Surface Water Quality Assessment of the Arkavathi Reservoir Catchment and Command Area, India, through Multivariate Analysis: A Study in Seasonal and Sub-Watershed Variations
Abstract
:1. Introduction
1.1. Multivariate Analysis of Surface Water
1.2. Geogenic Contamination Analysis of Groundwater
1.3. Significance of the Present Study
2. Materials and Methods
2.1. Study Area
2.2. Geology and Geomorphological Features
2.3. Land Use and Landcover of the Study Area
2.4. Sample Collection and Testing
2.5. Data Suitability
2.6. Multivariate Analysis
2.6.1. Factor Analysis
2.6.2. Cluster Analysis
2.6.3. Two-Way and Three-Way ANOVA and t-Tests
3. Results and Discussion
3.1. Factor Groupings
3.2. Clustering
3.3. Two-Way and Three-Way ANOVA: Effects due to Years, Seasons and Locations
3.4. Groundwater Quality of the Study Area—Piper Trilinear Diagrams
4. Conclusions
- Considering the many townships along the Arkavathi River in SW1, domestic sewage needs to be treated effectively at the border region of SW1 and SW5 and within SW6, especially during the Post-Monsoon season.
- Usage of fertilizers, especially in the agricultural lands in command area SW6, should be closely monitored and controlled.
- Erosion control plans need to be put in place in SW3, SW4 and SW5, as indicated by high TDS in SW6.
- Quarry activities in SW4 and SW3 need to be monitored for potential contamination of smaller streams.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Monsoon | Post-Monsoon | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D1 | D2 | D3 | D4 | D5 | |
pH | −0.015 | −0.379 | 0.225 | −0.031 | −0.134 | −0.011 | −0.212 | −0.030 | −0.089 | −0.509 |
DO | 0.008 | −0.523 | −0.428 | 0.157 | −0.383 | −0.267 | −0.103 | 0.747 | −0.003 | 0.017 |
BOD5 | 0.190 | 0.325 | 0.269 | 0.164 | 0.739 | 0.477 | 0.073 | −0.012 | 0.169 | 0.811 |
COD | 0.057 | 0.052 | −0.410 | −0.003 | 0.694 | 0.509 | 0.063 | −0.006 | 0.182 | 0.783 |
TSS | 0.046 | −0.621 | −0.044 | 0.032 | 0.105 | 0.695 | 0.333 | −0.379 | 0.105 | 0.291 |
Turbidity | −0.039 | −0.117 | 0.965 | 0.084 | 0.161 | 0.860 | 0.258 | −0.043 | 0.186 | −0.070 |
TDS | 0.889 | −0.047 | 0.059 | −0.076 | 0.213 | 0.272 | 0.296 | 0.029 | 0.888 | 0.201 |
Conductivity | 0.895 | −0.057 | 0.065 | −0.080 | 0.209 | 0.274 | 0.297 | 0.022 | 0.888 | 0.198 |
Na+ | 0.518 | 0.726 | −0.001 | −0.142 | 0.283 | 0.436 | 0.744 | 0.297 | 0.125 | 0.307 |
K+ | 0.640 | 0.164 | −0.219 | −0.054 | −0.080 | −0.088 | 0.523 | −0.144 | 0.411 | 0.349 |
Ca2+ | 0.863 | −0.186 | −0.003 | −0.199 | 0.205 | 0.107 | 0.699 | −0.269 | 0.126 | −0.217 |
Mg2+ | 0.697 | 0.158 | −0.162 | 0.264 | −0.331 | 0.242 | 0.769 | 0.028 | 0.176 | 0.144 |
Total hardness as CaCO3 | 0.935 | −0.067 | −0.006 | 0.011 | −0.085 | 0.762 | 0.386 | −0.074 | 0.287 | 0.219 |
0.796 | 0.446 | −0.093 | 0.076 | 0.237 | 0.322 | 0.849 | 0.042 | 0.092 | 0.055 | |
0.775 | 0.239 | −0.270 | −0.395 | 0.051 | 0.035 | 0.896 | −0.045 | 0.190 | 0.166 | |
0.203 | 0.479 | −0.249 | −0.413 | 0.318 | 0.765 | 0.279 | −0.150 | 0.082 | 0.243 | |
0.523 | −0.347 | 0.135 | 0.039 | 0.286 | 0.601 | 0.156 | 0.150 | 0.158 | 0.673 | |
−0.275 | −0.362 | 0.350 | 0.174 | 0.022 | 0.715 | 0.027 | 0.053 | 0.011 | 0.325 | |
