Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications
Abstract
:1. Introduction
2. Characteristics of the Hydrothermal Carbonization (HTC) Process
2.1. Effect of Solid Raw Material Content
2.2. Effect of the Temperature
2.3. Effect of the Pressure
2.4. Effect of Water as a Catalyst
2.5. Effect of the Reaction Time
2.6. Effect of the pH
2.7. Effect of the Raw Material–Water Ratio
3. Utilization of HCs for the Decontamination of Wastewaters
3.1. HCs for Organic Contaminants Retention from Wastewaters
3.1.1. Dyes
3.1.2. Emerging Pollutants
3.2. HCs for the Retention of Inorganic Contaminants from Wastewater
4. Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eftekhari, A.; Jafarkhani, P.; Moztarzadeh, F. High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition. Carbon 2006, 44, 1343–1345. [Google Scholar] [CrossRef]
- Gherghel, L.; Kubel, C.; Lieser, G.; Rader, H.J.; Mullen, K. Pyrolysis in the mesophase: A chemist’s approach toward preparing carbon nano- and microparticles. J. Am. Chem. Soc. 2002, 124, 13130–13138. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614 Final; European Environment Agency: Brussels, Belgium, 2015.
- Fund, C.; El-Chichakli, B.; Patermann, C. Bioeconomy Policy (Part III): Update Report of National Strategies Around the World; European Environment Agency: Brussels, Belgium, 2018.
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- Chua, H.S.; Bashir, M.J.K.; Tan, K.T. A Sustainable Pyrolysis Technology for the Treatment of Municipal Solid Waste in Malaysia. In Proceedings of the 6th International Conference on Environment (ICENV)-Empowering Environment and Sustainable Engineering Nexus Through Green Technology, Penang, Malaysia, 11–13 December 2018. [Google Scholar]
- Ciceri, G.; Lattore, M.H.; Mediboyina, K.M.; Murphy, F. Hydorthermal Carbonization (HTC): Valorisation of Organic Waste and Sludges for Hydrochar Production and Biofertilizers; IEA Bioenergy: Florence, Italy, 2021; Available online: https://www.ieabioenergy.com/blog/publications/hydrothermal-carbonization-htc-valorisation-of-organic-wastes-and-sludges-for-hydrochar-production-and-biofertilizers/ (accessed on 28 May 2022).
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to bioenergy: A review on the recent conversion technologies. BMC Energy 2019, 1, 4. [Google Scholar] [CrossRef]
- Nicolae, S.A.; Au, H.; Modugno, P.; Luo, H.; Szego, A.E.; Qiao, M.; Li, L.; Yin, W.; Heeres, H.J.; Berge, N.; et al. Recent advances in hydrothermal carbonisation: From tailored carbon materials and biochemicals to applications and bioenergy. Green Chem. 2020, 22, 4747–4800. [Google Scholar] [CrossRef]
- Rene, E.R.; La, D.D.; Nguyen, D.D. Editorial: Emerging Technologies for Waste Biomass to Energy: Innovations and Research Challenges. Front. Energy Res. 2021, 9, 541. [Google Scholar] [CrossRef]
- Acheampong, M.A.; Ansa, E.D.O.; Woode, M.Y.; Awuah, E. Biosorption of Pb(II) onto Cocos Nucifera Shell and Moringa Oleifera Seeds. Chem. Eng. Commun. 2015, 202, 946–953. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.P.; Lobos, M.L.N.; Piloni, R.V.; Dusso, D.; Quijon, M.E.G.; Scopel, A.L.; Moyano, E.L. Pyrolytic biochars from sunflower seed shells, peanut shells and Spirulina algae: Their potential as soil amendment and natural growth regulators. SN Appl. Sci. 2020, 2, 15. [Google Scholar] [CrossRef]
- Gumus, R. Kinetic Studies of Methylene Blue Adsorption on to Activated Carbon Prepared from Plantain Pod (Musa paradisiac). Br. J. Appl. Sci. Technol. 2016, 15, 1–14. [Google Scholar] [CrossRef]
- Nabila, S.A.; Laghdach, A.; Manuel, E.; Cuerda-Correa, E.M.; Stitou, M.; El Yousfi, F.; Jbari, N. Preparation of bone chars by calcination in traditional furnace. J. Mater. Environ. Sci. 2014, 5, 476–483. [Google Scholar]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. Biofpr 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Mohammed, A.S.; Sander, G.; Wheatley, A.D.; Nyktari, E.; Usen, I.C. Production and characterisation of adsorbents synthesised by hydrothermal carbonisation of biomass wastes. SN Appl. Sci. 2021, 3, 19. [Google Scholar] [CrossRef]
- Roman, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesma, B.; Alvarez, A.; Bae, S. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies 2018, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Arellano, O.; Flores, M.; Guerra, J.; Hidalgo, A.; Rojas, D.; Strubinger, A. Hydrothermal Carbonization of Corncob and Characterization of the Obtained Hydrochar. Chem. Eng. Trans. 2016, 50, 235–240. [Google Scholar] [CrossRef]
- Gupta, D.; Mahajani, S.M.; Garg, A. Hydrothermal carbonization of household wet waste-characterization of hydrochar and process wastewater stream. Bioresour. Technol. 2021, 342, 125972. [Google Scholar] [CrossRef]
