Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Caia Irrigation Scheme Case Study
2.1.1. Localization and General Characteristics
2.1.2. Climate and Soil Characterization
2.1.3. Main Crops and Irrigation Systems
2.2. Data Collection and Georeference Database Building
2.2.1. Crop Characteristics Database
- Satellite imagery processing and crop data collation
- 2.
- Crop identification and spatialization
- 3.
- Locally adjusted crop growing stages
- 4.
- Crop coefficients along the growing seasons
2.2.2. Soil Characteristics Database
2.2.3. Homogenous Unit of Analysis
2.3. Soil Water Balance Calculation
2.3.1. Modeling Strategies and Field Validation
2.3.2. Irrigation Water Requirements
3. Results
3.1. NDVI Temporal Profiles and Crop Coefficient Curves
3.1.1. Permanent Crops
3.1.2. Winter Crops
3.1.3. Annual Spring Crops
3.2. Irrigation Systems
3.3. Land Suitability for Irrigation
3.4. Homogeneous Units of Analysis
3.5. Soil Water Balance Modeling Results
3.5.1. Model Validation for Soil Water Storage Predictions
3.5.2. Irrigation Water Requirements
3.5.3. Deep Percolation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Crop | Crop Stage Duration (Days) | Planting Date | Literature | |||
---|---|---|---|---|---|---|
Initial | Development | Mid | Late | |||
Garlic | 70 | 30 | 47 | 27 | 01/Dec | [6,81] |
Broccoli | 35 | 45 | 40 | 15 | 01/Nov. | [47] |
Chickpea | 20 | 30 | 35 | 15 | 15/Mar | |
Winter cereals | 30 | 140 | 40 | 20 | 15/Oct | |
Olive groves | 30 | 90 | 60 | 90 | 01/Mar | |
Orchards | 30 | 50 | 130 | 30 | 01/Apr | |
Vineyards | 20 | 50 | 75 | 60 | 01/Mar | |
Almonds | 32 | 65 | 140 | 41 | 23/Jan | [82] |
Kc act ini | Kc act mid | Kc act end | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | |
Garlic | 0.70 | - | - | - | 1.00 | - | - | - | 0.65 | - | - | |
Tomato | 0.50 | - | 0.50 | 0.50 | 1.10 | - | 1.04 | 1.05 | 0.90 | - | 0.84 | 0.85 |
Melon | 0.40 | - | - | - | 0.99 | - | - | - | 0.79 | - | - | |
Sweet peppers | 0.50 | 0.5 | 0.5 | 0.5 | 1.09 | 1.03 | 1.05 | 1.05 | 1.04 | 0.98 | 1.00 | 1.00 |
Broccoli | 0.40 | 0.4 | 0.40 | 0.40 | 1.04 | 0.94 | 0.96 | 1.00 | 1.04 | 0.94 | 1.00 | |
Sunflower | 0.35 | 0.35 | 0.35 | 0.35 | 1.19 | 1.13 | 1.15 | 1.15 | 0.34 | 0.3 | 0.3 | 0.30 |
Rapeseed | 0.35 | 0.35 | 0.35 | 0.35 | 1.03 | 1.02 | 1.05 | 1.00 | 0.28 | 0.35 | 0.3 | 0.25 |
Chickpeas | - | 0.4 | 0.40 | 0.40 | - | 0.98 | 0.99 | 1.00 | - | 0.35 | 0.34 | 0.35 |
Rice | 1.05 | 1.05 | 1.05 | 1.05 | 1.20 | 1.2 | 1.20 | 1.20 | 1.09 | 1.05 | 1.05 | 1.05 |
Maize grain | 0.30 | 0.3 | 0.30 | 0.30 | 1.20 | 1.2 | 1.19 | 1.20 | 0.36 | 0.3 | 0,39 | 0.30 |
Maize silage and sorghum | 0.30 | 0.3 | 0.30 | 0.30 | 1.20 | 1.06 | 1.14 | 1.15 | 1.01 | 0.86 | 0.94 | 0.95 |
Winter cereals | 0.30 | 0.3 | 0.30 | 0.30 | 1.09 | 1.08 | 1.11 | 1.06 | 0.34 | 0.33 | 0.36 | 0.31 |
Fodder crop multiple cuts | 0.40 | 0.4 | 0.40 | 0.40 | 0.99 | 0.89 | 0.91 | 0.95 | 0.94 | 0.84 | 0.86 | 0.90 |
Pastures | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