0.668 | −0.364 | 0.071 | 0.045 | −0.308 | 0.760 | 0.443 | −0.045 | −0.031 | 0.109 | |
Fe2+ | −0.172 | 0.026 | 0.793 | 0.090 | −0.089 | 0.690 | −0.154 | 0.186 | 0.096 | 0.618 |
Zn2+ | 0.120 | 0.097 | 0.551 | 0.340 | −0.157 | 0.794 | 0.277 | −0.329 | 0.109 | 0.310 |
Total alkalinity as CaCO3 | 0.734 | 0.082 | −0.234 | −0.430 | 0.035 | 0.769 | 0.340 | 0.023 | 0.321 | 0.095 |
Total coliform/100 mL | −0.113 | −0.180 | 0.172 | 0.872 | −0.014 | 0.742 | −0.133 | 0.033 | 0.172 | 0.378 |
Fecal coliform/100 mL | −0.094 | 0.039 | 0.082 | 0.952 | 0.144 | 0.713 | −0.062 | 0.268 | 0.185 | 0.575 |
SAR | −0.282 | 0.775 | 0.110 | 0.005 | 0.103 | 0.352 | 0.168 | 0.544 | 0.058 | 0.399 |
Pre-Monsoon | Monsoon | Post-Monsoon | F-Statistic for Seasons | Year 1 | Year 2 | F-Statistic for Years | F-Statistic for Interaction between Seasons and Years | |
---|---|---|---|---|---|---|---|---|
Parameter | Mean concentration level (mg/L) | Mean concentration level (mg/L) | Mean concentration level (mg/L) | (F(2,58) at p < 0.001) | Mean concentration level (mg/L) | Mean concentration level (mg/L) | (F(1,29) at p < 0.001) | (F(2,58) at p < 0.001) |
TDS | 571.27 | 523.72 | 666.15 | 14.58 | 563.48 | 610.61 | 29.22 | 20.59 |
TSS | 5.065 | 4.230 | 7.72 | 36.033 | 5.11 | 6.23 | 101.73 | 24.56 |
2.804 | 1.987 | 9.58 | 52.8 | 4.28 | 5.31 | 79.25 | 22.61 | |
Na+ | 90.22 | 80.82 | 96.83 | 22.22 | 83.53 | 95.04 | 37.37 | 8.676 (p = 0.001) |
Total Hardness | 242.017 | 201.688 | 347.83 | 47.04 | 249.29 | 278.4 | 53.02 | 31.02 |
Mg2+ | 15.397 | 11.74 | 15.74 | 9.2 (p = 0.01) | 13.32 | 15.26 | 27.01 | 7.437 |
0.112 | 0.038 | 0.105 | 12.21 (p = 0.01) | 0.073 | 0.097 | 22.6 | 13.97 | |
Ca2+ | 61.73 | 62.03 | 69.68 | 4.93 (p = 0.01) | 59.05 | 69.91 | 76.73 | 22.35 |
199.88 | 190.78 | 209.43 | 4.91 (p = 0.01) | 193.156 | 206.91 | 28.34 | 9.48 | |
K+ | 11.14 | 10.44 | 14.17 | 24.55 (p = 0.01) | 10.52 | 13.31 | 47.17 | 18.16 |
Source | Measure | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared |
---|---|---|---|---|---|---|---|
Location | DO | 13.500 | 5 | 2.700 | 1.348 | 0.279 | 0.219 |
BOD5 | 465.845 | 5 | 93.169 | 7.239 | 0.000 | 0.601 | |
TDS | 806,893.156 | 5 | 161,378.631 | 1.105 | 0.384 | 0.187 | |
TSS | 92.440 | 5 | 18.488 | 1.680 | 0.178 | 0.259 | |
Na+ | 54,851.996 | 5 | 10,970.399 | 6.212 | 0.001 | 0.564 | |
Total Hardness | 229,868.853 | 5 | 45,973.771 | 1.436 | 0.247 | 0.230 | |
558.440 | 5 | 111.688 | 9.626 | 0.000 | 0.667 | ||
Fe2+ | 0.796 | 5 | 0.159 | 9.461 | 0.000 | 0.663 | |
196,681.589 | 5 | 39,336.318 | 3.328 | 0.020 | 0.409 | ||
K+ | 2739.124 | 5 | 547.825 | 6.748 | 0.000 | 0.584 | |
Ca2+ | 17,471.293 | 5 | 3494.259 | 1.581 | 0.203 | 0.248 | |
0.397 | 5 | 0.079 | 5.260 | 0.002 | 0.523 | ||
Mg2+ | 2795.772 | 5 | 559.154 | 2.026 | 0.111 | 0.297 | |
Total Coliform | 95,860.353 | 5 | 19,172.071 | 2.136 | 0.096 | 0.308 | |
SAR | 38.724 | 5 | 7.745 | 6.947 | 0.000 | 0.591 | |
COD | 1677.707 | 5 | 335.541 | 7.483 | 0.000 | 0.609 | |
Error | DO | 48.084 | 24 | 2.003 | |||
BOD5 | 308.906 | 24 | 12.871 | ||||
TDS | 3,505,192.488 | 24 | 146,049.687 | ||||
TSS | 264.095 | 24 | 11.004 | ||||
Na+ | 42,387.315 | 24 | 1766.138 | ||||
Total Hardness | 768231.299 | 24 | 32,009.637 | ||||
278.471 | 24 | 11.603 | |||||
