Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Long-Term Linear Analysis
3.2. Nonlinear Signal
3.3. Land Use Changes
4. Discussion
4.1. Climatic and Hydrological Variability Induced by the Anthropogenic Dimming/Brightening Phenomenon
4.2. Anthropogenic Influences at the River-Basin Scale
4.3. Natural Contributions from Coupled Ocean/Atmosphere Processes
5. Conclusions
- The anthropogenic footprint, attributed to effects such as land use changes and the large-scale anthropogenic dimming/brightening phenomenon, acting at both the river basin and regional-to-global scales, profoundly impacts the catchment dynamics by driving long-term, nonlinear trends, upon which natural oscillations are superimposed. Interactions with major climate modes, in fact, affect the signals over various periodicities. Both positive and negative correlations among some of the studied parameters and the main climatic indexes (NAO, AMO, WeMo) are evidenced;
- The marked negative acceleration in river discharge provides an indication of the lack of recovery in terms of sediment supply to the coast, despite safeguard policies introduced by the ER regional administration in the early 1980s. This decline resulted from river regulation and land use changes during 1950–1980 and related implications. Moreover, since the 1980s, local air temperatures have increased significantly, leading to persistent drought conditions contributing to the drastic reduction in river discharge. However, periodic natural signals can significantly restore the river discharge, as observed during the strongly negative NAO event in 2010;
- Persistent sea-level rise has affected the coastal site under study over the last 140 years. Apart from the extremely high rates during the 1950s–1980s due to anthropogenic-induced land subsidence, sea level is periodically amplified or reduced by natural fluctuations, such as that observed in 2010, and lower frequency fluctuations in the local sea level, as during the early 20th century, 1970s–1980s, and 1990s to mid-2000s. This nonlinear behavior, locally enhanced by subsidence that overwhelms the river sediment inputs, notably impacted the ER coast and may continue to do so.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., Van Der Linden, P., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–357. [Google Scholar]
- Syvitski, J.; Kettner, A.; Overeem, I.; Hutton, E.; Hannon, M.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Llorens, P.; Queralt, I.; Plana, F.; Gallart, F. Studying solute and particulate sediment transfer in a small Mediterranean mountainous catchment subject to land abandonment. Earth Surf. Process. Landf. 1997, 22, 1027–1035. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Harvey, N.; Wolanski, E.; Burnett, W.C.; Perillo, G.M.E.; Gornitz, V.; Arthurton, R.K.; Bokuniewicz, H.; Campbell, J.W.; Cooper, L.; et al. Dynamics of the coastal zone. In Coastal Fluxes in the Anthropocene; Crossland, C.J., Kremer, H.H., Lindeboom, H., Marshall Crossland, J.I., Le Tissier, M.D.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 39–94. [Google Scholar]
- Walling, D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 2011, 369, 957–975. [Google Scholar] [CrossRef]
- Weston, N.B. Declining Sediments and Rising Seas: An Unfortunate Convergence for Tidal Wetlands. Estuaries Coasts 2014, 37, 1–23. [Google Scholar] [CrossRef]
- Buendia, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R.J. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Sci. Total Environ. 2016, 540, 144–157. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Dunn, F.E.; Darby, S.E.; Nicholls, R.J.; Cohen, S.; Zarfl, C.; Fekete, B.M. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 2019, 14, 084034. [Google Scholar] [CrossRef]
- Milliman, J.D. Delivery and fate of fluvial water and sediment to the sea: A marine geologist’s view of European rivers. Sci. Mar. 2001, 65, 121–132. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Darby, S.E.; Hackney, C.R.; Leyland, J.; Kummu, M.; Lauri, H.; Parson, D.R.; Best, J.L.; Nicholas, A.P.; Aalto, R. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 2016, 539, 276–279. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1211–1362. [Google Scholar]
- Darby, S.E.; Dunn, F.E.; Nicholls, R.J.; Rahman, M.; Riddy, L. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta. Environ. Sci. Process. Impact 2015, 17, 1587–1600. [Google Scholar] [CrossRef]