Almond | 0.40 | 0.4 | 0.40 | 0.40 | 0.92 | 0.82 | 0.84 | 0.85 | 0.67 | 0.57 | 0.59 | 0.60 |
Orchards | 0.45 | 0.45 | 0.45 | 0.45 | 1.06 | 0.97 | 0.99 | 1.00 | 0.76 | 0.67 | 0.69 | 0.70 |
Vineyards | 0.30 | 0.3 | 0.30 | 0.30 | 0.75 | 0.67 | 0.69 | 0.70 | 0.60 | 0.52 | 0.54 | 0.55 |
ID | Soil Type | Irrigation System | Crop | ID | Soil Type | Irrigation System | Crop |
---|---|---|---|---|---|---|---|
0 | Exc. | n.a. | n.a. | 55 | II | Drip | Chickpeas and peas |
1 | Exc. | Fallow | Fallow | 56 | II | Drip | Winter vegetables |
2 | Exc. | Drip | Almond, walnut, and pistachio | 57 | II | Drip | Summer vegetables |
3 | Exc. | Drip | Chickpeas and peas | 58 | II | Drip | Olive groves |
4 | Exc. | Drip | Winter vegetables | 59 | II | Drip | Other crops |
5 | Exc. | Drip | Summer vegetables | 60 | II | Drip | Orchards |
6 | Exc. | Drip | Olive groves | 61 | II | Drip | Tomato |
7 | Exc. | Drip | Other crops | 62 | II | Drip | Vineyards |
8 | Exc. | Drip | Pastures | 63 | II | Travelling gun | Chickpeas and peas |
9 | Exc. | Drip | Orchards | 64 | II | Center pivot | Winter cereals |
10 | Exc. | Drip | Tomato | 65 | II | Center pivot | Rapeseed |
11 | Exc. | Drip | Vineyards | 66 | II | Center pivot | Fodder crops |
12 | Exc. | Travelling gun | Chickpeas and peas | 67 | II | Center pivot | Sunflower |
13 | Exc. | Center pivot | Winter cereals | 68 | II | Center pivot | Chickpeas and peas |
14 | Exc. | Center pivot | Rapeseed | 69 | II | Center pivot | Winter vegetables |
15 | Exc. | Center pivot | Fodder crops with multiple cuts | 70 | II | Center pivot | Summer vegetables |
16 | Exc. | Center pivot | Fodder crops | 71 | II | Center pivot | Maize grain |
17 | Exc. | Center pivot | Sunflower | 72 | II | Center pivot | Maize silage and sorghum |
18 | Exc. | Center pivot | Chickpeas and peas | 73 | II | Center pivot | Pastures |
19 | Exc. | Center pivot | Winter vegetables | 74 | II | Flooded paddies | Rice |
20 | Exc. | Center pivot | Maize grain | 75 | II | Rainfed crops | Fodder crops |
21 | Exc. | Center pivot | Maize silage and sorghum | 76 | II | Rainfed crops | Maize grain |
22 | Exc. | Center pivot | Pastures | 77 | II | Rainfed crops | Olive groves |
23 | Exc. | Flooded paddies | Rice | 78 | III | n.a. | n.a. |
24 | Exc. | Rainfed crops | Fodder crops | 79 | III | Fallow | Fallow |
25 | Exc. | Rainfed crops | Almond, walnut, and pistachio | 80 | III | Drip | Almond, walnut, and pistachio |
26 | Exc. | Rainfed crops | Maize grain | 81 | III | Drip | Chickpeas and peas |
27 | Exc. | Rainfed crops | Olive groves | 82 | III | Drip | Winter vegetables |
28 | Exc. | Rainfed crops | Other crops | 83 | III | Drip | Summer vegetables |
29 | Exc. | Rainfed crops | Vineyards | 84 | III | Drip | Maize grain |
30 | I | n.a. | n.a. | 85 | III | Drip | Olive groves |
31 | I | Fallow | Fallow | 86 | III | Drip | Other crops |
32 | I | Drip | Almond, walnut, and pistachio | 87 | III | Center pivot | Pastures |
33 | I | Drip | Chickpeas and peas | 88 | III | Drip | Orchards |
34 | I | Drip | Summer vegetables | 89 | III | Drip | Tomato |