Fe2+ | 0.404 | 24 | 0.017 | ||||
283,709.877 | 24 | 11,821.245 | |||||
K+ | 1948.345 | 24 | 81.181 | ||||
Ca2+ | 53,035.943 | 24 | 2209.831 | ||||
0.362 | 24 | 0.015 | |||||
Mg2+ | 6623.993 | 24 | 276.000 | ||||
Total Coliform | 215,430.875 | 24 | 8976.286 | ||||
SAR | 26.758 | 24 | 1.115 | ||||
COD | 1076.217 | 24 | 44.842 |
References
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V.; Arseni, M. Lower Danube Water Quality Quantified through WQI and Multivariate Analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, F. Multi-Scale Analysis of the Relationship between Landscape Patterns and a Water Quality Index (WQI) Based on a Stepwise Linear Regression (SLR) and Geographically Weighted Regression (GWR) in the Ebinur Lake Oasis. Environ. Sci. Pollut. Res. 2018, 25, 7033–7048. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.L.; Chappell, R.W.; Loftis, J.C. Water Quality Sample Collection, Data Treatment and Results Presentation for Principal Components Analysis—Literature Review and Illinois River Watershed Case Study. Water Res. 2012, 46, 3110–3122. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wang, M.; Chen, Y.; Gao, W. Source Apportionment of Water Pollutants in the Upstream of Yangtze River Using APCS–MLR. Environ. Geochem. Health 2020, 42, 3795–3810. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Arias, C.A.; Nguyen, L.X.; Salvadó, V.; Brix, H. Occurrence and Behavior of Emerging Contaminants in Surface Water and a Restored Wetland. Chemosphere 2012, 88, 1083–1089. [Google Scholar] [CrossRef]
- González, S.; López-Roldán, R.; Cortina, J.L. Presence and Biological Effects of Emerging Contaminants in Llobregat River Basin: A Review. Environ. Pollut. 2012, 161, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Boyacioglu, H. Surface Water Quality Assessment Using Factor Analysis. Water SA 2006, 32, 43. [Google Scholar] [CrossRef] [Green Version]
- Dani, A.; Bărbulescu, A. Statistical Analysis of the Water Quality of the Major Rivers in India. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Proceedings of the 2nd WaterEnergyNEXUS Conference, Salerno, Italy, 14–17 November 2018; Naddeo, V., Balakrishnan, M., Choo, K.-H., Eds.; Springer: Cham, Switzerland, 2020; pp. 281–283. [Google Scholar]
- Hamil, S.; Bouchelouche, D.; Arab, S.; Doukhandji, N.; Smaoune, G.; Baha, M.; Arab, A. Statistical Multivariate Analysis Assessment of Dams’ Water Quality in the North-Central Algeria. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Sousse, Tunisia, 12–15 November 2018; Chaminé, H.I., Barbieri, M., Kisi, O., Chen, M., Merkel, B.J., Eds.; Springer: Cham, Switzerland, 2019; pp. 381–383. [Google Scholar]
- Bhat, S.A.; Meraj, G.; Yaseen, S.; Pandit, A.K. Statistical Assessment of Water Quality Parameters for Pollution Source Identification in Sukhnag Stream: An Inflow Stream of Lake Wular (Ramsar Site), Kashmir Himalaya. J. Ecosyst. 2014, 2014, 1–18. [Google Scholar] [CrossRef]