- Lorito, S.; Calabrese, L.; Perini, L.; Cibin, U. Uso del suolo della costa. In Il Sistema Mare-Costa dell’Emilia-Romagna; Perini, L., Calabrese, L., Eds.; Edizioni Pendragon: Bologna, Italy, 2010; pp. 109–118. [Google Scholar]
- Carbognin, L.; Gatto, P.; Mozzi, G. Case history no.9.15: Ravenna, Italy. In Guidebook to Studies of Land Subsidence due to Ground-Water Withdrawal; Poland, J.F., Ed.; UNESCO: Paris, France, 1984; pp. 291–305. [Google Scholar]
- Bertoni, W.; Brighenti, G.; Gambolati, G.; Ricceri, G.; Vullermin, F. Land subsidence due to gas production in the on- and off-shore natural gas fields of the Ravenna area, Italy. In Proceedings of the 5th International Symposium on Land Subsidence, The Hague, The Netherlands, 16–20 October 1995. [Google Scholar]
- Gambolati, G.; Teatini, P.; Tomasi, L.; Gonella, M. Coastline regression of the Romagna Region, Italy, due to sea level rise and natural and anthropogenic land subsidence. Water Resour. Res. 1999, 35, 163–184. [Google Scholar] [CrossRef]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Elfrink, B.; Christensen, E.D.; Broker, I. Coastal morphodynamics in subsiding areas. In CENAS: Coastline Evolution of the Upper Adriatic Sea Due to Sea Level Rise and Natural and Anthropogenic Land Subsidence; Gambolati, G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 235–270. [Google Scholar]
- Aguzzi, M.; Bonsignore, F.; De Nigris, N.; Morelli, M.; Paccagnella, T.; Romagnoli, V.; Unguendoli, S. Stato del Litorale Emiliano-Romagnolo al 2012. Erosione e Interventi di Difesa; Arpae Emilia-Romagna: Bologna, Italy, 2016; p. 230. [Google Scholar]
- Billi, P.; Salemi, E.; Preciso, E.; Ciavola, P.; Armaroli, C. Field measurement of bedload in a sand-bed river supplying a sediment starving beach. Z. Für Geomorphol. 2017, 61, 207–223. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Lo Presti, V.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef]
- Dal Cin, R. I litorali del delta del Po e alle foci dell’Adige e del Brenta: Caratteri tessiturali e dispersione dei sedimenti, cause dell’arretramento e previsioni sull’evoluzione futura. Boll. Soc. Geol. Ital. 1983, 102, 9–56. [Google Scholar]
- Simeoni, U.; Bondesan, M. The role and responsibility of man in the evolution of the Adriatic alluvial coasts of Italy. In Transformations and Evolution of the Mediterranean Coastline; Briand, F., Maldonado, A., Eds.; Musée Océanographique: Monaco-Ville, Monaco, 1997; pp. 111–132. [Google Scholar]
- Preti, M.; De Nigris, N.; Morelli, M.; Monti, M.; Bonsignore, F.; Aguzzi, M. Stato del Litorale Emiliano-Romagnolo All’anno 2007 e Piano Decennale di Gestione; Arpa Emilia-Romagna: Bologna, Italy, 2008. [Google Scholar]
- Ente Regionale per le Politiche Ambientali (IDROSER). Il Trasporto Solido Fluviale Nei Bacini Tributari Dell’Adriatico. Regione Emilia-Romagna, Piano Progettuale per la Difesa della Costa Emiliano-Romagnola; Regione Emilia-Romagna: Bologna, Italy, 1983; p. 429. [Google Scholar]
- Agenzia Regionale per la Protezione Ambientale (ARPA). Stato Del Litorale Emiliano-Romagnolo All’anno 2000; Arpa Emilia-Romagna: Bologna, Italy, 2002. [Google Scholar]
- Bondesan, M.; Calderoni, G.; Dal Cin, R. Il litorale delle province di Ferrara e Ravenna (Alto Adriatico); evoluzione morfologica e distribuzione dei sedimenti. Bol. Soc. Geol. Ital. 1978, 97, 247–287. [Google Scholar]
- Ente Regionale per le Politiche Ambientali (IDROSER). Progetto di Piano per la Difesa dal Mare e la Riqualificazione Ambientale del Litorale della Regione Emilia-Romagna, Relazione Generale; Regione Emilia-Romagna: Bologna, Italy, 1996; p. 365. [Google Scholar]
- Simeoni, U.; Atzeni, P.; Bonora, N.; Borasio, E.; Del Grande, C.; Gabbianelli, G.; Gonella, M.; Tessari, U.; Valpreda, E.; Zamariolo, A. Integrated Management Study of Comacchio Coast (Italy). J. Coast. Res. 2002, 36, 686–693. [Google Scholar] [CrossRef]
- Aguzzi, M.; Costantino, R.; De Nigris, N.; Morelli, M.; Romagnoli, C.; Unguendoli, S.; Vecchi, E. Stato del Litorale Emiliano-Romagnolo al 2018. Erosione e Interventi di Difesa; Arpae Emilia-Romagna: Bologna, Italy, 2020; p. 222. [Google Scholar]
- Preciso, E.; Salemi, E.; Billi, P. Land use changes, torrent control works and sediment mining: Effect on channel morphology and sediment flux, case study of the Reno River (Northern Italy). Hydrol. Processes 2012, 26, 1134–1148. [Google Scholar] [CrossRef]