35 | I | Drip | Olive groves | 90 | III | Drip | Vineyards |
36 | I | Drip | Other crops | 91 | III | Travelling gun | Chickpeas and peas |
37 | I | Drip | Orchards | 92 | III | Center pivot | Winter cereals |
38 | I | Drip | Tomato | 93 | III | Center pivot | Rapeseed |
39 | I | Drip | Vineyards | 94 | III | Center pivot | Fodder crops with multiple cuts |
40 | I | Travelling gun | Chickpeas and peas | 95 | III | Center pivot | Fodder crops |
41 | I | Center pivot | Winter cereals | 96 | III | Center pivot | Sunflower |
42 | I | Center pivot | Fodder crops with multiple cuts | 97 | III | Center pivot | Chickpeas and peas |
43 | I | Center pivot | Fodder crops | 98 | III | Center pivot | Winter vegetables |
44 | I | Center pivot | Sunflower | 99 | III | Center pivot | Maize grain |
45 | I | Center pivot | Summer vegetables | 100 | III | Center pivot | Maize silage and sorghum |
46 | I | Center pivot | Maize grain | 101 | III | Center pivot | Pastures |
47 | I | Center pivot | Maize silage and sorghum | 102 | III | Flooded paddies | Rice |
48 | I | Center pivot | Pastures | 103 | III | Rainfed crops | Fodder crops |
49 | I | Flooded paddies | Rice | 104 | III | Rainfed crops | Almond, walnut, and pistachio |
50 | I | Rainfed crops | Fodder crops | 105 | III | Rainfed crops | Maize grain |
51 | I | Rainfed crops | Olive groves | 106 | III | Rainfed crops | Olive groves |
52 | II | n.a. | n.a. | 107 | III | Rainfed crops | Other crops |
53 | II | Fallow | Fallow | 108 | III | Rainfed crops | Vineyards |
54 | II | Drip | Almond, walnut, and pistachio |
References
- Arauzo, M.; Martínez-Bastida, J.J. Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: Groundwater vulnerability vs. groundwater pollution. Environ. Earth Sci. 2015, 73, 8271–8286. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.P.L.; Chachadi, A.G.; Diamantino, C.; Henriques, M.J. Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1-Application to the Portuguese Aquifer of Monte Gordo. In Water in Celtic Countries: Quantity, Quality and Climate Variability, Proceedings of the Fourth Inter Colloquium on Hydrology and Management of Water Resources, Guimares, Portugal, 11–13 July 2005; Lobo Ferreira, J.P., Viera, J.M.P., Eds.; IAHS Press: Wallingford, UK, 2007; pp. 161–171. ISBN 978-1-901502-88-6. [Google Scholar]
- Stigter, T.Y.; Nunes, J.P.; Pisani, B.; Fakir, Y.; Hugman, R.; Li, Y.; Tomé, S.; Ribeiro, L.; Samper, J.; Oliveira, R.; et al. Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg. Environ. Chang. 2014, 14, 41–56. [Google Scholar] [CrossRef]
- Carneiro, J.; Coutinho, J.; Trindade, H. Nitrate leaching from a maize×oats double-cropping forage system fertilized with organic residues under Mediterranean conditions. Agric. Ecosyst. Environ. 2012, 160, 29–39. [Google Scholar] [CrossRef]
- Poch-Massegú, R.; Jiménez-Martínez, J.; Wallis, K.; de Cartagena, F.R.; Candela, L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manag. 2014, 134, 1–13. [Google Scholar] [CrossRef]