- Wu, L.; Wei, W.; Wang, D.B.; Ni, B.J. Improving nutrients removal and energy recovery from wastes using hydrochar. Sci. Total Environ. 2021, 783, 146980. [Google Scholar] [CrossRef]
- Reza, M.T.; Freitas, A.; Yang, X.K.; Coronella, C.J. Wet Air Oxidation of Hydrothermal Carbonization (HTC) Process Liquid. ACS Sustain. Chem. Eng. 2016, 4, 3250–3254. [Google Scholar] [CrossRef]
- Langone, M.; Basso, D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. Int. J. Environ. Res. Public Health 2020, 17, 6618. [Google Scholar] [CrossRef]
- Song, E.; Park, S.; Kim, H. Upgrading Hydrothermal Carbonization (HTC) Hydrochar from Sewage Sludge. Energies 2019, 12, 2383. [Google Scholar] [CrossRef] [Green Version]
- Belete, Y.Z.; Leu, S.; Boussiba, S.; Zorin, B.; Posten, C.; Thomsen, L.; Wang, S.; Gross, A.; Bernstein, R. Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Bioresour. Technol. 2019, 290, 121758. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, Z.; Cao, Y.; Fan, J.J.; Clark, J.H.; Luo, G.; Zhang, S.C. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion. J. Hazard. Mater. 2021, 403, 123649. [Google Scholar] [CrossRef] [PubMed]
- Canbaz, E.; Aydin, M.; Demir-Cakan, R. Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turk. J. Chem. 2022, 46, 356–366. [Google Scholar] [CrossRef]
- Lima, H.H.C.; Maniezzo, R.S.; Kupfer, V.L.; Guilherme, M.R.; Moises, M.P.; Arroyo, P.A.; Rinaldi, A.W. Hydrochars based on cigarette butts as a recycled material for the adsorption of pollutants. J. Environ. Chem. Eng. 2018, 6, 7054–7061. [Google Scholar] [CrossRef]
- Payal, R.; Jain, A. Waste fruit cortexes for the removal of heavy metals from wastewater. In Inorganic Pollutants in Wastewater: Methods of Analysis, Removal and Treatment; Inamuddin, M.A., Asiri, A.M., Eds.; Materials Research Foundations; Materials Research Forum Llc: Millersville, PA, USA, 2017; Volume 16, pp. 275–293. [Google Scholar]
- Sivaprasad, S.; Manandhar, A.; Shah, A. Hydrothermal Carbonization: Upgrading Waste Biomass to Char. 2021. Available online: https://ohioline.osu.edu/factsheet/fabe-6622 (accessed on 10 June 2022).
- Antal, M.J.; Gronli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Atallah, E.; Kwapinski, W.; Ahmad, M.N.; Leahy, J.J.; Al-Muhtaseb, A.H.; Zeaiter, J. Hydrothermal carbonization of olive mill wastewater: Liquid phase product analysis. J. Environ. Chem. Eng. 2019, 7, 8. [Google Scholar] [CrossRef]
- Volpe, M.; Fiori, L. From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties. J. Anal. Appl. Pyrolysis 2017, 124, 63–72. [Google Scholar] [CrossRef]
- Ghanim, B.M.; Pandey, D.S.; Kwapinski, W.; Leahy, J.J. Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresour. Technol. 2016, 216, 373–380. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Kwon, E.E.; Aminabhavi, T.M.; Dewil, R. Biochar in water and wastewater treatment-a sustainability assessment. Chem. Eng. J. 2021, 420, 21. [Google Scholar] [CrossRef]
- Ghaziaskar, A.; McRae, G.A.; Mackintosh, A.; Basu, O.D. Catalyzed Hydrothermal Carbonization with Process Liquid Recycling. Energy Fuels 2019, 33, 1167–1174. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Froling, M.; Antal, M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Berge, N.D.; Ro, K.S.; Mao, J.D.; Flora, J.R.V.; Chappell, M.A.; Bae, S.Y. Hydrothermal Carbonization of Municipal Waste Streams. Environ. Sci. Technol. 2011, 45, 5696–5703. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresour. Technol. 2011, 102, 7595–7598. [Google Scholar] [CrossRef]
- Titirici, M.M.; Thomas, A.; Antonietti, M. Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New, J. Chem. 2007, 31, 787–789. [Google Scholar] [CrossRef]
- Garrote, G.; Dominguez, H.; Parajo, J.C. Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff 1999, 57, 191–202. [Google Scholar] [CrossRef]
- Titirici, M.M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Falco, C.; Baccile, N.; Titirici, M.M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 2011, 13, 3273–3281. [Google Scholar] [CrossRef] [Green Version]
- Niinipuu, M.; Latham, K.G.; Boily, J.F.; Bergknut, M.; Jansson, S. The impact of hydrothermal carbonization on the surface functionalities of wet waste materials for water treatment applications. Environ. Sci. Pollut. Res. 2020, 27, 24369–24379. [Google Scholar] [CrossRef]
- Lei, Y.Q.; Su, H.Q.; Tian, R.K. Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk. Rsc Adv. 2016, 6, 107829–107835. [Google Scholar] [CrossRef]