- Garizi, A.Z.; Sheikh, V.; Sadoddin, A. Assessment of Seasonal Variations of Chemical Characteristics in Surface Water Using Multivariate Statistical Methods. Int. J. Environ. Sci. Technol. 2011, 8, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Najar, I.A.; Basheer, A. Assessment of Seasonal Variation in Water Quality of Dal Lake (Kashmir, India) Using Multivariate Statistical Techniques. WIT Trans. Ecol. Environ. 2012, 164, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of Seasonal Variations in Surface Water Quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Rahman, M.S. Multivariate Statistical Analysis of Metal Contamination in Surface Water around Dhaka Export Processing Industrial Zone, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2018, 10, 206–211. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Zhong, M.; Wang, Z.; Liang, X.; Huang, T.; Huang, H. Analyses on the Temporal and Spatial Characteristics of Water Quality in a Seagoing River Using Multivariate Statistical Techniques: A Case Study in the Duliujian River, China. Int. J. Environ. Res. Public Health 2019, 16, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, H.; Tan, X.; Li, S.; Zhang, Q. Temporal and Spatial Variations of Water Quality in the Jinshui River of the South Qinling Mts., China. Ecotoxicol. Environ. Saf. 2010, 73, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Zadeh, H.T. Multivariate Statistical Analysis of Surface Water Quality Based on Correlations and Variations in the Data Set. Desalination 2010, 260, 129–136. [Google Scholar] [CrossRef]
- Noori, R.; Karbassi, A.; Khakpour, A.; Shahbazbegian, M.; Badam, H.M.K.; Vesali-Naseh, M. Chemometric Analysis of Surface Water Quality Data: Case Study of the Gorganrud River Basin, Iran. Environ. Model. Assess. 2012, 17, 411–420. [Google Scholar] [CrossRef]
- Sasakova, N.; Gregova, G.; Takacova, D.; Mojzisova, J.; Papajova, I.; Venglovsky, J.; Szaboova, T.; Kovacova, S. Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Front. Sustain. Food Syst. 2018, 2, 42. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Fuoco, I.; Marini, L.; de Rosa, R.; Figoli, A.; Gabriele, B.; Apollaro, C. Use of Reaction Path Modelling to Investigate the Evolution of Water Chemistry in Shallow to Deep Crystalline Aquifers with a Special Focus on Fluoride. Sci. Total Environ. 2022, 830, 154566. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, I.; de Rosa, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic Polluted Waters: Application of Geochemical Modelling as a Tool to Understand the Release and Fate of the Pollutant in Crystalline Aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef]
- Apollaro, C.; di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignanò, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A Multivariate Non-Parametric Approach for Estimating Probability of Exceeding the Local Natural Background Level of Arsenic in the Aquifers of Calabria Region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Ma, T.; Xie, X.; Deng, Y.; Gan, Y. Genesis of Geogenic Contaminated Groundwater: As, F and I. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2895–2933. [Google Scholar] [CrossRef]
- 1, 9-11, 14-15, 21, 24, 31, 38, 40, 42, 45-47, 49, 52-54. Part 1 to 63 Public Safety Standards of the Republic of India: Chemical: Environmental Protection and Waste Management (CHD 32). Bureau of Indian Standards: Chennai, India, 1983–2003.