- Antolini, G.; Auteri, L.; Pavan, V.; Tomei, F.; Tomozeiu, R.; Marletto, V. A daily high-resolution gridded climatic data set for Emilia-Romagna, Italy, during 1961–2010. Int. J. Clim. 2016, 36, 1970–1986. [Google Scholar] [CrossRef]
- Pavan, V.; Tomozeiu, R.; Cacciamani, C.; Di Lorenzo, M. Daily precipitation observations over Emilia-Romagna: Mean values and extremes. Int. J. Climatol. 2008, 28, 2065–2079. [Google Scholar] [CrossRef]
- Pavan, V.; Antolini, G.; Barbiero, R.; Berni, N.; Brunier, F.; Cacciamani, C.; Cagnati, A.; Cazzuli, O.; Cicogna, A.; De Luigi, C.; et al. High resolution climate precipitation analysis for north-central Italy, 1961–2015. Clim. Dyn. 2019, 52, 3435–3453. [Google Scholar] [CrossRef]
- Fioravanti, G.; Piervitali, E.; Desiato, F.; Perconti, W.; Fraschetti, P. Variazioni e Tendenze Degli Estremi di Temperature e Precipitazione in Italia; ISPRA: Roma, Italy, 2013; p. 60. [Google Scholar]
- Cacciamani, C.; Nanni, S.; Tibaldi, S. Mesoclimatology of winter temperature and precipitation in the Po Valley of Northern Italy. Int. J. Climatol. 1994, 14, 777–814. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int. J. Climatol. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Desiato, F.; Fioravanti, G.; Fraschetti, P.; Piervitali, E.; Pavan, V. Gli Indicatori del Clima in Italia nel 2014; ISPRA: Roma, Italy, 2015. [Google Scholar]
- Billi, P.; Fazzini, M. Global change and river flow in Italy. Glob. Planet. Chang. 2017, 155, 234–246. [Google Scholar] [CrossRef]
- Toreti, A.; Fioravanti, G.; Perconti, W.; Desiato, F. Annual and seasonal precipitation over Italy from 1961 to 2006. Int. J. Climatol. 2009, 29, 1976–1987. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Norrant, C.; Douguedroit, A. Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor. Appl. Climatol. 2006, 83, 89–106. [Google Scholar] [CrossRef]
- Eurosion. Living with Coastal Erosion in Europe: A Guide to Coastal Erosion Management Practices in Europe: Lessons Learned. A Case Study of Marina di Ravenna and Lido Adriano; Directorate General Environment European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Comerci, V.; Vittori, E. The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case. Remote Sens. 2019, 11, 1178. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, T.; Beguería, S.; García-Ruiz, J.M. Geomorphic and hydrological effects of traditional shifting agriculture in a Mediterranean mountain, Central Spanish Pyrenees. Mt. Res. Dev. 2006, 26, 146–152. [Google Scholar] [CrossRef]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Béjar, M.; Vericat, D.; Batalla, R.J.; Gibbins, C.N. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining. Geomorphology 2018, 310, 69–83. [Google Scholar] [CrossRef]
- Spalevic, V.; Barovic, G.; Vujacic, D.; Curovic, M.; Behzadfar, M.; Djurovic, N.; Dudic, B.; Billi, P. The Impact of Land Use Changes on Soil Erosion in the River Basin of Miocki Potok, Montenegro. Water 2020, 12, 2973. [Google Scholar] [CrossRef]
- Zerbini, S.; Raicich, F.; Prati, C.M.; Bruni, S.; Del Conte, S.; Errico, M.; Santi, E. Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth Sci. Rev. 2017, 167, 72–87. [Google Scholar] [CrossRef]
- Bruni, S.; Zerbini, S.; Raicich, F.; Errico, M. Rescue of the 1873-1922 high and low waters of the Porto Corsini/Marina di Ravenna (northern Adriatic, Italy) tide gauge. J. Geod. 2019, 93, 1227–1244. [Google Scholar] [CrossRef]
- Dext3r-SIMC Platform. Available online: https://simc.arpae.it/dext3r/ (accessed on 19 April 2021).
- Arpae Website. Available online: www.arpae.it (accessed on 12 February 2021).
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data System and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- PSMSL Website. Available online: http://www.psmsl.org/data/obtaining/ (accessed on 3 January 2022).
- Romagnoli, C.; Zerbini, S.; Raicich, F.; Richter, B.; Lago, L.; Domenichini, D.; Thomsen, I. Sea level variations from tide gauges and GPS in the Northern Adriatic. In Proceedings of the EGS XXVII General Assembly, Nice, France, 21–26 April 2002. [Google Scholar]
- Hurrell, J.W.; van Loon, H. Decadal variations in climate associated with the north Atlantic oscillation. Clim. Chang. 1997, 36, 301–326. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- NCAR Website. Available online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (accessed on 14 March 2021).