- Davies, G.; McGregor, J. Hydrothermal Synthesis of Biomass-Derived Magnetic Carbon Composites for Adsorption and Catalysis. Acs Omega 2021, 6, 33000–33009. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, T.; Memon, N.; Memon, S.Q.; Yavuz, H.; Lachgar, A.; Denizli, A. Evaluation of hydrochar efficiency for simultaneous removal of diclofenac and ibuprofen from aqueous system using surface response methodology. Environ. Sci. Pollut. Res. 2019, 26, 9796–9804. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hastings, J.T.; Acharjee, T.C.; Coronella, C.J.; Vasquez, V.R. Mass and Energy Balances of Wet Torrefaction of Lignocellulosic Biomass. Energy Fuels 2010, 24, 4738–4742. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakite, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C. Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Energy Fuels 2011, 25, 1802–1810. [Google Scholar] [CrossRef]
- Heilmann, S.M.; Jader, L.R.; Sadowsky, M.J.; Schendel, F.J.; von Keitz, M.G.; Valentas, K.J. Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 2011, 35, 2526–2533. [Google Scholar] [CrossRef]
- Goto, M.; Obuchi, R.; Hiroshi, T.; Sakaki, T.; Shibata, M. Hydrothermal conversion of municipal organic waste into resources. Bioresour. Technol. 2004, 93, 279–284. [Google Scholar] [CrossRef]
- Hashaikeh, R.; Fang, Z.; Butler, I.S.; Hawari, J.; Kozinski, J.A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 2007, 86, 1614–1622. [Google Scholar] [CrossRef]
- Karayildirim, T.; Sinag, A.; Kruse, A. Char and Coke Formation as Unwanted Side Reaction of the Hydrothermal Biomass Gasification. Chem. Eng. Technol. 2008, 31, 1561–1568. [Google Scholar] [CrossRef]
- Borrero-Lopez, A.M.; Masson, E.; Celzard, A.; Fierro, V. Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment. Ind. Crops Prod. 2018, 124, 919–930. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Krishnan, B.; Sagadevan, S.; Rafique, R.F.; Hamizi, N.A.B.; Wahab, Y.A.; Khan, A.A.; Bin Johan, R.; Al-douri, Y.; Kazi, S.N.; et al. Effect of Temperature on the Physical, Electro-Chemical and Adsorption Properties of Carbon Micro-Spheres Using Hydrothermal Carbonization Process. Nanomaterials 2018, 8, 597. [Google Scholar] [CrossRef]
- Budiman, I.; Hermawan, D.; Febrianto, F.; Pari, G.; Subyakto. Char properties and pollutant adsorption capability of oil palm shell using hydrothermal process. Biomass Convers. Biorefin. 2019, 9, 681–688. [Google Scholar] [CrossRef]
- Crelling, J.C.; Hagemann, H.W.; Sauter, D.H.; Ramani, R.V.; Vogt, W.; Leininger, D.; Krzack, S.; Meyer, B.; Orywal, F.; Reimert, R.; et al. Coal. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Akiya, N.; Savage, P.E. Roles of Water for Chemical Reactions in High-Temperature Water. Chem. Rev. 2002, 102, 2725–2750. [Google Scholar] [CrossRef]
- Kritzer, P. Corrosion in high-temperature and supercritical water and aqueous solutions: A review. J. Supercrit. Fluids 2004, 29, 1–29. [Google Scholar] [CrossRef]
- Behar, F.; Lewan, M.D.; Lorant, F.; Vandenbroucke, M. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Org. Geochem. 2003, 34, 575–600. [Google Scholar] [CrossRef]
- Jais, F.M.; Ibrahim, S.; Chee, C.Y.; Ismail, Z. High removal of crystal violet dye and tetracycline by hydrochloric acid assisted hydrothermal carbonization of sugarcane bagasse prepared at high yield. Sustain. Chem. Pharm. 2021, 24, 100541. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.H.; Wang, J.; Li, X.P.; Cheng, J.J.; Yang, H.P.; Chen, H.P. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 2013, 58, 376–383. [Google Scholar] [CrossRef]
- Möller, A.; Xie, Z.; Cai, M.; Zhong, G.; Huang, P.; Cai, M.; Sturm, R.; He, J.; Ebinghaus, R. Polybrominated Diphenyl Ethers vs Alternate Brominated Flame Retardants and Dechloranes from East Asia to the Arctic. Environ. Sci. Technol. 2011, 45, 6793–6799. [Google Scholar] [CrossRef]
- Lu, X.; Pellechia, P.J.; Flora, J.R.V.; Berge, N.D. Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour. Technol. 2013, 138, 180–190. [Google Scholar] [CrossRef]
- Lu, X.; Berge, N.D. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks. Bioresour. Technol. 2014, 166, 120–131. [Google Scholar] [CrossRef]
- Lu, X.; Flora, J.; Berge, N. Influence of process water quality on hydrothermal carbonization of cellulose. Bioresour. Technol. 2013, 154C, 229–239. [Google Scholar] [CrossRef]
- Reza, M.T.; Rottler, E.; Herklotz, L.; Wirth, B. Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour. Technol. 2015, 182, 336–344. [Google Scholar] [CrossRef]