- Subhash Chandra, K.C.; Hegde, G.V. Bengaluru Water Resource Management: Challenges and Remedies; Institute for Natural Resources Conservation, Education, Research and Training (INCERT): Bengaluru, India, 2015. [Google Scholar]
- Cerny, B.A.; Kaiser, H.F. A Study of A Measure of Sampling Adequacy For Factor-Analytic Correlation Matrices. Multivar. Behav. Res. 1977, 12, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Pallant, J. SPSS Survival Manual; Routledge: London, UK, 2020; ISBN 9781003117452. [Google Scholar]
- XLSTAT. XLSTAT: Statistical Software for Excel. Available online: https://www.xlstat.com (accessed on 24 June 2022).
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Williams, B.; Onsman, A.; Brown, T. Exploratory Factor Analysis: A Five-Step Guide for Novices. Australas. J. Paramed. 2010, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Yeung, I.M.H. Multivariate Analysis of the Hong Kong Victoria Harbour Water Quality Data. Environ. Monit. Assess. 1999, 59, 331–342. [Google Scholar] [CrossRef]
- Solidoro, C.; Pastres, R.; Cossarini, G.; Ciavatta, S. Seasonal and Spatial Variability of Water Quality Parameters in the Lagoon of Venice. J. Mar. Syst. 2004, 51, 7–18. [Google Scholar] [CrossRef]
- Hocking, R.R. Methods and Applications of Linear Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 9780471434153. [Google Scholar]
- Gelman, A.; Tjur, T.; McCullagh, P.; Hox, J.; Hoijtink, H.; Zaslavsky, A.M. Discussion Paper Analysis of Variance—Why It Is More Important than Ever. Ann. Stat. 2005, 33, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Bellos, D.; Sawidis, T. Chemical Pollution Monitoring of the River Pinios (Thessalia—Greece). J. Environ. Manag. 2005, 76, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Li, S. Biotic and Abiotic Controls on CO2 Partial Pressure and CO2 Emission in the Tigris River, Turkey. Chem. Geol. 2017, 449, 182–193. [Google Scholar] [CrossRef]
- Hiraishi, A.; Saheki, K.; Horie, S. Relationships of Total Coliform, Fecal Coliform, and Organic Pollution Levels in the Tamagawa River. Nippon Suisan Gakkaishi 1984, 50, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Zhao, P.; Huang, C.; Zhang, H.; Tian, Y.; Li, Z. Development of Iron Release, Turbidity, and Dissolved Silica Integrated Models for Desalinated Water in Drinking Water Distribution Systems. Desalination Water Treat. 2016, 57, 398–407. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