- Kerr, R.A. A North Atlantic Climate Pacemaker for the Centuries. Science 2000, 288, 1984–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NOAA/PSD Website. Available online: https://psl.noaa.gov/data/timeseries/AMO/ (accessed on 14 March 2021).
- Universitat de Barcelona Website. Available online: http://www.ub.edu/gc/wemo/ (accessed on 29 June 2022).
- Lopez-Bustins, J.A.; Lemus-Canovas, M. The influence of the Western Mediterranean Oscillation upon the spatio-temporal variability of precipitation over Catalonia (northeastern of the Iberian Peninsula). Atmos. Res. 2020, 236, 104819. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Palmer, W.C. Meteorological Drought; U.S. Government Printing Office: Washington, DC, USA, 1965.
- CSIC Website. Available online: https://spei.csic.es/database.html (accessed on 18 April 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Wang, K.; Li, Z.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Huntington, J.L.; Abatzoglou, J.T.; Edwards, L.M. An Evaluation of Multiscalar Drought Indices in Nevada and Eastern California. Earth Interact. 2012, 16, 1–18. [Google Scholar] [CrossRef]
- Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. Environ. Res. Lett. 2016, 11, 094021. [Google Scholar] [CrossRef]
- Chen, T.; Xia, G.; Liu, T.; Chen, W.; Chi, D. Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability 2016, 8, 1069. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Singh, V.P.; Shi, P. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Glob. Planet. Chang. 2017, 152, 1–11. [Google Scholar] [CrossRef]
- Páscoa, P.; Gouveia, C.M.; Russo, A.; Trigo, R.M. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012. Int. J. Biometeorol. 2017, 61, 439–451. [Google Scholar] [CrossRef]
- Labudová, L.; Labuda, M.; Takáč, A. Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian lowland and the east Slovakian lowland. Theor. Appl. Climatol. 2017, 128, 491–506. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?tab=overview (accessed on 10 July 2022).
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?tab=overview (accessed on 10 July 2022).
- C3S Website. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview (accessed on 10 July 2022).
- Emilia-Romagna Region Website. Available online: https://geoportale.regione.emilia-romagna.it/ (accessed on 4 March 2021).
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Nederl. Akad. Wetensch., Proc.; Springer: Berlin/Heidelberg, Germany, 1950. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wilcox, R.R. Theil–Sen Estimator, Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy; Springer: New York, NY, USA, 2001. [Google Scholar]
- Zervas, C.E. Sea level variations of the United States, 1854–1999. In NOAA Technical Report NOS CO-OPS 36; U.S. Department of Commerce; National Oceanic and Atmospheric Administration; National Ocean Service: Silver Spring, MD, USA, 2011. [Google Scholar]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.M.G.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Raicich, F.; Fenoglio-Marc, L.; Shaw, A.G.P.; Marcos, M.; Somot, S.; Bergamasco, F. Recent developments in understanding sea level rise in the Adriatic coasts. Phys. Chem. Earth Parts A/B/C 2012, 40–41, 59–71. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef]
- Watson, P.J. An Assessment of the Utility of Satellite Altimetry and Tide Gauge Data (ALT-TG) as a Proxy for Estimating Vertical Land Motion. J. Coast. Res. 2019, 35, 1131–1144. [Google Scholar] [CrossRef]
- Oelsmann, J.; Passaro, M.; Dettmering, D.; Schwatke, C.; Sánchez, L.; Seitz, F. The zone of influence: Matching sea level variability from coastal altimetry and tide gauges for vertical land motion estimation. Ocean Sci. 2021, 17, 35–57. [Google Scholar] [CrossRef]
- Santamaría-Gómez, A.; Gravelle, M.; Collilieux, X.; Guichard, M.; Martín Míguez, B.; Tipahaneau, P.; Wöppelmann, G. Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob. Planet. Chang. 2012, 98–99, 6–17. [Google Scholar] [CrossRef]
- Zerbini, S.; Plag, H.-P.; Baker, T.; Becker, M.; Billiris, H.; Bürki, B.; Kahle, H.-G.; Marson, I.; Pezzoli, L.; Richter, B.; et al. Sea level in the Mediterranean: A first step towards separating crustal movements and absolute sea-level variations. Glob. Planet. Chang. 1996, 14, 1–48. [Google Scholar] [CrossRef]
- Bouin, M.-N.; Wöppelmann, G. Land motion estimates from GPS at tide gauges: A geophysical evaluation. Geophys. J. Int. 2010, 180, 193–209. [Google Scholar] [CrossRef]
- Carbognin, L.; Teatini, P.; Tosi, L. The impact of relative sea level rise on the Northern Adriatic Sea coast, Italy. In Management of Natural Resources, Sustainable Development and Ecological Hazards II; Brebbia, C.A., Jovanovic, N., Tiezzi, E., Eds.; WIT Press: Southampton, UK, 2009. [Google Scholar]
- Furlani, S.; Biolchi, S.; Cucchi, F.; Antonioli, F.; Busetti, M.; Melis, R. Tectonic effects on Late Holocene sea level changes in the Gulf of Trieste (NE Adriatic Sea, Italy). Quat. Int. 2011, 232, 144–157. [Google Scholar] [CrossRef]
