Ecological Compensation Mechanism in a Trans-Provincial River Basin: A Hydrological/Water-Quality Modeling-Based Analysis
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. SWAT Model and Inputs
2.2.1. Datasets for SWAT Model Building
2.2.2. Management Practices for the SWAT Model
2.3. Ecological Compensation Implementation
3. Results and Discussion
3.1. Suitability of SWAT for Simulating Streamflow and Nutrients
3.2. Spatial and Temporal Distribution of Nutrient Pollution
3.2.1. Spatial Variation in Nutrients
3.2.2. Seasonal Variation in Nutrients
3.2.3. Nutrients in the Trans-Provincial Key Sections
3.3. Effect and Quantification of Eco-Compensation
3.4. Implications for Eco-Compensation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prathumratana, L.; Sthiannopkao, S.; Kim, K.W. The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environ. Int. 2008, 34, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, M.; Goulden, M.; Tickner, D. Current and future challenges facing transboundary river basin management. WIREs Clim. Chang. 2013, 4, 331–349. [Google Scholar] [CrossRef]
- Connell, D.; Grafton, R.Q. Water reform in the Murray-Darling Basin. Water Resour. Res. 2011, 47, W00G03. [Google Scholar] [CrossRef]
- Isakson, R.S. Payments for Environmental Services in the Catskills: A Socio-Economic Analysis of the Agricultural Strategy in New York City’s Watershed Management Plan; Report was Elaborated for the “Payment for Environmental Services in the Americas” Project; FORD Foundation and Fundación PRISMA: San Salvador, El Salvador, 2002. [Google Scholar]
- Ren, Y.; Lu, L.; Yu, H.; Zhu, D. Game strategies in government-led eco-compensation in the Xin’an River Basin from the perspective of the politics of scale. J. Geogr. Sci. 2021, 31, 1205–1221. [Google Scholar] [CrossRef]
- Jiang, K.; Merrill, R.; You, D.; Pan, P.; Li, Z. Optimal control for transboundary pollution under ecological compensation: A stochastic differential game approach. J. Clean. Prod. 2019, 241, 118391. [Google Scholar] [CrossRef]
- Pagiola, S.; Platais, G. Payments for Environmental Services; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Adhikari, B. Market-Based Approaches to Environmental Management: A Review of Lessons from Payment for Environmental Services in Asia; Asian Development Bank Institute: Tokyo, Japan, 2009. [Google Scholar]
- Sun, X.Z.; Xie, G.D.; Zhen, L. Effects of converting arable land into forest (grassland) and eco-compensation: A case study in Yuanzhou county, Guyuan city of Ningxia Hui Autonomous Region. Resour. Sci. 2007, 29, 194–200. (In Chinese) [Google Scholar]
- Xian, J.; Xia, C.; Cao, S. Cost–benefit analysis for China’s Grain for Green Program. Ecol. Eng. 2020, 151, 105850. [Google Scholar] [CrossRef]
- Wang, J.; Tian, R.; Dong, Z.; Shi, G.; Hou, C. Watershed Eco-Compensation in China: Practice and Review; Springer: Singapore, 2022; pp. 1–37. [Google Scholar]
- Wang, H.; Dong, Z.; Xu, Y.; Ge, C. Eco-compensation for watershed services in China. Water Int. 2016, 41, 271–289. [Google Scholar] [CrossRef]
- Chen, C.; Matzdorf, B.; Zhen, L.; Schroeter, B. Social-Network Analysis of local governance models for China’s eco-compensation program. Ecosyst. Serv. 2020, 45, 101191. [Google Scholar] [CrossRef]