Sub-Watershed | Local Name of Sub-Watershed | Area (km2) |
---|---|---|
SW1 | Ramanagara sub-watershed | 348.69 |
SW2 | Suvarnamukhi sub-watershed | 420.25 |
SW3 | Mavathurkere sub-watershed | 369.70 |
SW4 | Kodihalli sub-watershed | 175.06 |
SW5 | Kanakapura sub-watershed | 168.96 |
SW6 | Harobele sub-watershed | 89.39 |
Total | 1572 |
Description | Area (km2) | Percentage of Area |
---|---|---|
Agricultural Plantation | 111.26 | 7.07 |
Barren Rocky/Stony Waste/Sheet-Rock Area | 95.26 | 6.06 |
Degraded Forest | 22.45 | 1.42 |
Fallow Land | 12.53 | 0.79 |
Forest Plantations | 4.72 | 0.3 |
Gully/Ravine Land | 0.73 | 0.04 |
Industrial Area | 6.46 | 0.41 |
Kharif + Rabi (Double Crop) | 264.89 | 16.85 |
Kharif Crop | 547.91 | 34.85 |
Land With Scrub | 139.72 | 8.88 |
Land Without Scrub | 0.82 | 0.05 |
Mining/Industrial Wasteland | 11.03 | 0.7 |
Mixed Vegetation | 10.72 | 0.68 |
Moist and Dry Deciduous Dense Forest | 58.06 | 3.69 |
Moist and Dry Deciduous Open Forest | 20.90 | 1.32 |
Rabi Crop | 0.31 | 0.02 |
Scrub Forest | 169.40 | 10.77 |
Tree Groves | 11.46 | 0.72 |
Town/Cities | 17.81 | 1.13 |
Village | 25.87 | 1.64 |
River/Stream | 11.54 | 0.73 |
Lakes/Tanks | 28.06 | 1.78 |
Total area | 1572 | 100 |
Parameters | Min–Max Range for Year 1 | Min–Max Range for Year 2 | ||||
---|---|---|---|---|---|---|
Pre-Monsoon | Monsoon | Post-Monsoon | Pre-Monsoon | Monsoon | Post-Monsoon | |
pH | 5.7–8.3 | 6.9–8.7 | 7.1–8.5 | 6.1–8.4 | 7.7–9.2 | 7.4–8.5 |
Temp (°C) | 28- 29 | 27 | 24–24 | 27 | 27 | 24–26 |
DO (mg/L) | 3.8–6.4 | 3.4–6.8 | 4–6.3 | 2.2–6.14 | 3–6.6 | 2.7–4.1 |
BOD5 (mg/L) | 2–15 | 1.6–6 | 3.2–9.1 | 2.1–15 | 2.2–12.8 | 5.5–16 |
COD (mg/L) | 8–36 | 4.8–10.5 | 5.9–16.9 | 6.8–40 | 3.7–22 | 10.2–30 |
Total Suspended Solids (TSS) (mg/L) | 2–13.9 | 1.6–8.2 | 3.5–9.2 | 1.9–15 | 3–11.2 | 6–11.5 |
Turbidity (NTU) | 0.5–1.4 | 0.4–2.2 | 0.5–1.5 | 0.4–2.3 | 0.4–1.3 | 1–1.7 |
Total Dissolved Solids (TDS) (mg/L) | 99–841 | 0.81–791 | 301–799 | 101–860 | 99–850 | 498–879 |
Conductivity EC (µmhos/cm) | 220–1241 | 125–1217 | 465–1230 | 148–1250 | 399–1327 | 766–1353 |
Sodium Na+ (mg/L) | 25–122 | 28–110 | 35–126 | 28–159 | 51–120 | 71–143 |
Potassium K+ (mg/L) | 2.1–22.8 | 3–21 | 3.5–25 | 3.9–27 | 3–25 | 4.7–26 |
Calcium Ca2+ (mg/L) | 9–119 | 10–90 | 14–92 | 18–111 | 10–101 | 59–96 |
Magnesium Mg2+ (mg/L) | 3.7–34 | 1.7–33.6 | 1.9–31 | 2–36 | 6–74 | 8–29 |
Total Hardness as CaCO3 (mg/L) | 81–439 | 42–430 | 209–432 | 89–450 | 55–428 | 275–541 |