- Farolfi, G.; Del Ventisette, C. Contemporary crustal velocity field in Alpine Mediterranean area of Italy from new geodetic data. GPS Solut. 2016, 20, 715–722. [Google Scholar] [CrossRef]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef]
- Vilibić, I.; Šepić, J.; Pasarić, M.; Orlić, M. The Adriatic Sea: A long-standing laboratory for sea level studies. Pure Appl. Geophys. 2017, 174, 3765–3811. [Google Scholar] [CrossRef]
- Sánchez, L.; Völksen, C.; Sokolov, A.; Arenz, H.; Seitz, F. Presentday surface deformation of the Alpine region inferred from geodetic techniques, Earth Syst. Sci. Data 2018, 10, 1503–1526. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 45, 903–995. [Google Scholar] [CrossRef]
- Ezer, T.; Corlett, W.B. Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys. Res. Lett. 2012, 39, L19605. [Google Scholar] [CrossRef]
- Ezer, T.; Atkinson, L.P.; Corlett, W.B.; Blanco, J.L. Gulf Stream’s induced sea level rise and variability along the US mid-Atlantic coast. J. Geophys. Res. Oceans 2013, 118, 685–697. [Google Scholar] [CrossRef]
- Spada, G.; Galassi, G.; Olivieri, M. A study of the longest tide gauge sea-level record in Greenland (Nuuk/Godthab, 1958–2002). Glob. Planet. Chang. 2014, 118, 42–51. [Google Scholar] [CrossRef]
- Galassi, G.; Spada, G. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872–2012). Ann. Geophys. 2014, 57, P0658. [Google Scholar] [CrossRef]
- Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 2016, 47, 2851–2866. [Google Scholar] [CrossRef]
- Vecchio, A.; Anzidei, M.; Serpelloni, E.; Florindo, F. Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water 2019, 11, 1480. [Google Scholar] [CrossRef]
- Meli, M.; Olivieri, M.; Romagnoli, C. Sea-Level Change along the Emilia-Romagna Coast from Tide Gauge and Satellite Altimetry. Remote Sens. 2021, 13, 97. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Influence function of the Spearman and Kendall correlation measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef]
- Bartlett, M.S. Some aspects of the time-correlation problem in regard to tests of significance. J. R. Stat. Soc. 1935, 98, 536–543. [Google Scholar] [CrossRef]
- Santer, B.D.; Wigley, T.M.L.; Boyle, J.S.; Gaffen, D.J.; Hnilo, J.J.; Nychka, D.; Parker, D.E.; Taylor, K.E. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res. 2000, 105, 7337–7356. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Baluev, R.V. Assessing the statistical significance of periodogram peaks. Mon. Not. R. Astron. Soc. 2008, 385, 1279–1285. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Swaid, H. Nocturnal variation of air-surface temperature gradients for typical urban and rural surfaces. Atmos. Environ. Part B Urban Atmos. 1991, 25, 333–341. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Haz. Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Gatto, P.; Carbognin, L. The Lagoon of Venice: Natural environmental trend and man-induced modification. Hydrol. Sci. J. 1981, 26, 379–391. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Strozzi, T.; Carbognin, L.; Brancolini, G.; Rizzetto, F. Ground surface dynamics in the northern Adriatic coastland over the last two decades. Rend. Fis. Acc. Lincei 2010, 21, 115–129. [Google Scholar] [CrossRef]
- Zerbini, S.; Bruni, S.; Raicich, F. Tide gauge data archaeology provides natural subsidence rates along the coasts of the Po Plain and of the Veneto–Friuli Plain, Italy. Geophys. J. Int. 2021, 225, 253–260. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P. Numerical analysis of land subsidence due to natural compaction of the upper Adriatic Sea Basin. In CENAS: Coastline Evolution of the Upper Adriatic Sea Due to Sea Level Rise and Natural and Anthropogenic Land Subsidence; Gambolati, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Carminati, E.; Doglioni, C.; Scrocca, D. Apennines subduction-related subsidence of Venice (Italy). Geophys. Res. Lett. 2003, 30, 1717. [Google Scholar] [CrossRef]
- Antonioli, F.; Ferranti, L.; Fontana, A.; Amorosi, A.; Bondesan, A.; Braitenberg, C.; Dutton, A.; Fontolan, G.; Furlani, S.; Lambeck, K.; et al. Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quat. Int. 2009, 206, 102–133. [Google Scholar] [CrossRef]
- Heymann, Y.; Steenmans, C.; Croisille, G.; Bossard, M. CORINE Land Cover. Technical Guide; Office for Official Publications of European Communities: Luxembourg, 1994. [Google Scholar]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Blondel, J. The ‘design’ of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Hum. Ecol. 2006, 34, 713–729. [Google Scholar] [CrossRef]
- Federal Office for the Environment (FOEN). Urban Sprawl in Europe; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Agenzia Regionale per la Protezione Ambientale (ARPA). Annuario Regionale dei Dati Ambientali; ARPA: Bologna, Italy, 2010. [Google Scholar]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Mariotti, A.; Zeng, N.; Yoon, J.; Artale, V.; Navarra, A.; Alpert, P.; Li, L.Z.X. Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett. 2008, 3, 044001. [Google Scholar] [CrossRef]