- Almeida, C.; Mendonça, J.J.L.; Jesus, M.R.; Gomes, A.J. Sistemas Aquíferos de Portugal Continental; Centro de Geologia & Instituto da Água: Lisboa, Portugal, 2000; Volume 3, pp. 432–661. [Google Scholar]
- Pereira, L.S.; Paredes, P.; López-Urrea, R.; Hunsaker, D.J.; Mota, M.; Shad, Z.M. Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agric. Water Manag. 2020, 243, 106196. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Shad, Z.M. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhan, Q. A Review of Remote Sensing Applications in Urban Planning and Management in China; Joint Urban Remote Sensing Event: Shanghai, China, 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficients: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Diao, C. Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sens. Environ. 2020, 248, 111960. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Navarro, A.; Rolim, J.; Miguel, I.; Catalão, J.; Silva, J.; Painho, M.; Vekerdy, Z. Crop monitoring based on SPOT-5 Take-5 and sentinel-1A data for the estimation of crop water requirements. Remote Sens. 2016, 8, 525. [Google Scholar] [CrossRef] [Green Version]
- Rolim, J.; Navarro, A.; Vilar, P.; Saraiva, C.; Catalao, J. Crop data retrieval using earth observation data to support agricultural water management. Eng. Agric. 2019, 39, 381–390. [Google Scholar] [CrossRef]
- Ballesteros, R.; Moreno, M.A.; Barroso, F.; González-Gómez, L.; Ortega, J.F. Assessment of Maize Growth and Development with High-and Medium-Resolution Remote Sensing Products. Agronomy 2021, 11, 940. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- European Space Agency Observing the Earth. Available online: http://www.esa.int/Applications/Observing_the_Earth/ESA_for_Earth (accessed on 29 May 2021).
- Plataforma Google Earth Engine. Available online: https://code.earthengine.google.com/ (accessed on 15 July 2021).
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 11, 358–371. [Google Scholar] [CrossRef]
- Belmonte, A.C.; Jochum, A.M.; García, A.C.; Rodríguez, A.M.; Fuster, P.L. Irrigation management from space: Towards user-friendly products. Irrig. Drain. Syst. 2005, 19, 337–353. [Google Scholar] [CrossRef]
- D’Urso, G.; Belmonte, A.C. Operative approaches to determine crop water requirements from earth observation data: Methodologies and applications. AIP Conf. Proc. 2006, 852, 14–25. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Rouse, W.; Haas, R.; Scheel, J.; Deering, W. Monitoring Vegetation Systems in Great Plains with ERST, Proceedings of the Third ERTS Symposium, NASA SP-351; US Government Printing Office: Washington, DC, USA, 1973; pp. 309–317.
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- González-Piqueras, J. Evapotranspiration de la Cubierta Vegetal mediante la Determinación del Coeficiente de Cultivo por Teledetección. Extensión a Escala Regional: Aquífero 08.29 Mancha Oriental. Ph.D. Thesis, Universitat de Valencia, Valencia, Spain, 2006. Available online: http://hdl.handle.net/10803/10340 (accessed on 29 May 2021).