- Saha, N.; Saba, A.; Reza, M.T. Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood. J. Anal. Appl. Pyrolysis 2019, 137, 138–145. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhai, Y.B.; Li, S.H.; Wang, B.; Wang, T.F.; Liu, Y.L.; Qiu, Z.Z.; Li, C.T. Hydrothermal carbonization of sewage sludge: Effect of feed-water pH on hydrochar’s physicochemical properties, organic component and thermal behavior. J. Hazard. Mater. 2020, 388, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.B.; Liu, X.M.; Zhu, Y.; Peng, C.; Wang, T.F.; Zhu, L.; Li, C.T.; Zeng, G.M. Hydrothermal carbonization of sewage sludge: The effect of feed-water pH on fate and risk of heavy metals in hydrochars. Bioresour. Technol. 2016, 218, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Su, H.; Tian, F. A Novel Nitrogen Enriched Hydrochar Adsorbents Derived from Salix Biomass for Cr (VI) Adsorption. Sci. Rep. 2018, 8, 4040. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.T.; Li, J.; Yu, H.; Peng, Y.Z. Removal of organic contaminant by municipal sewage sludge-derived hydrochar: Kinetics, thermodynamics and mechanisms. Water Sci. Technol. 2018, 78, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Kladisios, P.; Sagia, A. Hydrothermal Carbonization: Production of Energy through the Thermochemical Treatment of Biomass. J. Sustain. Energy 2018, 9, 2067–5534. [Google Scholar]
- Sermyagina, E.; Saari, J.; Kaikko, J.; Vakkilainen, E. Hydrothermal carbonization of coniferous biomass: Effect of process parameters on mass and energy yields. J. Anal. Appl. Pyrolysis 2015, 113, 551–556. [Google Scholar] [CrossRef]
- Guo, S.Q.; Dong, X.Y.; Wu, T.T.; Zhu, C.X. Influence of reaction conditions and feedstock on hydrochar properties. Energy Convers. Manag. 2016, 123, 95–103. [Google Scholar] [CrossRef]
- Oktaviananda, C.; Rahmawati, R.F.; Prasetya, A.; Purnomo, C.W.; Yuliansyah, A.T.; Cahyono, R.B.; Aip. Effect of Temperature and Biomass-Water Ratio to Yield and Product Characteristics of Hydrothermal Treatment of Biomass. In Proceedings of the International Conference on Chemistry, Chemical Process and Engineering, Yogyakarta, Indonesia, 15–16 November 2016. [Google Scholar]
- Li, D.; Wang, M.-Q.; Lee, C. The waste treatment and recycling efficiency of industrial waste processing based on two-stage data envelopment analysis with undesirable inputs. J. Clean. Prod. 2020, 242, 118279. [Google Scholar] [CrossRef]
- Zhou, F.; Li, K.; Hang, F.X.; Zhang, Z.M.; Chen, P.; Wei, L.; Xie, C.F. Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid. RSC Adv. 2022, 12, 1885–1896. [Google Scholar] [CrossRef]
- Shikuku, V.O.; Mishra, T. Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: A comparison of two-parameter isotherms. Appl. Water Sci. 2021, 11, 9. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.L.; Bai, H.Y.; Zhang, T.T.; Ibarra-Galvan, V.; Song, S.X. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr. Polym. 2018, 198, 518–528. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.Q.; Zheng, K. Characterization of hydrogen peroxide (H2O2) modified hydrochars from walnut shell for enhanced adsorption performance of methylene blue from aqueous solution. Desalin. Water Treat. 2018, 109, 221–230. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Ahmad, M.A.; Yahaya, N.K.E.M.; Karim, J. Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arab. J. Chem. 2021, 14, 103104. [Google Scholar] [CrossRef]
- Akpomie, K.G.; Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ. Chem. Lett. 2020, 18, 1085–1112. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Kumar, P.S.; Jaikumar, V.; Rajan, P.S. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Gupta, T.B.; Lataye, D.H. Removal of crystal violet and methylene blue dyes using Acacia Nilotica sawdust activated carbon. Indian, J. Chem. Technol. 2019, 26, 52–68. [Google Scholar]
- Han, X.B.; Li, R.; Miao, P.P.; Gao, J.; Hu, G.W.; Zhao, Y.; Chen, T. Design, Synthesis and Adsorption Evaluation of Bio-Based Lignin/Chitosan Beads for Congo Red Removal. Materials 2022, 15, 2310. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, B.Y.; Liang, Y.N. Enhanced degradation performance of organic dyes removal by semiconductor/MOF/graphene oxide composites under visible light irradiation. Diam. Relat. Mater. 2019, 98, 11. [Google Scholar] [CrossRef]
- Yang, J.J.; Shojaei, S. Removal of drug and dye from aqueous solutions by graphene oxide: Adsorption studies and chemometrics methods. Npj. Clean Water 2022, 5, 10. [Google Scholar] [CrossRef]
- Madduri, S.; Elsayed, I.; Hassan, E.B. Novel oxone treated hydrochar for the removal of Pb(II) and methylene blue (MB) dye from aqueous solutions. Chemosphere 2020, 260, 127683. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Song, B.; Shao, Y.; Huang, W. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism. Chem. Eng. J. 2020, 387, 124097. [Google Scholar] [CrossRef]