- Maugeri, M.; Nanni, T. Surface Air Temperature Variations in Italy: Recent Trends and an Update to 1993. Theor. Appl. Climatol. 1998, 61, 191–196. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T. Variations of Temperature and Precipitation in Italy from 1866 to 1995. Theor. Appl. Climatol. 2000, 65, 165–174. [Google Scholar] [CrossRef]
- Toreti, A.; Desiato, F. Temperature trend over Italy from 1961 to 2004. Theor. Appl. Climatol. 2008, 91, 51–58. [Google Scholar] [CrossRef]
- Balling, R.C., Jr.; Vose, R.S.; Weber, G.-R. Analysis of long-term European temperature records: 1751–1995. Clim. Res. 1998, 10, 193–200. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Koennen, G.P.; Boehm, R.; Demaree, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Jones, P.D.; Parker, D.E.; Osborn, T.J.; Briffa, K.R. Global and Hemisphere Temperature Anomalies Land and Marine Instrumental Records; ESS-DIVE Repository; Carbon Dioxide Information Analysis Center (CDIAC); Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2005.
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteor. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Kvalevåg, M.M.; Myrhe, G. Human impact on direct and diffuse solar radiation during the industrial era. J. Clim. 2007, 20, 4874–4883. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Ramanathan, V. Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res. 2008, 113, D02203. [Google Scholar] [CrossRef]
- Ruckstuhl, C.; Philipona, R.; Behrens, K.; Coen, M.C.; Dürr, B.; Heimo, A.; Mätzler, C.; Nyeki, S.; Ohmura, A.; Vuilleumier, L.; et al. Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophys. Res. Lett. 2008, 35, L12708. [Google Scholar] [CrossRef]
- Streets, D.G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006. J. Geophys. Res. Atmos. 2009, 114, D00D18. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E.; Liang, S.L. Clear sky visibility has decreased over land globally from 1973 to 2007. Science 2009, 323, 1468–1470. [Google Scholar] [CrossRef]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Nat. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef]
- Adams, H.D.; Guardiola-Claramonte, M.; Barron-Gafford, G.A.; Villegas, J.C.; Breshears, D.D.; Zou, C.B.; Troch, P.A.; Huxman, E. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Nat. Acad. Sci. USA 2009, 106, 7063–7066. [Google Scholar] [CrossRef]
- Tomozeiu. R.; Busuioc, A.; Marletto, V.; Zinoni, F.; Cacciamani, C. Detection of changes in the summer precipitation time series of the region Emilia-Romagna, Italy. Theor. Appl. Climatol. 2000, 67, 193–200. [Google Scholar] [CrossRef]
- Crespi, A.; Brunetti, M.; Lentini, G.; Maugeri, M. 1961–1990 high resolution monthly precipitation climatologies for Italy. Int. J. Climatol. 2018, 38, 878–895. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Jiehl, J.T.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Wild, M.; Liepert, B. The Earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett. 2010, 5, 025003. [Google Scholar] [CrossRef]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteor. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. 2009, 114, D00D16. [Google Scholar] [CrossRef]
- Mariotti, A.; Struglia, M.V.; Zeng, N.; Lau, K.-M. The Hydrological Cycle in the Mediterranean Region and Implications for the Water Budget of the Mediterranean Sea. J. Clim. 2002, 15, 1674–1690. [Google Scholar] [CrossRef]
- Seager, R.; Liu, H.; Henderson, N.; Simpson, I.; Kelley, C.; Shaw, T.; Kushnir, Y.; Ting, M. Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Clim. 2014, 27, 4655–4676. [Google Scholar] [CrossRef]
- Mariotti, A.; Pan, Y.; Zeng, N.; Alessandri, A. Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim. Dyn. 2015, 44, 1437–1456. [Google Scholar] [CrossRef]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 Models. Geophys. Res. Lett. 2013, 40, 4887–4892. [Google Scholar] [CrossRef]
- Benini, L.; Bandini, V.; Marazza, D.; Contin, A. Assessment of land use changes through an indicator-based approach: A case study from the Lamone river basin in Northern Italy. Ecol. Indic. 2010, 10, 4–14. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversion from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef] [PubMed]
- Teuling, A.J.; de Badts, E.; Jansen, F.A.; Fuchs, R.; Buitink, J.; van Dijke, A.J.; Sterling, S. Climate change, re-/afforestation, and urbanisation impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 2019, 23, 3631–3652. [Google Scholar] [CrossRef] [Green Version]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Nat. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; García-Ruiz, J.M.; Beniston, M. Environmental change and water management in the Pyrenees. Facts and future perspectives for Mediterranean mountains. Glob. Planet. Chang. 2008, 66, 300–312. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica (ISTAT), 2010. Censimento Agricoltura 2010. Database. Available online: http://dati-censimentoagricoltura.istat.it/ (accessed on 7 September 2021).
