Expanding the Irrigated Areas in the MENA and Central Asia: Challenges or Opportunities?
Abstract
:1. Introduction
2. Methodology
2.1. Current Situation and Data Used
2.2. Calculating the Irrigation and Rainfed Hectare Annual Water Demand
2.3. Expanding the Farmed Area Scenarios and Classification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stenzel, F.; Greve, P.; Lucht, W.; Tramberend, S.; Wada, Y.; Gerten, D. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 2021, 12, 1512. [Google Scholar] [CrossRef] [PubMed]
- Fukuda-Parr, S. From the Millennium Development Goals to the Sustainable Development Goals: Shifts in purpose, concept, and politics of global goal setting for development. Gend. Dev. 2016, 24, 43–52. [Google Scholar] [CrossRef]
- Hadebe, S.; Modi, A.; Mabhaudhi, T. Drought Tolerance and Water Use of Cereal Crops: A Focus on Sorghum as a Food Security Crop in Sub-Saharan Africa. J. Agron. Crop Sci. 2016, 203, 177–191. [Google Scholar] [CrossRef]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M.S.; Saleem, M.H.; Adil, M.; Heidari, P.; Chen, J.T. An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int. J. Mol. Sci. 2019, 21, 148. [Google Scholar] [CrossRef] [Green Version]
- Ide, T.; Lopez, M.; Fröhlich, C.; Scheffran, J. Pathways to water conflict during drought in the MENA region. J. Peace Res. 2020, 58, 568–582. [Google Scholar] [CrossRef]
- Xi, X.; Sokolik, I. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. J. Geophys. Res. Atmos. 2016, 121, 270–281. [Google Scholar] [CrossRef]
- Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.M.; Tourian, M.J.; Bakhshaee, A.; Kløve, B. Evaluating Impacts of Irrigation and Drought on River, Groundwater and a Terminal Wetland in the Zayanderud Basin, Iran. Water 2020, 12, 1302. [Google Scholar] [CrossRef]
- Dogar, M.; Sato, T. Analysis of Climate Trends and Leading Modes of Climate Variability for MENA Region. J. Geophys. Res. Atmos. 2018, 123, 13–74. [Google Scholar] [CrossRef]
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Tong, D.; Hong, C.; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Aghahosseini, A.; Bogdanov, D.; Breyer, C. Towards sustainable development in the MENA region: Analysing the feasibility of a 100% renewable electricity system in 2030. Energy Strategy Rev. 2020, 28, 100466. [Google Scholar] [CrossRef]
- Ouda, M.; Kadadou, D.; Swaidan, B.; Al-Othman, A.; Al-Asheh, S.; Banat, F.; Hasan, S.W. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. Sci. Total Environ. 2021, 754, 142177. [Google Scholar] [CrossRef] [PubMed]
- AQUASTAT Database. 2022. Available online: https://www.fao.org/aquastat/statistics/query/ (accessed on 20 January 2022).
- The World Bank Database. 2022. Available online: https://databank.worldbank.org/home.aspx (accessed on 20 January 2022).
- Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.; Xenarios, S.; Kløve, B. 2018. An Index-Based Approach to Assess the Water Availability for Irrigated Agriculture in Sub-Saharan Africa. Water 2018, 10, 896. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, S.R.; Johnston, J.M. Sustainability assessment of agricultural rainwater harvesting: Evaluation of alternative crop types and irrigation practices. PLoS ONE 2019, 14, 0216452. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Angelaki, A.; Giannoulis, K.D.; Skoufogianni, E.; Bartzialis, D.; Cavalaris, C.; Vleioras, S. Evaluation of soil properties, irrigation and solid waste application levels on Cu and Zn uptake by industrial hemp. Agron. Res. 2021, 19, 92–99. [Google Scholar]
- He, S.S.; Zeng, Y.; Liang, Z.X.; Jing, Y.; Tang, S.; Zhang, B.; Yan, H.; Li, S.; Xie, T.; Tan, F.; et al. Economic evaluation of water-saving irrigation practices for sustainable sugarcane production in Guangxi Province, China. Sugar Tech 2021, 23, 1325–1331. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [Green Version]
- Torabi Haghighi, A.; Abou Zaki, N.; Rossi, P.M.; Noori, R.; Hekmatzadeh, A.A.; Saremi, H.; Kløve, B. Unsustainability Syndrome—From Meteorological to Agricultural Drought in Arid and Semi-Arid Regions. Water 2020, 12, 838. [Google Scholar] [CrossRef] [Green Version]
- Balan, I.; Popescu, A.; Iancu, T.; Popescu, G.; Tulcan, C. Food safety versus food security in a world of famine. SSRN Electron. J. 2020, 1, 20–30. [Google Scholar] [CrossRef]
- Lee, S.; Mohtar, R.; Yoo, S. Assessment of food trade impacts on water, food, and land security in the MENA region. Hydrol. Earth Syst. Sci. 2019, 23, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Svanidze, M.; Götz, L.; Djuric, I.; Glauben, T. Food security and the functioning of wheat markets in Eurasia: A comparative price transmission analysis for the countries of Central Asia and the South Caucasus. Food Secur. 2019, 11, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Enghiad, A.; Ufer, D.; Countryman, A.; Thilmany, D. An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns. Int. J. Agron. 2017, 2017, 3931897. [Google Scholar] [CrossRef]
- Marchetti, N.; Curci, A.; Gatto, M.C.; Nicolini, S.; Mühl, S.; Zaina, F. A multi-scalar approach for assessing the impact of dams on the cultural heritage in the Middle East and North Africa. J. Cult. Herit. 2019, 37, 17–28. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. Npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Finney, C. Water charging in agriculture: Lessons from the literature, edited by B. Bosworth, G. Cornish, C. Perry and F. van Steenbergen. HR Wallingford, 2002. Irrig. Drain. 2003, 52, 189–190. [Google Scholar] [CrossRef]
- Asenjo, A.; Pignatti, C. Unemployment Insurance Schemes around the World: Evidence and Policy Options; Working Paper No. 49; International Labour Office: Geneva, Switzerland, 2019. [Google Scholar]
Country | Region | RSW (km3) | RGW (km3) | RWR (mm) | AWU (km3) | AL (1000 ha) | ALP (1000 ha) | R/ICY | AGDP (%) | IGVA (%) |
---|---|---|---|---|---|---|---|---|---|---|
Algeria | NA | 10.15 | 1.52 | 4.90 | 2.7 | 41,456 | 41,432,000 | 2.2 | 12 | 20 |
Bahrain | ME | 0.004 | 0.112 | 151.63 | 0.2 | 8.6 | 4365 | 1.77 | 0.3 | 92.4 |
Egypt | NA | 56 | 2.3 | 57.72 | 54.3 | 3790 | 75,000 | - | 11.5 | 100 |
Iran | ME | 105.8 | 49.3 | 94.11 | 64.6 | 45,954 | 27,847,000 | 2.5 | 9.5 | 73.4 |
Iraq | ME | 88.58 | 3.28 | 210.17 | 39.6 | 9250 | 3,240,000 | 2.2 | 3 | 57.3 |
Palestine | ME | 0.555 | 1.225 | 80.38 | 1.0 | 534 | 231,300 | 1.9 | 1.2 | 49.1 |
