.; Baker, A.; Savastru, R. Comparison of river and canal water dissolved organic matter fluorescence within an urbanised catchment. Water Environ. J. 2014, 28, 11–22. [Google Scholar] [CrossRef]
- Zhong, J.; Li, S.L.; Cai, H.M.; Yue, F.J.; Tao, F.X. The Response of Carbon Geochemistry to Hydrological Events within an Urban River, Southwestern China. Geochem. Int. 2018, 56, 462–473. [Google Scholar] [CrossRef]
- Zhang, P.; Yue, F.-J.; Wang, X.-D.; Chen, S.-N.; Li, X.-Z.; Liu, T.-Z.; Yang, C. Antecedent rainfall and land use controlling the fate of nitrogen in karst urban rivers, elucidated by an isotopic approach. J. Hydrol. 2021, 592, 125803. [Google Scholar] [CrossRef]
- Dwight, R.H.; Semenza, J.C.; Baker, D.B.; Olson, B.H. Association of Urban Runoff with Coastal Water Quality in Orange County, California. Water Environ. Res. 2002, 74, 82–90. [Google Scholar] [CrossRef]
- Fan, Y.; Zheng, J.; Deng, L.; Rao, W.; Zhang, Q.; Liu, T.; Qian, X. Spatiotemporal dynamics of microplastics in an urban river network area. Water Res. 2022, 212, 118116. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Sun, F.; Sun, J.; Liu, J.; Ouyang, Z. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using delta N-15 and delta O-18 values and an isotope mixing model. Environ. Sci. Pollut. Res. 2015, 22, 20226–20233. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, K.; Tang, C.; Huang, Q.; Yu, Y.; Cui, J. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China. J. Environ. Monit. 2011, 13, 446–454. [Google Scholar] [CrossRef]
- Mei, X.; Sui, Q.; Lyu, S.; Wang, D.; Zhao, W. Pharmaceuticals and personal care products in the urban river across the megacity Shanghai: Occurrence, source apportionment and a snapshot of influence of rainfall. J. Hazard. Mater. 2018, 359, 429–436. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Yu, Y.; Chen, Y.; Du, L.; Qu, X.; Peng, W.; Zhang, M.; Gui, C. Effect of Urban Stormwater Road Runoff of Different Land Use Types on an Urban River in Shenzhen, China. Water 2019, 11, 2545. [Google Scholar] [CrossRef] [Green Version]
- Parr, T.B.; Cronan, C.S.; Ohno, T.; Findlay, S.E.G.; Smith, S.M.C.; Simon, K.S. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnol. Oceanogr. 2015, 60, 885–900. [Google Scholar] [CrossRef] [Green Version]
- Gücker, B.; Silva, R.C.; Graeber, D.; Monteiro, J.; Boëchat, I. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments. Sci. Total Environ. 2016, 550, 785–792. [Google Scholar] [CrossRef]
- Croghan, D.; Khamis, K.; Bradley, C.; Van Loon, A.F.; Sadler, J.; Hannah, D.M. Combining in-situ fluorometry and distributed rainfall data provides new insights into natural organic matter transport dynamics in an urban river. Sci. Total Environ. 2020, 755, 142731. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, X.; Cao, C.; Lin, M.; Qiu, Q.; Xu, Y.; Ren, Y. Compositional variety of dissolved organic matter and its correlation with water quality in peri-urban and urban river watersheds. Ecol. Indic. 2021, 104, 459–469. [Google Scholar] [CrossRef]
- Duan, P.; Wei, M.; Yao, L.; Li, M. Relationship between non-point source pollution and fluorescence fingerprint of riverine dissolved organic matter is season dependent. Sci. Total Environ. 2022, 823, 153617. [Google Scholar] [CrossRef]
- Lin, C.Y.; Manley, S.L. Bromoform production from seawater treated with bromoperoxidase. Limnol. Oceanogr. 2012, 57, 1857–1866. [Google Scholar] [CrossRef]