- D’Urso, G.; Richter, K.; Calera, A.; Osann, M.A.; Escadafal, R.; Garatuza-Pajan, J.; Vuolo, F. Earth Observation products for operational irrigation management in the context of the PLEIADeS project. Agric. Water Manag. 2010, 98, 271–282. [Google Scholar] [CrossRef]
- Toureiro, C.; Serralheiro, R.; Shahidian, S.; Sousa, A. Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition. Agric. Water Manag. 2017, 184, 211–220. [Google Scholar] [CrossRef]
- Consoli, S.; Vanella, D. Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model. Agric. Water Manag. 2014, 143, 71–81. [Google Scholar] [CrossRef]
- Odi-Lara, M.; Campos, I.; Neale, C.M.U.; Ortega-Farías, S.; Poblete-Echeverría, C.; Balbontín, C.; Calera, A. Estimating evapotranspiration of an apple orchard using a remote sensing-based soil water balance. Remote Sens. 2016, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Awada, H.; Di Prima, S.; Sirca, C.; Giadrossich, F.; Marras, S.; Spano, D.; Pirastru, M. A remote sensing and mod-eling integrated approach for constructing continuous time series of daily actual evapotranspiration. Agric. Water Manag. 2022, 260, 107320. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Mhawej, M.; Faour, G. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environ. Model. Softw. 2020, 133, 104845. [Google Scholar] [CrossRef]
- Kilic, A.; Allen, R.G.; Blankenau, P.; Revelle, P.; Ozturk, D.; Huntington, J. Global production and free access to Landsat-scale Evapotranspiration with EEFlux and eeMETRIC. In Proceedings of the 6th Decennial National Irrigation Symposium, American Society of Agricultural and Biological Engineers, San Diego, CA, USA, 6–8 December 2021; pp. 2020–2038. [Google Scholar] [CrossRef]
- Wu, F.; Wu, B.; Zhu, W.; Yan, N.; Ma, Z.; Wang, L.; Lu, Y.; Xu, J. ETWatch Cloud: APIs for regional actual evapotranspiration data. Environ. Model. Softw. 2021, 145, 105174. [Google Scholar] [CrossRef]
- He, M.; Kimball, J.S.; Maneta, M.P.; Maxwell, B.D.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens. 2018, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Kumar, V.; Bhattacharya, A.; Rao, Y.S.; Siqueira, P.; Bera, S. Sen4Rice: A processing chain for differentiating early and late transplanted rice using time-series sentinel-1 SAR data with google earth engine. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1947–1951. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, R.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.; de By, R.A. A cloud-based multi-temporal ensemble classifier to map smallholder farming systems. Remote Sens. 2018, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M.; Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venancio, L.P.; Eugenio, F.C.; Filgueiras, R.; Da Cunha, F.F.; Dos Santos, R.A.; Ribeiro, W.R.; Mantovani, E.C. Mapping within-field variability of soybean evapotranspiration and crop coefficient using the Earth Engine Evaporation Flux (EEFlux) application. PLoS ONE 2020, 15, e0235620. [Google Scholar] [CrossRef] [PubMed]
- Melton, F.S.; Huntington, J.L.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.G.; Anderson, M.; Fisher, J.B.; et al. 2021: OpenET: Filling a critical data gap in water management for the western United States. J. Am. Water Resour. Assoc. 2021, 1–24. [Google Scholar] [CrossRef]
- Todorovic, M.; Steduto, P. A GIS for irrigation management. Phys. Chem. Earth Parts A/B/C 2003, 28, 163–174. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrig. Drain. 1998, 56, 300. [Google Scholar]
- FAO. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Reference Base for Soil Resources; FAO: Roma, Italy, 2014. [Google Scholar]
- Associação Beneficiários do Caia. Report 2013. Available online: http://www.abcaia.pt/index.php/associacao/relatorio-abcaia/relatorio-2013 (accessed on 16 April 2021).
- Teixeira, J.L.; Pereira, L.S. ISAREG, an irrigation scheduling model. ICID Bull. 1992, 41, 29–48. [Google Scholar]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Pereira, L.S. Necessidades de Água e Métodos de Rega; Publicaçöes Europa-América: Lisboa, Portugal, 2004; p. 313. ISBN 5601072370609. [Google Scholar]
- Keller, J.; Bliesner, R.D. Sprinkle and Trickle Irrigation; The Blackburn Press: Caldwell, NJ, USA, 2000; ISBN 1-930665-19-9. [Google Scholar]
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Research Service, United States Government Printing: Washington, DC, USA, 1997; 384p.