- Reckhow, K.H.; Norris, P.E.; Budell, R.J.; Di Toro, D.M.; Galloway, J.N.; Greening, H.; Sharpley, A.N.; Shirmohammadi, A.; Stacey, P.E. Achieving Nutrient and Sediment Reduction Goals in the Chesapeake Bay: An Evaluation of Program Strategies and Implementation; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xu, Q.; Huang, C. Current status and future tendency of lake eutrophication in China. Sci. China Ser. C Life Sci. 2005, 48, 948–954. [Google Scholar]
- Wu, Z.; Zhang, D.; Cai, Y.; Wang, X.; Zhang, L.; Chen, Y. Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China. Sci. Rep. 2017, 7, 17999. [Google Scholar] [CrossRef] [PubMed]
- Boesch, D.F.; Brinsfield, R.B.; Magnien, R.E. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture. J. Environ. Qual. 2001, 30, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Imtiyaz, M.; Isaac, R.K.; Denis, D.M. Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agric. Water Manag. 2012, 104, 113–120. [Google Scholar] [CrossRef]
- Li, Z.; Luo, C.; Xi, Q.; Li, H.; Pan, J.; Zhou, Q.; Xiong, Z. Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China. Catena 2015, 133, 349–361. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Bingner, R.L.; Theurer, F.D. AGNPS 98: A Suite of Water Quality Models for Watershed Use. In Proceedings of the Federal Inter-Agency Sedimentation Conference 7, Reno, NV, USA, 25–29 March 2001; pp. 1–8. [Google Scholar]
- Hoang, L.; van Griensven, A.; Mynett, A. Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environ. Modell. Softw. 2017, 93, 163–179. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Huang, Q. Tangbai River Water Pollution and Prevention Measures. Yangtze River 1999, 30, 30. (In Chinese) [Google Scholar]
- STHJT. Monthly Report on Water Quality of Han River. Available online: http://sthjj.xiangyang.gov.cn/hjxx/tjsj/hjszyb/ (accessed on 1 May 2021). (In Chinese)
- Yao, C. Pollution of Tangbai River Basin Endangers Hubei and Henan Provinces. Available online: http://www.xfmj.gov.cn/cms/html/jianyanxiance/20100304/65.html (accessed on 1 February 2021). (In Chinese)
- State Council; Ministry of Natural Resources; National Bureau of Statistics. Technical Regulations of the Third National Land Survey; State Council; Ministry of Natural Resources; National Bureau of Statistics: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Cai, X.; Xu, Z.; Su, B.; Yu, W. Distributed simulation for regional evapotranspiration and verification by using remote sensing. Trans. CSAE 2009, 25, 154–160. (In Chinese) [Google Scholar]
- Cai, L. Investigation on Agricultural Non-point Source Pollution in Henan Province. Master’s Thesis, Henan University, Kaifeng, China, 2017. (In Chinese). [Google Scholar]
- Lan, S. Investigation and Research on Agricultural Non-point Source Pollution in Nanyang City. Agro-Environ. Dev. 2009, 26, 59–61. (In Chinese) [Google Scholar]
- Nanyang Agricultural Bureau. Guiding Opinions on Scientific Fertilization of Crops in Nanyang City in 2019. Available online: http://nyj.nanyang.gov.cn/ (accessed on 1 May 2021). (In Chinese)
- Shi, J.; Zhou, S.; Zhao, J.; Dong, B. Livestock and Poultry Manure Excrements and Their Environmental Effect Evaluation in Nanyang. J. Domest. Anim. Ecol. 2014, 35, 76–81. (In Chinese) [Google Scholar]