- Zhang, X.G.; Wang, Y.; Cai, J.M.; Wilson, K.; Lee, A.F. Bio/hydrochar Sorbents for Environmental Remediation. Energy Environ. Mater. 2020, 3, 453–468. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Gori, R.; Corsi, I.; Galletti, A.M.R.; Vitolo, S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag. 2019, 93, 1–13. [Google Scholar] [CrossRef]
- He, X.Y.; Male, K.B.; Nesterenko, P.N.; Brabazon, D.; Paull, B.; Luong, J.H.T. Adsorption and Desorption of Methylene Blue on Porous Carbon Monoliths and Nanocrystalline Cellulose. ACS Appl. Mater. Interfaces 2013, 5, 8796–8804. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Tan, I.A.W.; Benhouria, A.; Asif, M.; Hameed, B.H. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chem. Eng. J. 2015, 270, 187–195. [Google Scholar] [CrossRef]
- Roldan, L.; Lai, T.P.; Anson-Casaos, A.; Pham-Huu, C.; Garcia-Bordeje, E. Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis. Catal. Today 2018, 301, 2–10. [Google Scholar] [CrossRef]
- Jung, D.; Duman, G.; Zimmermann, M.; Kruse, A.; Yanik, J. Hydrothermal carbonization of fructose-effect of salts and reactor stirring on the growth and formation of carbon spheres. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Hong, X.; Fang, C.; Hui, K.S.; Hui, K.N.; Zhuang, H.; Liu, W.; Shan, S. Influence of interfering anions on Cu2+ and Zn2+ ions removal on chestnut outer shell-derived hydrochars in aqueous solution. RSC Adv. 2017, 7, 51199–51205. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Fu, F.; Ding, Z.; Li, N.; Tang, B. Removal mechanism of selenite by Fe3O4-precipitated mesoporous magnetic carbon microspheres. J. Hazard. Mater. 2017, 330, 93–104. [Google Scholar] [CrossRef]
- Allen, S.J.; McKay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef]
- Terzyk, A.P. Molecular properties and intermolecular forces-factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. J. Colloid Interface Sci. 2004, 275, 9–29. [Google Scholar] [CrossRef]
- Radovic, L.R.; Silva, I.F.; Ume, J.I.; Menendez, J.A.; Leon, Y.; Leon, C.A.; Scaroni, A.W. An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 1997, 35, 1339–1348. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Orfao, J.J.M.; Pereira, M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 2004, 38, 2043–2052. [Google Scholar] [CrossRef]
- Orfao, J.J.M.; Silva, A.I.M.; Pereira, J.C.V.; Barata, S.A.; Fonseca, I.M.; Faria, P.C.C.; Pereira, M.F.R. Adsorption of a reactive dye on chemically modified activated carbons-Influence of pH. J. Colloid Interface Sci. 2006, 296, 480–489. [Google Scholar] [CrossRef]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J. Environ. Manag. 2017, 203, 237–244. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.Y.; Huang, Q. Highly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydrothermal carbonization. RSC Adv. 2017, 7, 5790–5799. [Google Scholar] [CrossRef] [Green Version]
- Unur, E. Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Microporous Mesoporous Mater. 2013, 168, 92–101. [Google Scholar] [CrossRef]
- Genli, N.; Kutluay, S.; Baytar, O.; Sahin, O. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: An application in methylene blue removal by RSM optimization. Int. J. Phytoremediat. 2022, 24, 88–100. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Lin, H.L.; Dai, L.L.; Qiu, R.L.; Tang, Y.T.; Wang, Y.P.; Duan, P.G.; Ok, Y.S. Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environ. Int. 2020, 134, 105340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, F.Y.; Liu, S.W.; Lou, J.; Liu, W.P.; Rousseau, D.P.L.; Van Hulle, S. Synthesis, characterization, and methylene blue adsorption isotherms of hydrochars derived from forestry waste and agro-residues. Biomass Convers. Biorefin. 2022, 1–16. [Google Scholar] [CrossRef]
- Hammud, H.H.; Shmait, A.; Hourani, N. Removal of Malachite Green from water using hydrothermally carbonized pine needles. RSC Adv. 2015, 5, 7909–7920. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zhang, F.S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination 2011, 267, 101–106. [Google Scholar] [CrossRef]
- Wang, Y.H.; Tang, R.H.; Chen, Y.D.; Srinivasakannan, C.; Wang, X.; Duan, X.H. Process Optimization for Preparation of Hydrochar with Abundant Surface Functional Groups and Promising Adsorption Capacity. Sci. Adv. Mater. 2022, 14, 86–97. [Google Scholar] [CrossRef]
- Zhang, L.B.; Tan, J.Y.; Xing, G.Y.; Dou, X.T.; Guo, X.Q. Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: Investigation of the raw material plant tissues. Bioresour. Bioprocess. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Li, H.Z.; Zhang, Y.N.; Guo, J.Z.; Lv, J.Q.; Huan, W.W.; Li, B. Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo. Bioresour. Technol. 2021, 337, 7. [Google Scholar] [CrossRef] [PubMed]
