Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan–Guizhou Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Analytical Methods
2.3.1. Spatiotemporal Analyses of Water Quality
2.3.2. Mann–Kendall (MK) Test
2.3.3. Canadian Council of Ministers of the Environment—Water Quality Index (CCME-WQI)
3. Results and Discussion
3.1. Temporal Variations in the Water Quality Indices
3.2. Spatial Variation of Water Quality in Qionghai Lake
3.3. Eutrophic State and Its Influencing Factors
3.4. Water Quality Evaluation Based on the CCME-WQI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleynhans, W.; Salmonc, B.P.; Wessels, K.J.; Olivier, J.C. Rapid detection of new and expanding human settlements in the Limpopo province of South Africa using a spatio-temporal change detection method. Int. J. Appl. Earth Obs. 2015, 20, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Mammides, C. A global assessment of the human pressure on the world’s lakes. Glob. Environ. Chang. 2020, 63, 102084. [Google Scholar] [CrossRef]
- Yan, D.G.; Xu, H.; Yang, M.; Lan, J.; Hou, W.; Wang, F.; Zhang, J.; Zhou, K.; An, Z.; Goldsmith, Y. Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years. Ecol. Indic. 2019, 104, 755–763. [Google Scholar] [CrossRef]
- Huang, C.; Wang, X.; Yang, H.; Li, Y.; Wang, Y.; Chen, X.; Xu, L. Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009. Sci. Total Environ. 2014, 485–486, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Messina, N.J.; Couture, R.M.; Norton, S.A.; Birkel, S.D.; Amirbahman, A. Modeling response of water quality parameters to land-use and climate change in a temperate, mesotrophic lake. Sci. Total Environ. 2020, 713, 136549. [Google Scholar] [CrossRef]
- Witze, A. Lakes warm worldwide. Nature 2015. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- SNCCARWC, The Second National Climate Change Assessment Report; Science Press: Beijing, China, 2011; p. 710.
- Wang, J.H.; Yang, C.; He, L.Q.; Dao, G.H.; Du, J.S.; Han, Y.P.; Wu, G.X.; Wu, Q.Y.; Hu, H.Y. Meteorological factors and water quality changes of Plateau Lake Dianchi in China (1990–2015) and their joint influences on cyanobacterial blooms. Sci. Total Environ. 2019, 665, 406–418. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, L.; Hou, Z.; Wu, J.; Wang, Q.; Fu, Y. Pollution characteristics and risk assessment of surface sediments in the urban lakes. Environ. Sci. Pollut. Res. 2021, 28, 22022–22037. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.R.; Ni, Z.H.; Li, H. Emerging water pollution in the world’s least disturbed lakes on Qinghai-Tibetan Plateau. Environ. Pollut. 2021, 272, 116032. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Lia, J.; Liu, Y.; Xie, Y.; Zhang, F.; Wang, S.; Sun, X.; Zhang, B. Water clarity changes in Lake Taihu over 36 years based on Landsat TM and OLI observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102457. [Google Scholar] [CrossRef]
- Cao, X.; Huo, S.; Zhang, H.; Zheng, J.; He, Z.; Ma, C.; Song, S. Source emissions and climate change impacts on the multimedia transport and fate of persistent organic pollutants, Chaohu watershed, eastern China. J. Environ. Sci. 2021, 109, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, M.; Shi, X.; Kong, F.; Ma, R.; Yu, Y. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Res. 2016, 103, 302–310. [Google Scholar] [CrossRef]
- Qian, Q.; Long, Y. Assessing the effects of climate change on water quality of plateau deep-water lake—A study case of Hongfeng Lake. Sci. Total Env. 2019, 647, 1518–1530. [Google Scholar]
- Yu, Y.; Zhang, M.; Qian, S.Q.; Li, D.M.; Xiang, K.f. Current status and development of water quality of lakes in Yunnan-Guizhou Plateau. J. Lake Sci. 2010, 22, 820–828. (In Chinese) [Google Scholar]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C.; Zhu, Y. Lake surface water temperature prediction and changing characteristics analysis—A case study of 11 natural lakes in Yunnan-Guizhou Plateau. J. Clean. Prod. 2020, 276, 122689. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y.; Yang, Z.; Kong, F. Deterministic diversity changes in freshwater phytoplankton in the Yunnan–Guizhou Plateau lakes in China. Ecol. Indic. 2016, 63, 273–281. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Ni, Z.K.; Wang, S.R.; Guo, Y.; Liu, S.R. Climate change and human activities reduced the burial efficiency of nitrogen and phosphorus in sediment from Dianchi Lake, China. J. Clean. Prod. 2020, 274, 122839. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Lyu, H.M. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 2021, 751, 141618. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Lyu, H.M. Sustainable development and environmental restoration in Lake Erhai, China. J. Clean. Prod. 2020, 258, 120758. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Li, k.; Huang, L. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China. J. Env. Sci. 2018, 72, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.W.; Lei, B.; Xiao, J.; Li, S.G. Study on Change Trend and Protection Countermeasures of the Water Quality in Qionghai Lake Basin. Sichuan Environ. 2013, 32, 77–82. (In Chinese) [Google Scholar]
- Zhang, W.M. Investigation on Water Quality of Lake Entrance of Guanba River in Qionghai Lake of Xichang in Dry Season. J. Anhui Agri. Sci. 2011, 39, 309–312. (In Chinese) [Google Scholar]
- Chen, Y.; Wang, Y.Q. Qionghai Lake, Sichuan, China: Environmental Degradation and the Need for Multidimensional Management. Mt. Res. Dev. 2003, 23, 65–72. [Google Scholar]
- Wei, X.L.; Chen, N.S. Development of debris flows in Guanba River and its effect on sediment deposition in Qionghai Lake of Sichuan. Acta Geogr. Sin. 2018, 73, 81–91. (In Chinese) [Google Scholar]
- Nusch, E.A. Comparison of different methods for chlorophyll and pheopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 1980, 14, 14–36. [Google Scholar]
- Secchi, P.A. Relazione delle esperienze fatte a bordo della pontificia pirocorvetta Imacolata Concezione per determinare la trasparenza del mare. Memoria del PA Secchi. Il Nuovo Cim. G. Fis. Chim. E Stor. Nat. 1864, 20, 205–237. [Google Scholar]
- Zhang, L.; Wang, S.; Imai, A. Spatial and temporal variations in sediment enzyme activities and their relationship with the trophic status of Erhai Lake. Ecol. Eng. 2015, 75, 365–369. [Google Scholar] [CrossRef]
- Zhang, S. Eutrophication of the Three Gorges Reservoir after Its First Filling, in Tropical and Sub-Tropical Reservoir Limnology in China; Springer: Dordrecht, The Netherlands, 2012; pp. 293–309. [Google Scholar]
- MEP (Ministry of Environmental Protection, P.R. China). Environmental Quality Standards for Surface Water (GB 3838-2002); Ministry of Environmental Protection, P.R. China: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Khouni, I.; Ghofrane Louhichi, A.G. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Singh, S.; Bhardwaj, A.; Verma, V.K. Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. J. Environ. Manag. 2020, 262, 110355. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Env. Res. 2014, 130, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Lin, K.; Wang, Y.; Zheng, Y.; Gao, X. Spatial interpolation of red bed soil moisture in Nanxiong basin, South China. J. Contam. Hydrol. 2021, 242, 103860. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; An, C.; Tan, Q.; Tian, X. Spatiotemporal analysis of land use pattern and stream water quality in southern Alberta, Canada. J. Contam. Hydrol. 2021, 242, 103852. [Google Scholar] [CrossRef]
- Xia, J.; Xu, G.; Guo, P.; Peng, H.; Zhang, X.; Wang, Y.; Zhang, W. Tempo-Spatial Analysis of Water Quality in the Three Gorges Reservoir, China, after its 175-m Experimental Impoundment. Water Resour. Manag. 2018, 32, 2937–2954. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef]
- Abdollah Pirnia, M.G.; Darabi, H.; Adamowski, J.; Rozbeh, A.S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. J. Water Clim. Change 2019, 10, 725–742. [Google Scholar] [CrossRef]
- Xiang, R.; Wang, L.J.; Li, H.; Tian, Z.; Zheng, B.H. Water quality variation in tributaries of the Three Gorges Reservoir from 2000 to 2015. Water Res. 2021, 195, 116993. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Yu, Y.; Dong, M.; Li, Y. Temporal trends and source apportionment of water pollution in Honghu Lake, China. Environ. Sci. Pollut. Res. 2021, 28, 60130–60144. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, Y.; Zhang, L.; Zheng, B.; Ma, Y. Water quality analysis for the Three Gorges Reservoir, China, from 2010 to 2013. Environ. Earth Sci. 2016, 75, 1–12. [Google Scholar] [CrossRef]
- Gikas, G.D.; Sylaios, G.K.; Tsihrintzis, V.A.; Konstantinou, I.K.; Albanis, T.; Boskidis, I. Comparative evaluation of river chemical status based on WFD methodology and CCME water quality index. Sci. Total Environ. 2020, 745, 140849. [Google Scholar] [CrossRef] [PubMed]