- Hur, J.; Hwang, S.-J.; Shin, J.-K. Using Synchronous Fluorescence Technique as a Water Quality Monitoring Tool for an Urban River. Water Air Soil Pollut. 2008, 191, 231–243. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Kung, H.-T.; Ghulam, A.; Trumbo, A.L.; Yang, J.; Ren, Y.; Jing, Y. Evaluation and estimation of surface water quality in an arid region based on EEM-PARAFAC and 3D fluorescence spectral index: A case study of the Ebinur Lake Watershed, China. CATENA 2017, 155, 62–74. [Google Scholar] [CrossRef]
- Carstea, E.M.; Baker, A.; Pavelescu, G.; Boomer, I. Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK. Hydrol. Process. 2009, 23, 1937–1946. [Google Scholar] [CrossRef]
- Lee, M.-H.; Lee, Y.K.; Derrien, M.; Choi, K.; Shin, K.H.; Jang, K.-S.; Hur, J. Evaluating the contributions of different organic matter sources to urban river water during a storm event via optical indices and molecular composition. Water Res. 2019, 165, 115006. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Ding, G.P.; Sun, X.N.; Liu, H.; Ye, J.F. Distribution and influencing factors of DOM components in urban and suburban polluted rivers. Environ. Sci. 2021, 42, 5264–5274. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, J.; Xu, Z.; Zou, L.; Qiao, Y.; Li, P. Impact of Urban Expansion on Rain Island Effect in Jinan City, North China. Remote Sens. 2021, 13, 2989. [Google Scholar] [CrossRef]
- Chen, S.; Liu, L.; Xu, S.; Ma, M.; Wang, D.; Wang, F.; Liu, J. Multi-scale update on precipitation characteristics at Jinan, East China. J. Water Clim. Chang. 2021, 12, 1268–1281. [Google Scholar] [CrossRef]
- Tang, F.; Chen, F.J.; Zhuge, X.Y.; Wu, F.L.; Yu, L.; Yao, B. Analysis of influence process of Typhoon In-fa (202106) based on satellite remote sensing data. Trans. Atmos. Sci. 2021, 44, 701–716. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Zhou, Y.; Zhang, L.; Yao, X.; Shi, K.; Jeppesen, E.; Yu, Q.; Zhu, W. Chromophoric dissolved organic matter in inland waters: Present knowledge and future challenges. Sci. Total Environ. 2021, 759, 143550. [Google Scholar] [CrossRef] [PubMed]
- Pucher, M.; Wünsch, U.; Weigelhofer, G.; Murphy, K.; Hein, T.; Graeber, D. staRdom: Versatile Software for Analyzing Spectroscopic Data of Dissolved Organic Matter in R. Water 2019, 11, 2366. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Wolberg, G.; Shin, S.Y. Scattered data interpolation with multilevel B-splines. IEEE Trans. Vis. Comput. Graph. 1997, 3, 228–244. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.5-7. Available online: https://CRAN.R-project.org/package=vegan (accessed on 25 June 2022).
- Han, Z.; Xiao, M.; Yue, F.; Yi, Y.; Mostofa, K. Seasonal Variations of Dissolved Organic Matter by Fluorescent Analysis in a Typical River Catchment in Northern China. Water 2021, 13, 494. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Ferretto, N.; Tedetti, M.; Guigue, C.; Mounier, S.; Raimbault, P.; Goutx, M. Spatio-temporal variability of fluorescent dissolved organic matter in the Rhône River delta and the Fos-Marseille marine area (NW Mediterranean Sea, France). Environ. Sci. Pollut. Res. 2016, 24, 4973–4989. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-A.; Kim, G. Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea. Biogeosciences 2018, 15, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Mostofa, K.M.G.; Li, W.; Wu, F.; Liu, C.-Q.; Liao, H.; Zeng, L.; Xiao, M. Environmental characteristics and changes of sediment pore water dissolved organic matter in four Chinese lakes. Environ. Sci. Pollut. Res. 2018, 25, 2783–2804. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, K.; Wen, Z.; Li, L.; Zang, S.; Shao, T.; Li, S.; Du, J. Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation–emission matrix fluorescence and parallel factor analysis (EEM–PARAFAC). Biogeosciences 2016, 13, 1635–1645. [Google Scholar] [CrossRef] [Green Version]