- Roldan, L.; Marco, Y.; Garcia-Bordeje, E. Bio-sourced mesoporous carbon doped with heteroatoms (N,S) synthesised using one-step hydrothermal process for water remediation. Microporous Mesoporous Mater. 2016, 222, 55–62. [Google Scholar] [CrossRef]
- Alatalo, S.M.; Makila, E.; Repo, E.; Heinonen, M.; Salonen, J.; Kukk, E.; Sillanpaa, M.; Titirici, M.M. Meso- and microporous soft templated hydrothermal carbons for dye removal from water. Green Chem. 2016, 18, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Correa, C.R.; Ngamying, C.; Klank, D.; Kruse, A. Investigation of the textural and adsorption properties of activated carbon from HTC and pyrolysis carbonizates. Biomass Convers. Biorefin. 2018, 8, 317–328. [Google Scholar] [CrossRef]
- Xiong, T.; Yuan, X.Z.; Chen, X.H.; Wu, Z.B.; Wang, H.; Leng, L.J.; Jiang, L.B.; Zeng, G.M. Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite. Appl. Surf. Sci. 2018, 427, 1107–1117. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Seczkowska, M.; Tarasiuk, B. Phenoxyacid pesticide adsorption on activated carbon-Equilibrium and kinetics. Chemosphere 2019, 214, 349–360. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 24. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Ma, A.J. Biodegradation of Phenolic Contaminants: Current Status and Perspectives. In Proceedings of the International Conference on Advanced Environmental Engineering (ICAEE), Shenzen, China, 15–17 December 2017. [Google Scholar]
- Zango, Z.U.; Sambudi, N.S.; Jumbri, K.; Ramli, A.; Abu Bakar, N.H.H.; Saad, B.; Rozaini, M.N.H.; Isiyaka, H.A.; Osman, A.M.; Sulieman, A. An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. Water 2020, 12, 2910. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef]
- Seo, P.W.; Bhadra, B.N.; Ahmed, I.; Khan, N.A.; Jhung, S.H. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities. Sci. Rep. 2016, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Arvaniti, O.S.; Hwang, Y.; Andersen, H.R.; Stasinakis, A.S.; Thomaidis, N.S.; Aloupi, M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem. Eng. J. 2015, 262, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Jun, B.M.; Hwang, H.S.; Heo, J.; Han, J.; Jang, M.; Sohn, J.; Park, C.M.; Yoon, Y. Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: Performance and mechanism of competitive adsorption. J. Ind. Eng. Chem. 2019, 79, 345–352. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 2011, 186, 160–168. [Google Scholar] [CrossRef]
- Yali, Z.P.; Jadid, A.P.; Samin, L.A. Modeling of retention time for polychlorinated biphenyl congeners in human adipose tissue using quantitative structure-retention relationship methodology. Int. J. Environ. Sci. Technol. 2017, 14, 2357–2366. [Google Scholar] [CrossRef]
- Weidemann, E.; Niinipuu, M.; Fick, J.; Jansson, S. Using carbonized low-cost materials for removal of chemicals of environmental concern from water. Environ. Sci. Pollut. Res. 2018, 25, 15793–15801. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Wang, Y.; Li, X.; Sun, B.L.; Li, Y.M.; Ji, H.; Qiu, J.; Wang, C. Surface Activated Hydrothermal Carbon-Coated Electrospun PAN Fiber Membrane with Enhanced Adsorption Properties for Herbicide. ACS Sustain. Chem. Eng. 2016, 4, 2584–2592. [Google Scholar] [CrossRef]
- Rattanachueskul, N.; Saning, A.; Kaowphong, S.; Chumha, N.; Chuenchom, L. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresour. Technol. 2017, 226, 164–172. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Yacout, D.M.M.; Van Caneghem, J.; Jansson, S. Comparative environmental assessment of end-of-life carbonaceous water treatment adsorbents. Bioresour. Technol. 2020, 302, 9. [Google Scholar] [CrossRef]
- Moreira, W.M.; Viotti, P.V.; Vieira, M.G.A.; Baptista, C.; Scaliante, M.; Gimenes, M.L. Hydrothermal synthesis of biobased carbonaceous composite from a blend of kraft black liquor and tannin and its application to aspirin and paracetamol removal. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 15. [Google Scholar] [CrossRef]
- Delgado-Moreno, L.; Bazhari, S.; Gasco, G.; Mendez, A.; El Azzouzi, M.; Romero, E. New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes. Sci. Total Environ. 2021, 752, 14. [Google Scholar] [CrossRef]
- Chen, L.Y.; Li, D.P.; Huang, Y.; Zhu, W.J.; Ding, Y.Q.; Guo, C.R. Preparation of sludge-based hydrochar at different temperatures and adsorption of BPA. Water Sci. Technol. 2020, 82, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Mestre, A.S.; Tyszko, E.; Andrade, M.A.; Galhetas, M.; Freire, C.; Carvalho, A.P. Sustainable activated carbons prepared from a sucrose-derived hydrochar: Remarkable adsorbents for pharmaceutical compounds. RSC Adv. 2015, 5, 19696–19707. [Google Scholar] [CrossRef]