Chlorides Cl− (mg/L) | 31–205 | 28–182 | 35–210 | 33–305 | 35–221 | 130–275 |
Bicarbonate (mg/L) | 90–275 | 80–281 | 95–276 | 92–305 | 90–285 | 161–281 |
Flouride (mg/L) | 0.01–0.35 | 0.002–0.008 | 0.03–0.2 | 0.012–0.45 | 0.01–0.25 | 0.06–0.3 |
Nitrate (mg/L) | 1.0–3.9 | 0.8–3.2 | 1.4–15.7 | 1.1–8.1 | 0.9–8.6 | 2.7–18.2 |
Phosphate (mg/L) | 0.01–0.31 | 0.02–0.52 | 0.02–0.9 | 0.01–0.48 | 0.05–0.45 | 0.1–0.28 |
Sulphate (mg/L) | 8.5–49 | 6–28 | 13–44 | 6.8–67 | 11–26 | 12–46.7 |
Hexavalent Chromium Cr+6 (mg/L) | Nil | 0–0.008 | 0.003–0.007 | 0.006–0.008 | Nil–0.006 | 0.005–0.09 |
Iron Fe2+ (mg/L) | 0.02–0.22 | 0.01–0.4 | 0.06–0.44 | 0.006–0.45 | 0.03–0.01 | 0.07–0.43 |
Copper Cu (mg/L) | Nil–0.001 | 0–0.005 | 0.003–0.006 | 0.002–0.004 | Nil–0.004 | 0.003–0.008 |
Lead Pb (mg/L) | Nil | 0–0 | 0.03–0.1 | 0.002–0.002 | Nil–0.004 | 0.02–0.1 |
Nickel Ni (mg/L) | Nil–0.001 | 0–0.004 | 0.001–0.004 | 0.001–0.002 | Nil–0.004 | 0.001–0.004 |
Zinc Zn2+ (mg/L) | 0.001–0.1 | 0.01–0.09 | 0.007–0.1 | 0.003–0.12 | 0.02–0.14 | 0.008–0.19 |
Total Alkalinity as CaCO3 (mg/L) | 87–315 | 80–310 | 225–445 | 98–354 | 90–295 | 228–476 |
Total Coliform/100 mL | 59–301 | 14–156 | 96–190 | 45–298 | 18–214 | 97–199 |
Fecal Coliform/100 mL | 11–81 | 0–12 | 9–45 | 9–84 | 2–33 | 12–56 |
D1 | D2 | D3 | D4 | D5 | |
---|---|---|---|---|---|
Variability (%) | 23.901 | 21.003 | 13.103 | 8.453 | 8.139 |
Cumulative % | 23.901 | 44.904 | 58.007 | 66.460 | 74.599 |
Parameter | Rotated Factor | ||||
---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | |
pH | −0.023 | −0.564 | 0.185 | −0.054 | −0.123 |
DO | −0.166 | −0.402 | −0.334 | −0.450 | 0.081 |
BOD5 | 0.160 | 0.915 | 0.199 | 0.210 | 0.097 |
COD | 0.326 | 0.813 | 0.149 | −0.022 | 0.065 |
TSS | 0.082 | −0.155 | 0.794 | −0.092 | −0.193 |
Turbidity | −0.080 | 0.257 | 0.286 | 0.782 | 0.228 |
TDS | 0.800 | 0.205 | 0.320 | 0.017 | 0.261 |
Conductivity | 0.833 | 0.092 | 0.302 | 0.157 | 0.157 |
Na+ | 0.558 | 0.393 | 0.049 | 0.105 | 0.717 |
K+ | 0.389 | 0.174 | 0.045 | −0.191 | 0.387 |
Ca2+ | 0.737 | 0.239 | 0.325 | −0.117 | −0.139 |
Mg2+ | 0.591 | 0.418 | 0.338 | −0.022 | 0.273 |
Total hardness as CaCO3 | 0.693 | 0.387 | 0.440 | 0.065 | 0.048 |
0.582 | 0.364 | 0.379 | 0.018 | 0.427 | |
0.895 | 0.230 | 0.039 | −0.166 | 0.213 | |
0.264 | 0.917 | −0.018 | 0.020 | 0.171 | |
0.355 | 0.152 | 0.716 | 0.352 | 0.038 | |
−0.541 | 0.033 | 0.262 | 0.019 | 0.042 | |
0.355 | 0.867 | 0.138 | −0.049 | 0.127 | |
Fe2+ | −0.219 | −0.055 | −0.131 | 0.869 | 0.048 |