- Cholpankulov, E.D.; Inchenkova, O.P.; Paredes, P.; Pereira, L.S. Cotton irrigation scheduling in central Asia: Model calibration and validation with consideration of groundwater contribution. Irrig. Drain. 2008, 57, 516–532. [Google Scholar] [CrossRef] [Green Version]
- Stulina, G.; Cameira, M.R.; Pereira, L.S. Using RZWQM to search improved practices for irrigated maize in Fergana, Uzbekistan. Agric. Water Manag. 2005, 77, 263–281. [Google Scholar] [CrossRef]
- Popova, Z.; Pereira, L.S. Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria. Agric. Water Manag. 2011, 98, 675–683. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Pereira, L.S. Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise. Agric. Water Manag. 2015, 152, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Sousa, V.; Pereira, L.S. Regional analysis of irrigation water requirements using kriging: Application to potato crop (Solanum tuberosum L.) at Trás-os-Montes. Agric. Water Manag. 1999, 40, 221–233. [Google Scholar] [CrossRef]
- Chaterlán, Y.; León, M.; Duarte, C.; López, T.; Paredes, P.; Pereira, L.S. Determination of crop coefficients for horticultural crops in Cuba through field experiments and water balance simulation. Acta Hortic. 2011, 889, 475–482. [Google Scholar] [CrossRef]
- Cancela, J.J.; Cuesta, T.S.; Neira, X.X.; Pereira, L.S. Modelling for improved irrigation water management in a temperate region of Northern Spain. Biosyst. Eng. 2008, 99, 587–597. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Wang, H.; Wang, T.; Pereira, L.S. Ecohydrology of groundwater-dependent grasslands of the semi-arid Horqin sandy land of Inner Mongolia focusing on evapotranspiration partition. Ecohydrology 2016, 9, 1052–1067. [Google Scholar] [CrossRef]
- Alba, I.; Rodrigues, P.N.; Pereira, L.S. Irrigation scheduling simulation for citrus in Sicily to cope with water scarcity. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shatanawi, M., Zairi, A., Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 223–242. [Google Scholar] [CrossRef]
- Chaterlán, Y.; Hernández, G.; López, T.; Martínez, R.; Puig, O.; Paredes, P.; Pereira, L.S. Estimation of the papaya crop coefficients for improving irrigation water management in south of Havana. Acta Hortic. 2012, 928, 179–186. [Google Scholar] [CrossRef]
- Valverde, P.; Serralheiro, R.; de Carvalho, M.; Maia, R.I.; Oliveira, B.; Ramos, V. Climate change impacts on irrigated agriculture in the Guadiana River basin (Portugal). Agric. Water Manag. 2015, 152, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Branquinho, S.; Rolim, J.; Teixeira, J.L. Climate Change Adaptation Measures in the Irrigation of a Super-Intensive Olive Orchard in the South of Portugal. Agronomy 2021, 11, 1658. [Google Scholar] [CrossRef]
- Zaccaria, D.; Oueslati, I.; Neale, C.M.U.; Lamaddalena, N.; Vurro, M.; Pereira, L.S. Flexible delivery schedules to improve farm irrigation and reduce pressure on groundwater: A case study in southern Italy. Irrig. Sci. 2009, 28, 257–270. [Google Scholar] [CrossRef]
- Victoria, F.B.; Viegas Filho, J.S.; Pereira, L.S.; Teixeira, J.L.; Lanna, A.E. Multi-scale modeling for water resources planning and management in rural basins. Agric. Water Manag. 2005, 77, 4–20. [Google Scholar] [CrossRef]