- Liu, X.; Kuang, M.; Dai, Z.; Wang, M.; Xie, B. Water pollution analysis and control measures of Tangbai river. J. Chongqing Univ. Arts Sci. 2014, 33, 5. (In Chinese) [Google Scholar]
- Zhang, S.; Lin, L.; Wang, Z.; Pan, X.; Liu, M.; Dong, L.; Tao, J. Spatio-temporal Variation of Water Quality in the Middle-lower Hanjiang River. J. Yangtze River Sci. Res. Inst. 2020, 38, 7. (In Chinese) [Google Scholar]
- Hass, J.E. Optimal taxing for the abatement of water pollution. Water Resour. Res. 1970, 6, 353–365. [Google Scholar] [CrossRef]
- Branca, G.; Lipper, L.; Neves, B.; Lopa, D.; Mwanyoka, I. Payments for watershed services supporting sustainable agricultural development in Tanzania. J. Environ. Dev. 2011, 20, 278–302. [Google Scholar] [CrossRef]
- Dunn, C.P.; Stearns, F.; Guntenspergen, G.R.; Sharpe, D.M. Ecological benefits of the conservation reserve program. Conserv. Biol. 1993, 7, 132–139. [Google Scholar] [CrossRef]
- Delang, C.O.; Yuan, Z. China’s Grain for Green Program; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Liu, R.; Xu, F.; Zhang, P.; Yu, W.; Men, C. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT. J. Hydrol. 2016, 533, 379–388. [Google Scholar] [CrossRef]
- Hoang, L.; Van Griensven, A.; van der Keur, P.; Refsgaard, J.C.; Troldborg, L.; Nilsson, B.; Mynett, A. Comparison and Evaluation of Model Structures for the Simulation of Pollution Fluxes in a Tile-Drained River Basin. J. Environ. Qual. 2014, 43, 86–99. [Google Scholar] [CrossRef]
- Karki, R.; Srivastava, P.; Bosch, D.D.; Kalin, L.; Lamba, J.; Strickland, T.C. Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling. Trans. ASABE 2020, 63, 523–539. [Google Scholar] [CrossRef]
- Helfand, G.E.; House, B.W. Regulating nonpoint source pollution under heterogeneous conditions. Am. J. Agric. Econ. 1995, 77, 1024–1032. [Google Scholar] [CrossRef]
- Richardson, C.W.; King, K.W. Erosion and nutrient losses from zero tillage on a clay soil. J. Agric. Eng. Res. 1995, 61, 81–86. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Forney, TX, USA, 2011. [Google Scholar]
- Van Kessel, C.; Clough, T.; van Groenigen, J.W. Dissolved organic nitrogen: An overlooked pathway of nitrogen loss from agricultural systems? J. Environ. Qual. 2009, 38, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chiang, L. Sensitivity analysis of SWAT nitrogen simulations with and without in-stream processes. Arch. Agron. Soil Sci. 2015, 61, 969–987. [Google Scholar] [CrossRef]
- Chaubey, I.; Migliaccio, K.W.; Green, C.H.; Arnold, J.G.; Srinivasan, R. Phosphorus modeling in soil and water assessment tool (SWAT) model. In Modeling Phosphorus in the Environment; CRC Press: Boca Raton, FL, USA, 2006; pp. 163–187. [Google Scholar]
- Davis, M. Nitrogen leaching losses from forests in New Zealand. N. Z. J. For. Sci. 2014, 44, 2. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Liu, X.; Xiao, L.; Shi, P.; Zhao, B. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma 2019, 351, 188–196. [Google Scholar] [CrossRef]
- Huo, D.; Gan, N.; Geng, R.; Cao, Q.; Song, L.; Yu, G.; Li, R. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef] [PubMed]