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Kingston, D.G.; Lawler, D.M.; McGregor, G.R. Linkages between atmospheric circulation, climate and streamflow in the northern North Atlantic: Research prospects. Prog. Phys. Geogr. 2006, 30, 143–174. [Google Scholar] [CrossRef]
- Marullo, S.; Artale, V.; Santoleri, R. The SST multi-decadal variability in the Atlantic- Mediterranean region and its relation to AMO. J. Clim. 2011, 24, 4385–4401. [Google Scholar] [CrossRef]
- Mariotti, A.; Dell’Aquila, A. Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Clim. Dyn. 2012, 38, 1129–1145. [Google Scholar] [CrossRef]
- Börgel, F.; Frauen, C.; Neumann, T.; Markus Meier, H.E. The Atlantic Multidecadal Oscillation controls the impact of the North Atlantic Oscillation on North European climate. Environ. Res. Lett. 2020, 15, 104025. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Josey, S.A. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett. 2001, 28, 803–806. [Google Scholar] [CrossRef]
- Menemenlis, D.; Fukumori, J.; Lee, T. Atlantic to Mediterranean Sea Level Difference Driven by Winds near Gibraltar Strait. J. Phys. Oceanogr. 2007, 37, 359–376. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jordà, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D.P. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. 2013, 118, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Fenoglio-Marc, L.; Mariotti, A.; Sannino, G.; Meyssignac, B.; Carillo, A.; Struglia, M.V.; Rixen, M. Decadal variability of net water flux at the Mediterranean Sea Gibraltar Strait. Glob. Planet. Chang. 2013, 100, 1–10. [Google Scholar] [CrossRef]
- Della-Marta, P.M.; Luterbacher, J.; von Weissenfluh, H.; Xoplaki, E.; Brunet, M.; Wanner, H. Summer heat waves over western Europe 1880-2003, their relationship to large-scale forcings and predictability. Clim. Dyn. 2007, 29, 251–275. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationship and projections for the 21st century. Glob. Planet. Chang. 2011, 77, 62–76. [Google Scholar] [CrossRef]
- Rust, H.W.; Richling, A.; Bissolli, P.; Ulbrich, U. Linking teleconnection patterns to European temperature—a multiple linear regression model. Meteorol. Z. 2015, 24, 411–423. [Google Scholar] [CrossRef]
- Di Bacco, M.; Scorzini, A.R. Recent changes in temperature extremes across the north-eastern region of Italy and their relationship with large-scale circulation. Clim. Res. 2020, 81, 167–185. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal trends in the North-Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Xoplaki, E.; González-Rouco, J.F.; Luterbacher, J.; Wanner, H. Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Clim. Dyn. 2004, 23, 63–78. [Google Scholar] [CrossRef]
- Serreze, M.C.; Carse, F.; Barry, R.G.; Rogers, J.C. Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Clim. 1997, 10, 453–464. [Google Scholar] [CrossRef]
- Cullen, H.M.; Kaplan, A.; Arkin, P.; Demenocal, P.B. Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Clim. Chang. 2002, 55, 315–338. [Google Scholar] [CrossRef]
- Struglia, M.V.; Mariotti, A.; Filograsso, A. River discharge into the Mediterranean Sea: Climatology and aspects of the observed variability. J. Clim. 2004, 17, 4740–4751. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pozo-Vasquez, D.; Osborn, T.J.; Castro-Diez, Y.; Gamiz-Fortis, S.; Esteban-Parra, M.J. North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol. 2004, 24, 925–944. [Google Scholar] [CrossRef]