- Eisenhauer, J.G. Regression through the origin. Teach. Stat. 2003, 25, 76–80. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1 A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Raposo, J.R. A Rega-Dos Primitivos Regadios às Modernas Técnicas de Rega; Fundação Calouste Gulbekian: Lisbon, Portugal, 1996. [Google Scholar]
- Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Vilar, P.; Navarro, A.; Rolim, J. Utilização de Imagens de Deteção Remota para Monitorização das Culturas e Estimação das Necessidades de Rega. In Proceedings of the VIII Conferência Nacional de Cartografia e Geodesia, Amadora, Portugal, 29–30 November 2015; pp. 1–8. [Google Scholar]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Allen, R.G.; Pereira, L.S. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic re-turns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Zairi, A.; El Amami, H.; Slatni, A.; Pereira, L.S.; Rodrigues, P.N.; Machado, T. Coping with drought: Deficit irrigation strategies for cereals and field vegetable crops in Central Tunisia. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shat-anawi, M., Zairi, A., Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 181–201. [Google Scholar]
- Abazi, U.; Lorite, I.J.; Cárceles, B.; Raya, A.M.; Durán, V.H.; Francia, J.R.; Gómez, J.A. WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop management strategies. Comp. Electron. Agric. 2013, 91, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Fernández, S.C.; Gallardo, J.R.; Mayorga, A.A.V. Fundamentos de Teledetección Espacial; Ediciones Rialp: Ciudad Real, Spain, 1996. [Google Scholar]
- Villalobos, F.J.; Testi, L.; Rizzalli, R.; Orgaz, F. Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate. Agric. Water Manag. 2004, 64, 233–249. [Google Scholar] [CrossRef]
- Moita, R.A.D. Avaliação das Necessidades de rega de um Amendoal na Área de Influência do Alqueva. Master’s Thesis, Instituto Superior de Agronomia, Lisbon, Portugal, 2021. [Google Scholar]
Data Set | Observations | Source |
---|---|---|
Soils | Soil water holding capacity and textural characteristics; land use capacity Map 1:25,000 | Portuguese Soil Map (CSP) and Land Use Capacity (DGADR—Ministry of Agriculture) |
Weather | Daily weather data (2002–2020): maximum and minimum temperatures (°C), maximum and minimum relative humidity (%), solar radiation (kJ·m−2·dia−1), wind speed (m·s−1), and precipitation (mm) | Meteorological station of Elvas (38°54′56″ N, 7°05′56″ W, 202 m a.s.l) (COTR) |
Topography | Military Map of Portugal (1:25,000) | Instituto Geográfico do Exército |
Hydrography and altimetry | DTM (Digital Terrain Model) for the slope Contour lines, elevation points, and water flow lines | Instituto Geográfico do Exército |
Administrative limits | Caia Irrigation Scheme limits | Official Administrative Map of Portugal and Irrigation Scheme Maps of Portugal—Ministry of Environment |
Nitrate Vulnerable Zone limits | Nitrates Vulnerable Zones limits Map (1:25,000) | Ministry of Agriculture |
Crops | Cropping patterns, crop phenological stages | Sentinel-2 images (Level-2A), Google Earth Satellite Images (QMS) |
Crop coefficients | [7,8,51] | |
Land cover classes | Land use map (COS) Land cover classes, Corine Land Cover (CLC) 2018 (spatial resolution 20 m) Crop plots map | Ministry of Environment Copernicus Program (EEA, JRC)Caia Water Users Association |