- Malik, Z.; Malik, M.A.; Zong, Y.; Lu, S. Physical properties of unproductive soils of Northern China. Int. Agrophys. 2014, 28, 4. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Li, H.; Qi, X.; Gao, Y.; Zhang, Y.; Han, Y.; Jiang, Y.; Li, H. Soil nematode community and crop productivity in response to 5-year biochar and manure addition to yellow cinnamon soil. BMC Ecol. 2020, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Jin, Y.; Gao, H.; Chang, J.; Zhang, L. Effects of fertilization practices on infiltration in Shajiang black soils. Zhongguo Shengtai Nongye Xuebao/Chin. J. Eco-Agric. 2014, 22, 965–971. [Google Scholar]
- Nanyang Municipal Bureau of Statistics. Statistical Bulletin on National Economic and Social Development of Fujian Province in 2021; Fujian International Investment Promotion Center: Xiamen, China, 2019. [Google Scholar]
- Kosoy, N.; Martinez-Tuna, M.; Muradian, R.; Martinez-Alier, J. Payments for environmental services in watersheds: Insights from a comparative study of three cases in Central America. Ecol. Econ. 2007, 61, 446–455. [Google Scholar] [CrossRef]
- Gaines, S.E. The polluter-pays principle: From economic equity to environmental ethos. Tex. Int’l LJ 1991, 26, 463. [Google Scholar]
- He, S.; Su, Y.; Wang, L.; Gallagher, L.; Cheng, H. Taking an ecosystem services approach for a new national park system in China. Resour. Conserv. Recycl. 2018, 137, 136–144. [Google Scholar] [CrossRef]
- Shang, W.; Gong, Y.; Wang, Z.; Stewardson, M.J. Eco-compensation in China: Theory, practices and suggestions for the future. J. Environ. Manag. 2018, 210, 162–170. [Google Scholar] [CrossRef]
- Gersonius, B.; Ashley, R.; Pathirana, A.; Zevenbergen, C. Climate change uncertainty: Building flexibility into water and flood risk infrastructure. Clim. Change 2013, 116, 411–423. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Zhang, Z. Forest quality-based assessment of the Returning Farmland to Forest Program at the community level in SW China. For. Ecol. Manag. 2020, 461, 117938. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, X.; Lv, C.; Wang, H.; Di, D. Study on the quantification method of water pollution ecological compensation standard based on emergy theory. Ecol. Indic. 2018, 92, 189–194. [Google Scholar] [CrossRef]
- Gu, Q.; Zhang, Y.; Ma, L.; Li, J.; Wang, K.; Zheng, K.; Zhang, X.; Sheng, L. Assessment of reservoir water quality using multivariate statistical techniques: A case study of Qiandao Lake, China. Sustainability 2016, 8, 243. [Google Scholar] [CrossRef]
Data Type | Resolution | Year | Data Source |
---|---|---|---|
1. Digital elevation model | 90 m | 2006 | SRTM Digital Elevation Database v4. 1 (https://bigdata.cgiar.org/srtm-90m-digital-elevation-database/, accessed on 1 February 2021) |
2. Land use land cover | 1 km | 2000, 2005, 2010, 2015 | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 1 February 2021) |
3. Soil map | 1 km | 1995 | Resource and Environment Data Cloud Platform (https://www.resdc.cn/, accessed on 1 March 2021); China Soil Science Database (http://vdb3.soil.csdb.cn/, accessed on 1 May 2021); SPAW software (https://hrsl.ba.ars.usda.gov/SPAW/, accessed on 1 May 2021) |
4. Climate observation (i.e., station location, precipitation, temperature, solar, relative humidity, solar radiation, wind speed) | daily | 1960–2019 | National Meteorological Information Centre (http://data.cma.cn/, accessed on 1 February 2021); Angstrom-Prescott radiation model |
5. Crop management (i.e., land cover, type, and mode) | date | 2019 | Field survey |