- Zhu, X.D.; Liu, Y.C.; Zhou, C.; Luo, G.; Zhang, S.C.; Chen, J.M. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 2014, 77, 627–636. [Google Scholar] [CrossRef]
- Zhu, X.D.; Liu, Y.C.; Qian, F.; Zhou, C.; Zhang, S.C.; Chen, J.M. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol. 2014, 154, 209–214. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Ledesma, B.; Roman, S.; Bonelli, P.R.; Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef]
- Hammud, H.H.; Karnati, R.K.; Al Shafee, M.; Fawaz, Y.; Holail, H. Activated hydrochar from palm leaves as efficient lead adsorbent. Chem. Eng. Commun. 2021, 208, 197–209. [Google Scholar] [CrossRef]
- Xue, Y.W.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200, 673–680. [Google Scholar] [CrossRef]
- Spataru, A.; Jain, R.; Chung, J.W.; Gerner, G.; Krebs, R.; Lens, P.N.L. Enhanced adsorption of orthophosphate and copper onto hydrochar derived from sewage sludge by KOH activation. RSC Adv. 2016, 6, 101827–101834. [Google Scholar] [CrossRef]
- He, H.; Zhang, N.; Chen, N.; Lei, Z.; Shimizu, K.; Zhang, Z. Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk. Bioresour. Technol. Rep. 2019, 8, 100348. [Google Scholar] [CrossRef]
- Ghadikolaei, N.F.; Kowsari, E.; Balou, S.; Moradi, A.; Taromi, F.A. Preparation of porous biomass-derived hydrothermal carbon modified with terminal amino hyperbranched polymer for prominent Cr(VI) removal from water. Bioresour. Technol. 2019, 288, 10. [Google Scholar] [CrossRef] [PubMed]
- Khushk, S.; Zhang, L.; Pirzada, A.M.; Irfan, M.; Li, A.; Khushk, S.I.A.; Zhang, L.L.B. Cr(VI) Heavy Metal Adsorption from Aqueous Solution by KOH Treated Hydrochar Derived from Agricultural Wastes. In Proceedings of the 5th International Conference on Energy, Environment and Sustainable Development (EESD), Mehran Univ Engn & Technol, Jamshoro, Pakistan, 14–16 November 2018. [Google Scholar]
- Rasam, S.; Moraveji, M.K.; Soria-Verdugo, A.; Salimi, A. Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar. Chem. Eng. Process. Process Intensif. 2021, 159, 11. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.W.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X.D. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Yu, X.F.; Liu, Y.H.; Zhou, Z.W.; Xiong, G.X.; Cao, X.H.; Li, M.; Zhang, Z.B. Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J. Radioanal. Nucl. Chem. 2014, 300, 1235–1244. [Google Scholar] [CrossRef]
- Sun, K.J.; Tang, J.C.; Gong, Y.Y.; Zhang, H.R. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environ. Sci. Pollut. Res. 2015, 22, 16640–16651. [Google Scholar] [CrossRef]
- Han, L.F.; Sun, H.R.; Ro, K.S.; Sun, K.; Libra, J.A.; Xing, B.S. Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour. Technol. 2017, 234, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Atchudan, R.; Edison, T.; Perumal, S.; Lee, Y.R. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl. Surf. Sci. 2017, 393, 276–286. [Google Scholar] [CrossRef]
- Huang, G.G.; Wang, Y.; Zhang, T.Y.; Wu, X.X.; Cai, J.J. High-performance hierarchical N-doped porous carbons from hydrothermally carbonized bamboo shoot shells for symmetric supercapacitors. J. Taiwan Inst. Chem. Eng. 2019, 96, 672–680. [Google Scholar] [CrossRef]
- Latham, K.G.; Dose, W.M.; Allen, J.A.; Donne, S.W. Nitrogen doped heat treated and activated hydrothermal carbon: NEXAFS examination of the carbon surface at different temperatures. Carbon 2018, 128, 179–190. [Google Scholar] [CrossRef]
- Rao, L.L.; Ma, R.; Liu, S.F.; Wang, L.L.; Wu, Z.Z.; Yang, J.; Hu, X. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance. Chem. Eng. J. 2019, 362, 794–801. [Google Scholar] [CrossRef]
- de Oliveira, F.C.; Coimbra, J.S.D.; de Oliveira, E.B.; Zuniga, A.D.G.; Rojas, E.E.G. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1108–1125. [Google Scholar] [CrossRef]
- TerraNova Energy. Available online: https://www.terranova-energy.com/en/applications/ (accessed on 28 May 2022).
- Ducey, T.F.; Collins, J.C.; Ro, K.S.; Woodbury, B.L.; Griffin, D.D. Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA. Front. Environ. Sci. Eng. 2017, 11, 8. [Google Scholar] [CrossRef]
- Patino, A.A.B.; Lassalle, V.L.; Horst, M.F. Magnetic hydrochar nanocomposite obtained from sunflower husk: A potential material for environmental remediation. J. Mol. Struct. 2021, 1239, 10. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, M.; Zhang, X.; Cui, N.X.; Chen, G.F.; Zou, G.Y. Key role of hydrochar in heterogeneous photocatalytic degradation of sulfamethoxazole using Ag3PO4-based photocatalysts. RSC Adv. 2019, 9, 35636–35645. [Google Scholar] [CrossRef] [Green Version]