- Hurley, T.; Sadiq, R.; Mazumder, A. Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res. 2012, 46, 3544–3552. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Zeng, W.; Cui, D.; Ma, B.; Xie, Y.; Wang, J. Spatial-temporal variation, sources, and driving factors of organic carbon burial in rift lakes on Yunnan-Guizhou plateau since 1850. Environ. Res. 2021, 201, 111458. [Google Scholar] [CrossRef]
- Shehab, Z.N.; Jamil, N.R.; Ahmad, Z.A.; Shafie, N.S. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia. Ecol. Indic. 2021, 122, 107254. [Google Scholar] [CrossRef]
- Zhi, S.; Shen, S.; Zhou, J.; Ding, G.; Zhang, K. Systematic analysis of occurrence, density, and ecological risks of 45 veterinary antibiotics: Focused on family livestock farms in Erhai Lake basin, Yunnan, China. Env. Pollut. 2020, 267, 115539. [Google Scholar] [CrossRef]
- Wu, T.; Wang, S.; Su, B.; Wu, H.; Wang, G. Understanding the water quality change of the Yilong Lake based on comprehensive assessment methods. Ecol. Indic. 2021, 126, 107714. [Google Scholar] [CrossRef]
- Jia, Z.; Chang, X.; Duan, T.; Wang, X. Water quality responses to rainfall and surrounding land uses in urban lakes. J. Environ. Manag. 2021, 298, 113514. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Q.J.; Wang, X.X.; Ji, H. Effects of hydrological and climatic variables on cyanobacterial blooms in four large shallow lakes fed by the Yangtze River. Environ. Sci. Ecotechnol. 2021, 5, 100069. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Xu, J.; Liu, Y.; Ni, L. Ammonium, microcystins, and hypoxia of blooms in eutrophic water cause oxidative stress and C-N imbalance in submersed and floating-leaved aquatic plants in Lake Taihu, China. Chemosphere 2011, 82, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Zhang, L.; Wang, S.R.; Zhao, H.C.; Zhang, R. Composition, structural characteristics and indication of water quality of dissolved organic matter in Dongting Lake sediments. Ecol. Eng. 2016, 97, 370–380. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Tuo, Y.; Cao, R.; Zhou, Z.; Xiao, Y. Study on the temporal and spatial distribution of chlorophyll-a in Erhai Lake based on multispectral data from environmental satellites. Ecol. Inform. 2021, 61, 101201. [Google Scholar] [CrossRef]
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Shah, A. Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere 2008, 70, 1845–1856. [Google Scholar] [CrossRef]
- Vassilis, Z.A.; Gianniou, S.K. Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecol. Model. 2003, 160, 39–53. [Google Scholar]
- Liu, M.; Zhang, Y.; Shi, K.; Zhu, G.; Wu, Z. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data. Sci. Total Environ. 2019, 651 Pt 1, 614–624. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.X.; Liu, J.B. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 2015, 75, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lupien, R.L.; Xie, H.C.; Vachula, R.S.; Stevenson, M.A. Lake ecosystem on the Qinghai—Tibetan Plateau severely altered by climatic warming and human activity. Palaeogeogr. Palaeoclim. Palaeoecol. 2021, 576, 110509. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, Y.; Ma, W.; Zhou, L. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China. Ecol. Eng. 2017, 99, 417–428. [Google Scholar] [CrossRef]
- Wei, W.; Gao, Y.N.; Huan, J.C.; Gao, J.F. Exploring the effect of basin land degradation on lake and reservoir water quality in China. J. Clean. Prod. 2020, 268, 122249. [Google Scholar] [CrossRef]
- Xia, P.; Ma, L.; Sun, R.; Yang, Y.; Tang, X.; Yan, D. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci. Total Environ. 2020, 740, 140231. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, K.; Luo, Y.; Yang, Y. Secchi depth inversion and its temporal and spatial variation analysis—A case study of nine plateau lakes in Yunnan Province of China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102344. [Google Scholar] [CrossRef]
- Zou, W.; Zhu, G.; Cai, Y.; Xu, H.; Zhu, M.; Gong, Z.; Zhang, Y.; Qin, B. Quantifying the dependence of cyanobacterial growth to nutrient for the eutrophication management of temperate-subtropical shallow lakes. Water Res. 2020, 177, 115806. [Google Scholar] [CrossRef]
- Meinikmann, K.; Hupfer, M.; Lewandowski, J. Phosphorus in groundwater discharge—A potential source for lake eutrophication. J. Hydrol. 2015, 524, 214–226. [Google Scholar] [CrossRef]