6. Fertilization application (i.e., type, date, and quantity) | date | 2005 | Field survey; literature review 1 |
7. Livestock manure production | daily | 2011 | Literature review |
8. Streamflow data (i.e., station location, flow rate) | monthly | 1997–2001; 2007–2012 | Changjiang Water Resources Commission of the Ministry of Water Resources |
9. Water quality data (i.e., monitoring location, and total nitrogen and phosphorus) | date | 2000–2019 | Literature review; Monthly Report on Water Quality of Han River (http://sthjj.xiangyang.gov.cn/hjxx/tjsj/hjszyb/, accessed on 1 May 2021); Xiangyang Municipal Ecological Environment Bureau |
LULC | Crop | Cycle | Fertilization | Urea Applied (kg/ha) | P2O5 2 Applied (kg/ha) | Fertilizer on Surface |
---|---|---|---|---|---|---|
AGRL 1 | Winter wheat | 15 October–15 June | 15 October | 100.38 | 102.60 | 0.2 |
1 April | 43.02 | - | 0.2 | |||
Summer corn | 1 July–15 September | 1 August | 191.25 | 59.25 | 0.2 | |
RICE 1 | Rice | 15 April–1 October | 1 May | 82.80 | 114.75 | 0.5 |
1 July | 49.68 | - | 0.5 | |||
1 August | 33.12 | - | 0.5 | |||
LULC | Livestock | Duration (days) | Application frequency | Manure 3 applied (kg/ha) | Heat Unit | |
URLD | Swine/beef/broiler | 365 | 1 (daily) | 6.38 | 0 |
LULC | Plant | Area (km2) | Area (%) | Nfert (kg/ha∙y) | Pfert (kg/ha∙y) | TN (kg/ha∙y) | TP (kg/ha∙y) | TN (ton·y) | TP (ton·y) |
---|---|---|---|---|---|---|---|---|---|
AGRL | WWHT/CORN | 14,913.9 | 61.6 | 153.9 | 69.6 | 10.0 | 7.1 | 14,850.9 | 10,566.6 |
FRST | FRST | 4462.2 | 18.4 | - | - | 2.7 | 0.9 | 1223.9 | 387.2 |
URLD | BERM | 1638.0 | 6.8 | 121.2 | - | 5.6 | 1.5 | 917.0 | 252.5 |
RICE | RICE | 1083.2 | 4.5 | 76.2 | 49.3 | 6.3 | 8.4 | 680.8 | 913.5 |
WATR | - | 657.6 | 2.7 | - | - | - | - | - | - |
PAST | Panicum | 567.3 | 2.3 | - | - | 9.7 | 3.1 | 550.1 | 173.8 |
HAY | Hay | 392.0 | 1.6 | 321.6 | 12.5 | 3.0 | 1.5 | 118.3 | 60.4 |
URBN | BERM | 221.3 | 0.9 | 226.2 | - | 6.6 | 0.3 | 147.1 | 7.5 |
ORCD | ORCD | 142.7 | 0.6 | 2.9 | - | 4.1 | 1.1 | 57.9 | 15.0 |
UIDU | BERM | 83.2 | 0.3 | 129.2 | - | 6.0 | 1.5 | 49.6 | 12.5 |
BARR | BARR | 30.4 | 0.1 | - | - | 14.0 | 4.2 | 42.6 | 12.8 |
Whole basin | 24,192 | 100 | 114.3 | 45.3 | 7.7 | 5.1 | 18,638.2 | 12,401.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Zheng, H.; Liu, Y.; Zhao, J.; Fan, Y.; Fan, H. Ecological Compensation Mechanism in a Trans-Provincial River Basin: A Hydrological/Water-Quality Modeling-Based Analysis. Water 2022, 14, 2542. https://doi.org/10.3390/w14162542
Wan W, Zheng H, Liu Y, Zhao J, Fan Y, Fan H. Ecological Compensation Mechanism in a Trans-Provincial River Basin: A Hydrological/Water-Quality Modeling-Based Analysis. Water. 2022; 14(16):2542. https://doi.org/10.3390/w14162542
Chicago/Turabian StyleWan, Wenhua, Hang Zheng, Yueyi Liu, Jianshi Zhao, Yingqi Fan, and Hongbo Fan. 2022. "Ecological Compensation Mechanism in a Trans-Provincial River Basin: A Hydrological/Water-Quality Modeling-Based Analysis" Water 14, no. 16: 2542. https://doi.org/10.3390/w14162542
APA StyleWan, W., Zheng, H., Liu, Y., Zhao, J., Fan, Y., & Fan, H. (2022). Ecological Compensation Mechanism in a Trans-Provincial River Basin: A Hydrological/Water-Quality Modeling-Based Analysis. Water, 14(16), 2542. https://doi.org/10.3390/w14162542