Jordan | ME | 0.65 | 0.54 | 13.32 | 0.7 | 1056 | 751,800 | 1.77 | 5.5 | 54.4 |
Kuwait | ME | 0.19 | 0.02 | 11.79 | 0.3 | 150 | 142,000 | - | 0.5 | 100 |
Lebanon | ME | 3.803 | 3.2 | 670.02 | 0.9 | 658 | 476,000 | 1.85 | 3 | 66.1 |
Libya | NA | 0.2 | 0.6 | 0.45 | 3.3 | 15,350 | 13,630,000 | 2.67 | 0.8 | 39.7 |
Morocco | NA | 22 | 10 | 71.66 | 11.2 | 30,047 | 22,591,400 | 1.8 | 12.3 | 28.6 |
Oman | ME | 1.05 | 1.3 | 7.59 | 1.2 | 1434 | 1,382,230 | - | 2.1 | 100 |
Qatar | ME | 0.2 | 0.058 | 22.30 | 20.7 | 68 | 60,600 | - | 0.2 | 100 |
Saudi Arabia | ME | 2.2 | 2.2 | 2.05 | 16.2 | 173,635 | 172,192,000 | - | 2.5 | 100 |
Syria | ME | 12.63 | 6.174 | 101.54 | 14.8 | 4662 | 81,79,000 | 2.07 | 20.6 | 38.6 |
Tunisia | NA | 3.42 | 1.595 | 30.65 | 2.2 | 9834 | 7,136,000 | 1.77 | 9.6 | 16.6 |
Turkey | ME | 171.8 | 67.8 | 305.78 | 26.7 | 38,551 | 11,196,000 | 2.14 | 6 | 26 |
UAE | ME | 0.15 | 0.12 | 3.23 | 2.5 | 383 | 126,832 | - | 0.78 | 100 |
Yemen | ME | 5.3 | 1.5 | 6.31 | 2.7 | 23,433 | 22,198,812 | 2.34 | 19 | 59 |
Afghanistan | CA | 55.68 | 10.65 | 101.60 | 19.9 | 37,910 | 30,009,000 | 2.1 | 24 | 44.5 |
Kazakhstan | CA | 100.6 | 33.85 | 49.34 | 15.1 | 217,161 | 192,556,500 | 1.77 | 4.5 | 6.9 |
Kyrgyzstan | CA | 21.15 | 13.69 | 174.29 | 7.1 | 10,611 | 9,190,300 | 1.77 | 12.5 | 84.1 |
Tajikistan | CA | 18.91 | 6 | 174.07 | 10.4 | 4755 | 3852,700 | - | 21.2 | 90.3 |
Turkmenistan | CA | 24.36 | 0.405 | 50.42 | 26.3 | 34,000 | 31,898,000 | - | 8.7 | 100 |
Uzbekistan | CA | 42.07 | 8.8 | 113.30 | 54.3 | 25,598 | 20,926,700 | 1.77 | 30 | 90 |
Class I | NAWD ≤ RSW | New water demand is less than both renewable surface and groundwater resources. Expansion is sustainable. |
and | ||
NAWD ≤ RGW | ||
Class II | NAWD ≤ RSW | New water demand is less than renewable surface water resources but larger than renewable groundwater resources. Expansion is partially sustainable. |
and | ||
NAWD > RGW | ||
Class III | NAWD > RSW | New water demand is larger than renewable groundwater resources but larger than renewable surface resources. Expansion is partially sustainable. |
and | ||
NAWD ≤ RGW | ||
Class IV | NAWD ≤ (RSW + RGW) | New water demand is less than the summation of surface and groundwater resources. Expansion is partially sustainable. |
Class V | NAWD > (RSW + RGW) | New water demand is larger than the summation of the renewable surface and groundwater resources, but the current water demand is lower. Expansion is unsustainable. |
and | ||
CAWD < (RSW + RGW) | ||
Class VI | CAWD > (RSW + RGW) | Current water demand is higher than the summation of renewable surface and groundwater resources. Fossil water resources, which are the overexploited nonrenewable water resources, are currently used. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou Zaki, N.; Kløve, B.; Torabi Haghighi, A. Expanding the Irrigated Areas in the MENA and Central Asia: Challenges or Opportunities? Water 2022, 14, 2560. https://doi.org/10.3390/w14162560
Abou Zaki N, Kløve B, Torabi Haghighi A. Expanding the Irrigated Areas in the MENA and Central Asia: Challenges or Opportunities? Water. 2022; 14(16):2560. https://doi.org/10.3390/w14162560
Chicago/Turabian StyleAbou Zaki, Nizar, Bjørn Kløve, and Ali Torabi Haghighi. 2022. "Expanding the Irrigated Areas in the MENA and Central Asia: Challenges or Opportunities?" Water 14, no. 16: 2560. https://doi.org/10.3390/w14162560
APA StyleAbou Zaki, N., Kløve, B., & Torabi Haghighi, A. (2022). Expanding the Irrigated Areas in the MENA and Central Asia: Challenges or Opportunities? Water, 14(16), 2560. https://doi.org/10.3390/w14162560