Farm/plot data | Farm/plot identification (WMS/WFS format) | Ministry of Agriculture |
Groundwater | Water table depth | Water Resources National Information System—Ministry of Environment |
Irrigation | Crop systems, irrigation calendars, irrigation systems, and soil moisture data | Caia Water Users Association |
Irrigation systems | Irrigation systems efficiency | [52] |
Field | Crop | Area (ha) | Irrigation System | Soil Texture | Type of Field Data | Years with Data | Data Provider | |
A | Maize FAO600 | 58.8 | Pivot | Loamy sand | Irrigation amounts and frequency Soil moisture | 2018, 2019, 2020 | APAP | |
B | Maize FAO200 | 37.4 | Pivot | Loam | Irrigation amounts and frequency | 2017 | ABCaia | |
C | Olive grove_1 | 26.8 | Drip | Clay loam | Irrigation amounts and frequency Soil moisture | 2018, 2019, 2020 | APAP | |
D | Olive grove_2 | 396.3 | Drip | Clay loam | Irrigation amounts and frequency | 2017 | ABCaia | |
E | Processing tomato_1 | 20.2 | Drip | Silty loam | Irrigation amounts and frequency Soil moisture | 2019, 2020 | APAP | |
F | Processing tomato_2 | 28.7 | Drip | Loam | Irrigation amounts and frequency | 2017 | ABCaia |
Crop | Lengths of Crop Growth Stages (Days) | Seeding/Planting Date | Obs. | |||
---|---|---|---|---|---|---|
Initial | Development | Mid | Late | |||
Paddy rice | 30 | 27 | 50 | 13 | 25/Apr. | |
Tomato | 30 | 37 | 50 | 13 | 25/Apr. | |
Melon | 35 | 27 | 33 | 27 | 30/Apr. | |
Bell pepper | 30 | 60 | 30 | 13 | 02/May | |
Rapeseed | 30 | 30 | 40 | 25 | 02/Apr. | |
Sunflower | 25 | 32 | 40 | 30 | 20/May | |
Grain maize | 20 | 27 | 53 | 37 | 25/Apr. | |
Silage maize | 22 | 30 | 35 | 12 | 13/May | |
Fodder crop multi-cuts | 30 | 117 | 20 | --- | 16/Nov. | 1st cut |
6 | 31 | 20 | --- | 2nd cut | ||
3 | 16 | 13 | --- | 3rd cut |
Land Suitability for Irrigation | θFC (g·g−1) | θWP (g·g−1) | Z (cm) | Bd (g·cm−3) |
---|---|---|---|---|
I | 34.72 | 17.02 | 120 | 1.22 |
II | 30.84 | 13.46 | 80 | 1.23 |
III | 29.12 | 12.52 | 65 | 1.25 |
exc | 30.83 | 14.18 | 50 | 1.25 |
Crop | Year | Observations | b0 | R2 | PBIAS (%) | RMSE (mm) | NRMSE (%) | EF |
---|---|---|---|---|---|---|---|---|
Maize | 2018 | 57 | 1.00 | 0.77 | −0.1 | 3.1 | 2.5 | 0.76 |
2019 | 71 | 1.00 | 0.82 | 0.6 | 6.8 | 5.9 | 0.80 | |
2020 | 78 | 1.01 | 0.84 | 1.2 | 5.8 | 5.0 | 0.83 | |
Olive grove | 2018 | 328 | 1.03 | 0.85 | 4.0 | 18.6 | 7.3 | 0.80 |
2019 | 364 | 1.01 | 0.93 | 1.1 | 13.6 | 5.6 | 0.92 | |
2020 | 348 | 1.00 | 0.80 | −0.2 | 17.5 | 6.2 | 0.77 | |
Tomato for | 2019 | 121 | 0.99 | 0.90 | −1.2 | 5.5 | 3.4 | 0.88 |
processing | 2020 | 99 | 0.99 | 0.87 | −0.7 | 6.1 | 3.9 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.; Rolim, J.; Paredes, P.; Cameira, M.d.R. Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine. Water 2022, 14, 2324. https://doi.org/10.3390/w14152324
Ferreira A, Rolim J, Paredes P, Cameira MdR. Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine. Water. 2022; 14(15):2324. https://doi.org/10.3390/w14152324
Chicago/Turabian StyleFerreira, Antónia, João Rolim, Paula Paredes, and Maria do Rosário Cameira. 2022. "Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine" Water 14, no. 15: 2324. https://doi.org/10.3390/w14152324
APA StyleFerreira, A., Rolim, J., Paredes, P., & Cameira, M. d. R. (2022). Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine. Water, 14(15), 2324. https://doi.org/10.3390/w14152324