- Rimbu, N.; Boroneant, C.; Buta, C.; Dima, M. Decadal variability of the Danube River flow in the lower basin and its relation with the North Atlantic Oscillation. Int. J. Climatol. 2006, 22, 1169–1179. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Beguería, S.; Vicente-Serrano, S.M.; García-Ruiz, J.M. Influence of the North Atlantic Oscillation on water resources in central Iberia: Precipitation, streamflow anomalies, and reservoir management strategies. Water Resour. Res. 2007, 43, W09411. [Google Scholar] [CrossRef]
- Calafat, F.; Chambers, D.; Tsimplis, M. Mechanism of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys. Res. Oceans 2012, 117, C9. [Google Scholar] [CrossRef]
- Mohamed, B.; Abdallah, A.M.; El-Din, K.A.; Nagy, H.; Shaltout, M. Inter-Annual Variability and Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea over the Last 25 years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar] [CrossRef]
- Landerer, F.W.; Volkov, D.L. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Re. Lett. 2013, 40, 553–557. [Google Scholar] [CrossRef]
- Cazenave, A.; Cabanes, C.; Dominh, K.; Mangiarotti, S. Recent sea level changes in the Mediterranean Sea revealed by TOPEX/POSEIDON satellite altimetry. Geophys. Res. Lett. 2001, 28, 1607–1610. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J.; Briffa, K.R.; Folland, C.K.; Horton, E.B.; Alexander, L.V.; Parker, D.E.; Rayner, N.A. Adjusting for sampling density in grid box land and ocean surface temperature time series. J. Geophys. Res. 2001, 106, 3371–3380. [Google Scholar] [CrossRef] [Green Version]
Station | Variable | Residual Rate (*·Year−1) | Period |
---|---|---|---|
Casalecchio di Reno (Reno River) | River discharge (m3/s) | −0.202 ± 0.002 | 1921–2021 |
−0.101 ± 0.004 | 1921–1950 | ||
−0.190 ± 0.001 | 1950–1980 | ||
−0.268 ± 0.002 | 1993–2021 | ||
Stacked rainfall | Rainfall(mm) | −0.101 ± 0.005 | 1921–2021 |
0.157 ± 0.004 | 1921–1950 | ||
−0.263 ± 0.005 | 1950–2000 | ||
0.200 ± 0.006 | 2000–2021 | ||
Stacked temperature | Temperature (°C) | 0.032 ± 0.002 | 1925–2021 |
0.040 ± 0.001 | 1925–1950 | ||
−-0.007 ± 0.001 | 1950–1980 | ||
0.071 ± 0.001 | 1980–2021 | ||
Marina di Ravenna (VLM corrected) | Sea level (mm) | 0.786 ± 0.008 | 1875–2016 |
Variable | Period | Snp |
---|---|---|
NAO | 4–5 | 0.041 |
~6 | 0.042 | |
7–8 | 0.087 | |
8–9 | 0.023 | |
~12 | 0.012 | |
~14 | 0.022 | |
16–17 | 0.011 | |
22–23 | 0.04 | |
37–40 | 0.04 | |
AMO | 4–5 | 0.015 |
~6 | 0.018 | |
7–8 | 0.025 | |
8–9 | 0.05 | |
10–11 | 0.047 | |
16–17 | 0.018 | |
20–22 | 0.012 | |
~67 | 0.5 | |
River discharge | 4–5 | 0.056 |
~6 (IMF 4) | 0.073 | |
8–9 | 0.037 | |
10–11 | 0.072 | |
~12 | 0.068 | |
~14 (IMF 5) | 0.058 | |
16–17 | 0.028 | |
22–23 (IMF 6) | 0.056 | |
33–35 | 0.052 | |
53–56 | 0.097 | |
Rainfall | 4–5 (IMF 4) | 0.094 |
~6 | 0.038 | |
8–9 | 0.035 | |
10–11 (IMF 5) | 0.052 | |
~12 | 0.027 | |
16–17 | 0.019 | |
23–26 | 0.021 | |
38–41 (IMF 6) | 0.061 | |
Temperature | 4–5 (IMF 4) | 0.04 |
8–9 | 0.03 | |
~12 | 0.042 | |
~14 (IMF 5) | 0.06 | |
16–17 | 0.02 | |
22–23 (IMF 6) | 0.07 | |
30–33 | 0.022 | |
53–56 | 0.19 | |
Sea level | 4–5 | 0.039 |
8–9 (IMF 4) | 0.043 | |
10–11 | 0.02 | |
~12 | 0.038 | |
~14 | 0.076 | |
16–17 (IMF 5) | 0.079 | |
22–23 | 0.06 | |
28–30 | 0.13 | |
40–42 (IMF 6) | 0.29 | |
~67 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meli, M.; Romagnoli, C. Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century. Water 2022, 14, 2650. https://doi.org/10.3390/w14172650
Meli M, Romagnoli C. Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century. Water. 2022; 14(17):2650. https://doi.org/10.3390/w14172650
Chicago/Turabian StyleMeli, Matteo, and Claudia Romagnoli. 2022. "Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century" Water 14, no. 17: 2650. https://doi.org/10.3390/w14172650
APA StyleMeli, M., & Romagnoli, C. (2022). Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century. Water, 14(17), 2650. https://doi.org/10.3390/w14172650