- Nyenje, P.M.; Foppen, J.W.; Uhlenbrook, S.; Kulabako, R.; Muwanga, A. Eutrophication and nutrient release in urban areas of sub-Saharan Africa—A review. Sci. Total Environ. 2010, 408, 447–455. [Google Scholar] [CrossRef]
- Zheng, L.; An, Z.Y.; Chen, X.L.; Liu, H. Changes in Water Environment in Erhai Lake and Its Influencing Factors. Water 2021, 13, 1362. [Google Scholar] [CrossRef]
- Yang, K.; Luo, Y.; Chen, K.; Yang, Y.; Shang, C.; Yu, Z.; Xu, J.; Zhao, Y. Spatial-temporal variations in urbanization in Kunming and their impact on urban lake water quality. Land Degrad. Dev. 2020, 31, 1392–1407. [Google Scholar] [CrossRef]
- Wei, Y.; Yuanxi, L.; Yu, L.; Mingxiang, X.; Liping, Z.; Qiuliang, D. Impacts of rainfall intensity and urbanization on water environment of urban lakes. Ecohydrol. Hydrobiol. 2020, 20, 513–524. [Google Scholar] [CrossRef]
- Kharbush, J.J.; Smith, D.J.; Powers, M.; Vanderploeg, H.A. Chlorophyll nitrogen isotope values track shifts between cyanobacteria and eukaryotic algae in a natural phytoplankton community in Lake Erie. Org. Geochem. 2019, 128, 71–77. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- Huo, S.; Zhang, H.; Ma, C.; Xi, B.; Zhang, J.; He, Z.; Li, X.; Wu, F. Algae community response to climate change and nutrient loading recorded by sedimentary phytoplankton pigments in the Changtan Reservoir, China. J. Hydrol. 2019, 571, 311–321. [Google Scholar] [CrossRef]
- Liu, D.; Duan, H.T.; Loiselle, S.; Hu, C.M.; Zhang, G.Q. Observations of water transparency in China’s lakes from space. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102187. [Google Scholar] [CrossRef]
- Du, H.B.; Chen, Z.N.; Mao, G.Z.; Chen, L.; Crittenden, J. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol. Indic. 2019, 102, 686–692. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zeng, W. Using stable nitrogen isotopes to reproduce the process of the impact of human activities on the lakes in the Yunnan Guizhou Plateau in the past 150-200 years. Sci. Total Environ. 2020, 741, 140191. [Google Scholar] [CrossRef] [PubMed]
Natural Parameters | Value | Units | Sources of Data |
---|---|---|---|
Catchment area | 307.67 | km2 | Xichang Environmental Monitoring Station |
Lake area | 27.41 | km2 | |
Eastern/western lake area | 25.12/5.29 | km2 | |
Lake storage capacity | 2.93 × 108 | m3 | |
Eastern/western lake storage capacity | 2.58/0.35 | m3 | |
Mean lake depth | 10.95 | m | |
Eastern/western lake depth | 12.69/2.94 | m | |
Maximum lake depth | 18.32 | m | |
Mean annual precipitation | 1030 | mm | |
Average temperature | 17 | ℃ | |
Mean humidity | 61.4 | % |
Parameter | Abbreviation | Units | GB Class II Standard Value | Method |
---|---|---|---|---|
Pondus hydrogenii | pH | 6–9 | GB6920-86 | |
Dissolved oxygen | DO | mg/L | 6 | GB11913-89 |
Potassium permanganate index | CODMn | mg/L | 4 | GB11892-89 |
Ammonia nitrogen content index | NH3-N | mg/L | 0.5 | GB7479-87 |
Total nitrogen | TN | mg/L | 0.5 | GB11894-89 |
Total phosphorus | TP | mg/L | 0.025 | GB11893-89 |
Water temperature | WT | °C | GB13195-91 | |
Suspended solids | SS | mg/L | GB 11901-1989 |
Years | 2010 | 2019 | ||
---|---|---|---|---|
Land-Use Patterns | Areas (km2) | Percentage of Catchment Area | Areas (km2) | Percentage of Catchment Area |
Cultivated land | 65.91 | 21.26 | 46.88 | 15.12 |
Fruit land | 12.60 | 4.06 | 21.33 | 6.88 |
Woods | 149.74 | 48.31 | 175.23 | 56.53 |
Grassland | 26.50 | 8.55 | 11.02 | 3.55 |
Building land | 20.19 | 6.51 | 23.61 | 7.62 |
Water area | 32.01 | 10.33 | 31.34 | 10.11 |
Others | 3.01 | 0.97 | 0.56 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, J.; Xiang, R.; Li, J.; Xiao, K.; Zheng, B. Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan–Guizhou Plateau, China. Water 2022, 14, 2451. https://doi.org/10.3390/w14152451
Ran J, Xiang R, Li J, Xiao K, Zheng B. Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan–Guizhou Plateau, China. Water. 2022; 14(15):2451. https://doi.org/10.3390/w14152451
Chicago/Turabian StyleRan, Jiao, Rong Xiang, Jie Li, Keyan Xiao, and Binghui Zheng. 2022. "Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan–Guizhou Plateau, China" Water 14, no. 15: 2451. https://doi.org/10.3390/w14152451
APA StyleRan, J., Xiang, R., Li, J., Xiao, K., & Zheng, B. (2022). Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan–Guizhou Plateau, China. Water, 14(15), 2451. https://doi.org/10.3390/w14152451