Zn2+ | 0.210 | 0.207 | 0.735 | 0.053 | 0.014 |
Total alkalinity as CaCO3 | 0.877 | 0.113 | 0.072 | −0.136 | 0.031 |
Total coli form/100 mL | −0.056 | 0.671 | 0.403 | 0.221 | 0.255 |
Fecal coliform/100 mL | 0.098 | 0.472 | 0.460 | 0.330 | 0.365 |
SAR | 0.037 | 0.182 | −0.247 | 0.251 | 0.761 |
Subdivision of the Diamond | Characteristics of Corresponding Subdivision of Diamond-Shaped Fields | Percentage of Samples in Each Category | |||||
---|---|---|---|---|---|---|---|
Pre- Monsoon (Year 1) | Monsoon (Year 1) | Post-Monsoon (Year 1) | Pre- Monsoon (Year 2) | Monsoon (Year 2) | Post-Monsoon (Year 2) | ||
1 | Alkaline earth (Ca+ Mg) | 100 | 93.93 | 100 | 100 | 96.96 | 100 |
2 | Alkalies exceed alkaline earths | 0 | 6.01 | 0 | 0 | 3.33 | 0 |
3 | Weak acids (CO3 + HCO3) exceed strong acids (SO4 + Cl) | 78.78 | 81.81 | 100 | 81.81 | 75.75 | 100 |
4 | Strong acids exceed weak acids | 21.21 | 18.18 | 0 | 18.18 | 24.24 | 0 |
5 | Magnesium bicarbonate type | 78.78 | 75.75 | 100 | 81.81 | 72.72 | 100 |
6 | Calcium-chloride type | 0 | 0 | 0 | 0 | 0 | 0 |
7 | Sodium-chloride type | 0 | 0 | 0 | 0 | 0 | 0 |
8 | Sodium-bicarbonate type | 0 | 0 | 0 | 0 | 0 | 0 |
9 | Mixed type (No cation–anion exceeds 50%) | 21.21 | 24.24 | 0 | 18.18 | 27.27 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surendra Kumar, J.R.; Pakka, V.H. Surface Water Quality Assessment of the Arkavathi Reservoir Catchment and Command Area, India, through Multivariate Analysis: A Study in Seasonal and Sub-Watershed Variations. Water 2022, 14, 2359. https://doi.org/10.3390/w14152359
Surendra Kumar JR, Pakka VH. Surface Water Quality Assessment of the Arkavathi Reservoir Catchment and Command Area, India, through Multivariate Analysis: A Study in Seasonal and Sub-Watershed Variations. Water. 2022; 14(15):2359. https://doi.org/10.3390/w14152359
Chicago/Turabian StyleSurendra Kumar, Jyothi Roopa, and Vijayanarasimha Hindupur Pakka. 2022. "Surface Water Quality Assessment of the Arkavathi Reservoir Catchment and Command Area, India, through Multivariate Analysis: A Study in Seasonal and Sub-Watershed Variations" Water 14, no. 15: 2359. https://doi.org/10.3390/w14152359
APA StyleSurendra Kumar, J. R., & Pakka, V. H. (2022). Surface Water Quality Assessment of the Arkavathi Reservoir Catchment and Command Area, India, through Multivariate Analysis: A Study in Seasonal and Sub-Watershed Variations. Water, 14(15), 2359. https://doi.org/10.3390/w14152359