- Rio, M.; Salles, C.; Cernesson, F.; Marchand, P.; Tournoud, M.-G. An original urban land cover representation and its effects on rain event-based runoff and TSS modelling. J. Hydrol. 2020, 586, 124865. [Google Scholar] [CrossRef]
- Ci, M.; Zhang, G.; Yan, X.; Dong, W.; Xu, W.; Wang, W.; Fan, Y. Occurrence of antibiotics in the Xiaoqing River basin and antibiotic source contribution-a case study of Jinan city, China. Environ. Sci. Pollut. Res. 2021, 28, 25241–25254. [Google Scholar] [CrossRef] [PubMed]
- Old, G.H.; Leeks, G.J.; Packman, J.C.; Smith, B.P.; Lewis, S.; Hewitt, E.J.; Holmes, M.; Young, A. The impact of a convectional summer rainfall event on river flow and fine sediment transport in a highly urbanised catchment: Bradford, West Yorkshire. Sci. Total Environ. 2003, 314, 495–512. [Google Scholar] [CrossRef]
- Connor, N.P.; Sarraino, S.; Frantz, D.E.; Bushaw-Newton, K.; MacAvoy, S.E. Geochemical characteristics of an urban river: Influences of an anthropogenic landscape. Appl. Geochem. 2014, 47, 209–216. [Google Scholar] [CrossRef]
- Qi, H.; Qin, P.R.; Ding, G.T. Impact of Artificial recharge in Jinan City based on GMS. J. Irrig. Drain. 2018, 37, 98–105. (In Chinese) [Google Scholar] [CrossRef]
- Yu, H.J.; Huang, G.R.; Wu, C.H. Study on Urban Storm Water Modeling at Jinan City Using SWMM Model. J. Water Resour. Res. 2012, 1, 433–439. [Google Scholar] [CrossRef]
- Peters, M.; Guo, Q.; Strauss, H.; Wei, R.; Li, S.-L.; Yue, F.-J. Contamination patterns in river water from rural Beijing: A hydrochemical and multiple stable isotope study. Sci. Total Environ. 2019, 654, 226–236. [Google Scholar] [CrossRef]
FDOM Components | Statistics | Season | p-Values 1 | |
---|---|---|---|---|
Dry | Wet | |||
C1 | Range | 1.47–10.6 | 0.75–15.4 | 0.440 |
Median | 7.92 | 6.39 | ||
Mean ± SD 2 | 7.01 ± 2.74 | 6.64 ± 3.07 | ||
C2 | Range | 1.12–4.80 | 0.41–6.00 | 0.024 |
Median | 3.74 | 2.82 | ||
Mean ± SD | 3.25 ± 1.08 | 2.77 ± 1.14 | ||
C3 | Range | 3.31–9.57 | 1.10–15.5 | 1.88 × 10−5 |
Median | 7.39 | 4.44 | ||
Mean ± SD | 6.90 ± 1.78 | 4.54 ± 2.46 | ||
C4 | Range | 0–15.5 | 0–32.3 | 1.46 × 10−3 |
Median | 1.68 | 4.31 | ||
Mean ± SD | 3.31 ± 4.32 | 5.66 ± 5.81 | ||
All | Range | 6.59–35.7 | 3.42–69.3 | 0.533 |
Median | 21.6 | 19.0 | ||
Mean ± SD | 20.5 ± 5.98 | 19.6 ± 10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Gao, C.; Zhang, X. The Impacts of Precipitation on Fluorescent Dissolved Organic Matter (FDOM) in an Urban River System. Water 2022, 14, 2323. https://doi.org/10.3390/w14152323
Yang J, Gao C, Zhang X. The Impacts of Precipitation on Fluorescent Dissolved Organic Matter (FDOM) in an Urban River System. Water. 2022; 14(15):2323. https://doi.org/10.3390/w14152323
Chicago/Turabian StyleYang, Jiashuai, Chan Gao, and Xuantong Zhang. 2022. "The Impacts of Precipitation on Fluorescent Dissolved Organic Matter (FDOM) in an Urban River System" Water 14, no. 15: 2323. https://doi.org/10.3390/w14152323
APA StyleYang, J., Gao, C., & Zhang, X. (2022). The Impacts of Precipitation on Fluorescent Dissolved Organic Matter (FDOM) in an Urban River System. Water, 14(15), 2323. https://doi.org/10.3390/w14152323