- Mengting, Z.; Kurniawan, T.A.; Avtar, R.; Othman, M.H.D.; Ouyang, T.; Huang, Y.J.; Zhang, X.T.; Setiadi, T.; Iswanto, I. Applicability of TiO2(B) nanosheets@hydrochar composites for adsorption of tetracycline (TC) from contaminated water. J. Hazard. Mater. 2021, 405, 123999. [Google Scholar] [CrossRef]
- Vieira, L.H.S.; Sabino, C.M.S.; Soares, F.H.; Rocha, J.S.; Castro, M.O.; Alencar, R.S.; da Costa, L.S.; Viana, B.C.; de Paula, A.J.; Soares, J.M.; et al. Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon 2020, 161, 758–771. [Google Scholar] [CrossRef]
Biowaste | HTC Conditions | Adsorption, Pollutant Retention Efficiency | Ref. | |||
---|---|---|---|---|---|---|
T (°C) | Residence time (h) | Activation | Dye | Qe (mg/g)/Removal (%) | ||
Pine needles (PNs) | 225 | 5 | - | MG | 52.9/92 | [116] |
H2O2 | 97.1/96 | |||||
Pine wood | 300 | 4 | NaCl | MB | 86.7/n.a. | [93] |
Bamboo | 180 | 24 | - | MB | 91.74/n.a. | [118] |
Pretreated cotton stalk | 220 | 6 | KOH | MB | 198.0 ± 9.8/n.a. | [119] |
Coffee husk | 180 | 6 | KOH | MB | 357.38/n.a. | [111] |
Sugarcane bagasse | 240 | 10 | - | MB | 116.65/n.a. | [82] |
NaOH | 334.74/n.a. | |||||
Hazelnut shell | 250 | 7.5 | KOH | MB | 524/n.a. | [112] |
Chickpea stem | 200 | 5 | KOH | MB | 96.15/77.86 | [113] |
Coconut shell | 200 | 2 | NaOH | MB | 200.01/98 | [110] |
Shrimp shell | 180 | 12 | Acetic acid | Methyl orange (MO) | 755.08/n.a. | [114] |
Phycocyanin-extracted algal bloom residues (PE-ABR) | 200 | 10 | - | MG | 89.05/92.4 | [111] |
Avocado seeds | 230 | 3 | - | Indigo carmine | 49 | [48] |
Sewage sludge | 180 | 3 | - | CV | n.a./99 | [75] |
Cigarette butts (CBs) | 190 | 48 and 72 | NaOH | MB | 561.73 and 548.72/n.a. | [29] |
PVC + bamboo | 200 | 24 | NaOH | MB | 234.46/n.a. | [120] |
Biowaste | HTC Conditions | Adsorption Conditions and Pollutant Retention Efficiency | Ref. | |||
---|---|---|---|---|---|---|
T (°C) | Residence Time (h) | Activation | Contaminant | Qe (mg/g)/Removal (%) | ||
Rice husks | 220 | 2 | - | Diclofenac (DFS) Ciprofloxacin Triclosan (TCS) | >0.002/>83 | [137] |
Horse manure | 220 | 2 | - | Paracetamol Fluconazole Sulfamethoxazole | 0.0005/> 49 | |
Glucose + PAN | 160 | 18 | NaOH | Paraquat herbicide | 437.64/83 | [138] |
Sugar bagasse | 230 | 24 | Fe2+/Fe3+ | Tetracycline | 48.35/100 | [139] |
Wood | >180 | - | - | Caffeine TCS | 8/- | [140] |
5.3/- | ||||||
Kraft black liquor | 170 | 2 | - | Aspirin Paracetamol | 50.17/ | [141] |
49.95/ | ||||||
Olive mill waste (OMW) | 190 | 6 | - | TCS, DFS, Ibuprofen (IBP) | 13.7/98 11/64 10/43 | [142] |
240 | 13.8/99 11/73 10/54 | |||||
Pinewood sawdust/rice husk | 300 | 0.2 | Physical | Phenol | 83.88/n.a. | [117] |
39.3/n.a. | ||||||
Fruit powder of Zizipus mauritiana L. | 200 | 20 | - | DFS, IBP | 2.03 mmol/g/88 2.54 mmol/g/97 | [49] |
Sludge | 160 | 4 | KOH | Bisphenol A (BPA) | 10.86/n.a. | [143] |
190 | 15.11/n.a. | |||||
250 | 18.37/n.a. |
Biowastes | HTC Conditions | Adsorption Conditions and Pollutant Retention Efficiency | Ref. | |||
---|---|---|---|---|---|---|
T (°C) | Residence Time (h) | Activation | Contaminant | Qe (mg/g)/Removal (%) | ||
Palm leaves | 300 | 7 | - | Pb2+ | 17.8/n.a. | [150] |
H2O2 | 74.5/n.a. | |||||
Peanut hull | 300 | 5 | - | Pb2+ | 0.88/n.a. | [151] |
H2O2 | 22.82/n.a. | |||||
Sewage sludge | 210 | 5 | - | Cu2+ | 35.8/n.a. | [152] |
KOH | - | |||||
- | o-PO43− | - | ||||
KOH | n.a./97 | |||||
Tabaco stalk | 200 | 24 | Mg and Al | PO43− | 41.16/ | [153] |
Walnut shell powder + polymer | 250 | 1 | - | Cr4+ | 363.22/94.3 | [154] |
Pine sawdust | 180 | 12 | Mg and Si | Cu2+ | 214.7/99 | [94] |
Zn2+ | 227.3/99 | |||||
Eucalyptus sawdust | 220 | 0.5 | KOH | Cr4+ | 34.07/85.53 | [155] |
corn straw | 30.15/75.48 | |||||
corncob | 29.46/73.04 | |||||
Crocus sativus petals | 180 | 11.5 | KOH | Pb2+ | 89.52/- | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ţurcanu, A.A.; Matei, E.; Râpă, M.; Predescu, A.M.; Coman, G.; Predescu, C. Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications. Water 2022, 14, 2344. https://doi.org/10.3390/w14152344
Ţurcanu AA, Matei E, Râpă M, Predescu AM, Coman G, Predescu C. Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications. Water. 2022; 14(15):2344. https://doi.org/10.3390/w14152344
Chicago/Turabian StyleŢurcanu, Anca Andreea, Ecaterina Matei, Maria Râpă, Andra Mihaela Predescu, George Coman, and Cristian Predescu. 2022. "Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications" Water 14, no. 15: 2344. https://doi.org/10.3390/w14152344
APA StyleŢurcanu, A. A., Matei, E., Râpă, M., Predescu, A. M., Coman, G., & Predescu, C. (2022). Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications. Water, 14(15), 2344. https://doi.org/10.3390/w14152344