A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process
Abstract
:1. Introduction
2. Distribution and Pollution of PFCs in Water Environment
Sampling Location | Sample Type | Time | Concentration (ng/L) | Refs | ||
---|---|---|---|---|---|---|
PFOA | PFOS | |||||
USA | Georgia River | surface water | 2008 | n.d.~204 | n.d.~297 | [36] |
Mississippi River | surface water | 2008 | n.d.~125 | n.d.~245 | [37] | |
Rhode Island | surface water | 2014 | 0.3~56 | <0.1~27.5 | [39] | |
Truckee River | surface water | 2019 | 1.6~19.2 | n.d.~17.4 | [34] | |
Tennessee River | surface water | 2015 | <10~120 | <10~220 | [38] | |
New Orleans | groundwater | 2010 | 3.900 | 4.025 | [35] | |
France | Orge River | surface water | 2010 | 9.4 | 17.4 | [47] |
Freshwater | surface water | 2012 | <0.08~36 | <0.06~173 | [48] | |
Spain | Llobregate basin | surface water | 2010 | 0.07~146 | 0.07~27,110 | [49] |
Germany | Rhine upstream | surface water | 2008 | 2.22~4.07 | 3.03~7.34 | [50] |
Ruhr area | drinking water | 2006 | n.d.~519 | n.d.~22 | [51] | |
Ruhr area | surface water | 2006 | n.d.~3640 | n.d.~193 | [51] | |
Canada | Ontario Lake | surface water | 2006~2007 | 14 | 22 | [52] |
Sweden | Lake in Lulea | surface water | 2015 | 60 | - | [53] |
China | Pearl River | surface water | 2004~2005 | 0.85~13 | 0.90~99 | [40] |
Yangtze River | surface water | 2004~2005 | 2.0~260 | 0.01~14 | [40] | |
Huai River | surface water | 2011 | 18 | 4.7 | [54] | |
Yellow River | surface water | 2011 | - | 82.3~261.8 | [41] | |
Haihe River | surface water | 2010 | 4.4~42.0 | 2.0~7.6 | [55] | |
Liao River | surface water | 2012 | 4.38~77.01 | 0.089~9.5 | [56] | |
Bohai Sea | surface water | 2013 | n.d.~83.4 | n.d.~6.80 | [43] | |
Korea | Estuarine area | surface water | 2008 | 2.95~68.6 | 4.11~450 | [44] |
Japan | Kamo River | surface water | 2005 | 102 | 150 | [57] |
Yodo River | surface water | 2004~2005 | 4.2~2600 | 0.4~123 | [46] | |
Australia | Sydney Harbour | surface water | 2009 | 4.2~6.4 | 7.5~21 | [58] |
3. Adsorption Process and Flocculation Process
3.1. Adsorption
3.1.1. Activated Carbon
3.1.2. Resins
3.1.3. Carbonaceous Nanomaterials (CNMs)
3.1.4. Minerals
3.1.5. Chitosan
Adsorbents | Adsorbates | pH | C0 (mg/L) | Equilibrium Time (h) | Kinetics | Refs | ||
---|---|---|---|---|---|---|---|---|
qm (mg/g) | k2 (g/mg/h) | |||||||
Activated carbons (AC) | Powder AC | PFOA | 3.01~7.20 | 50 | 2~3 | 183.12~344.44 | 1.18 × 10−2 ~3.19 × 10−2 | [62] |
PFOS | 3.00~7.18 | 50 | 3~4 | 322.80~371.22 | 9.09 × 10−3 ~1.01 × 10−2 | [62] | ||
Granular AC | PFOA | 3.10~7.28 | 50 | 90~168 | 130.80~165.68 | 1.61 × 10−4 ~8.49 × 10−4 | [62] | |
PFOS | 3.08~7.20 | 50 | ~168 | 220.58~274.38 | 1.12 × 10−4 ~1.30 × 10−4 | [62] | ||
Ordered mesoporous carbon | PFOA | 6 | 10 | 1 | 82.5 | 1.51 | [77] | |
Reed straw-derived biochar | PFOA | - | 0.1 | 20 | 17.91 | 9.61 × 10−4 | [78] | |
PFOS | - | 20 | 34.62 | 8.38 × 10−4 | [78] | |||
Vitis vinifera leaf litter AC | PFOA | 4 | 0.125 | 1 | 119.12 | 0.74 | [79] | |
PFOS | 4 | 0.125 | 1.5 | 66.01 | 2.08 | [79] | ||
Resins | Anion-exchange resins | PFOA | 3.02~7.09 | 50 | 168 | 789.16~1478.04 | 2.29 × 10−5 ~4.59 × 10−5 | [62] |
PFOS | 3.10~7.10 | 50 | 48 | 182.92~193.68 | 2.23 × 10−4~2.97 × 10−4 | [62] | ||
Anion-exchange resins | PFOS | 3 | 200 | 48~168 | 210~2575 | 1.3 × 10−5~3.2 × 10−4 | [80] | |
Carbonaceous nanomaterials | Graphene oxide | PFOA | 3 | 10 | 48 | 10.17 | 11.81 × 10−2 | [81] |
5 | 1000 | 48 | 424.1 | 5 × 10−3 | [81] | |||
Carbon nanotubes | PFOA | 7 | 0.218 | 5 | 0.8284 | - | [68] | |
PFOS | 7 | 0.269 | 5 | 1.0491 | - | [68] | ||
Carbon nanotubes | PFOS | 7 | 100 | 2 | 237 | 1.83 × 10−2 | [67] | |
Mineral materials | Hydrotalcite | PFOA | - | 1000 | 1 | 1033 | 31.77 | [82] |
PFOS | - | 1000 | 1 | 998 | 6.39 | [82] | ||
Zeolites | PFOA | 6.8 | 300 | 3 | 37 | 7.92 | [83] | |
PFOS | 6.8 | 300 | 3 | 126 | 3.69 | [83] | ||
Montmorillonite | PFOS | 3~6.3 | 50~500 | 24 | 83~99 | 5 × 10−3 | [84] | |
Metal-organic frameworks | PFOS | 7 | 5~100 | 3.5 | 154.56 | 2.51 × 10−3 | [85] | |
Chitosan | Magnetic bead-type chitosan material | PFOA | 3 | 20 | 120 | 16.150 | 8.22 × 10−1 | [75] |
PFOS | 3 | 20 | 120 | 19.545 | 4.74 × 10−41 | [75] | ||
Chitosan/covalent organic framework | PFOA | - | 0.2 | 4 | 99.2 | 1.38 × 10−1 | [76] | |
PFOS | - | 0.2 | 4 | 86.8 | 7.8 × 10−2 | [76] | ||
GenX | - | 0.2 | 4 | 82.3 | 3.84 × 10−2 | [76] | ||
Chitosan-based molecularly imprinted polymer | PFOS | 5 | 0.05 | 32 | 275.27 | 6.00 × 10−4 | [86] | |
Non-imprinted polymer | PFOS | 5 | 0.05 | 32 | 122.98 | 7.00 × 10−3 | [86] |
3.2. Flocculation
4. Advanced Oxidative Degradation Process
4.1. Fenton Oxidation
4.2. Ozone Oxidation
- Organic pollutants react directly with O3 molecules;
- Organic pollutants are indirectly decomposed by ozone, resulting in the generation of hydroxyl radicals.
4.3. Photochemical Oxidation
4.4. Ultrasonic Oxidation
4.5. Electrochemical Oxidation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zushi, Y.; Hogarh, J.N.; Masunaga, S. Progress and perspective of perfluorinated compound risk assessment and management in various countries and institutes. Clean Technol. Environ. Policy 2012, 14, 9–20. [Google Scholar] [CrossRef]
- Na, S.; Hai, R.; Wang, X.; Li, N. Trends and Levels of Perfluorinated Compounds in Soil and Sediment Surrounding a Cluster of Metal Plating Industries. Soil Sediment Contam. Int. J. 2021, 30, 423–435. [Google Scholar] [CrossRef]
- Kwon, Y.-N.; Shih, K.; Tang, C.; Leckie, J.O. Adsorption of perfluorinated compounds on thin-film composite polyamide membranes. J. Appl. Polym. Sci. 2012, 124, 1042–1049. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Zhu, L.; Hu, W.; Lin, Z. Simultaneous determination of 11 volatile perfluorinated compound precursors in textiles using gas chromatography-triple quadrupole mass spectrometry. Chin. J. Chromatogr. 2021, 39, 1239. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.-H.; Gai, N.; Zhang, P.; Piao, H.-T.; Chen, S.; Wang, X.-C.; Jiao, X.-C.; Yin, X.-C.; Tan, K.-Y.; Yang, Y.-L. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed—Influences from paper, textile, and leather industries. Chemosphere 2017, 185, 610–617. [Google Scholar] [CrossRef]
- Fang, C.; Megharaj, M.; Naidu, R. Electrochemical Studies on Self-assembled Monolayer (SAM) Upon Exposure to Anionic Surfactants: PFOA, PFOS, SDS and SDBS. Electroanalysis 2017, 29, 2155–2160. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M. PTFE-coated non-stick cookware and toxicity concerns: A perspective. Environ. Sci. Pollut. Res. 2017, 24, 23436–23440. [Google Scholar] [CrossRef]
- Kärrman, A.; Elgh-Dalgren, K.; Lafossas, C.; Møskeland, T. Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination. J. Environ. Chem. 2011, 8, 372–380. [Google Scholar] [CrossRef]
- Xiao, H.; Lv, B.; Zhao, G.; Wang, Y.; Li, M.; Li, D. Hydrothermally Enhanced Electrochemical Oxidation of High Concentration Refractory Perfluorooctanoic Acid. J. Phys. Chem. A 2011, 115, 13836–13841. [Google Scholar] [CrossRef]
- Xing, Y.; Li, Q.; Chen, X.; Fu, X.; Ji, L.; Wang, J.; Li, T.; Zhang, Q. Different transport behaviors and mechanisms of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in saturated porous media. J. Hazard. Mater. 2021, 402, 123435. [Google Scholar] [CrossRef]
- Mortensen, A.S.; Letcher, R.J.; Cangialosi, M.V.; Chu, S.; Arukwe, A. Tissue bioaccumulation patterns, xenobiotic biotransformation and steroid hormone levels in Atlantic salmon (Salmo salar) fed a diet containing perfluoroactane sulfonic or perfluorooctane carboxylic acids. Chemosphere 2011, 83, 1035–1044. [Google Scholar] [CrossRef]
- Zhang, R.; Yao, Y.; Tu, L.; Luan, T.; Chen, B. Non-targeted metabolomics of multiple human cells revealing differential toxic effects of perfluorooctanoic acid. J. Hazard. Mater. 2021, 409, 125017. [Google Scholar] [CrossRef]
- Ojo, A.F.; Peng, C.; Ng, J.C. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J. Hazard. Mater. 2021, 407, 124863. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, J.; Sun, C.; Li, D.; Liu, X.; Wang, Z.; Yue, T.; Xing, B. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Front. Environ. Sci. Eng. 2022, 16, 136. [Google Scholar] [CrossRef]
- Liu, X.; Wei, W.; Xu, J.; Wang, D.; Song, L.; Ni, B.-J. Photochemical decomposition of perfluorochemicals in contaminated water. Water Res. 2020, 186, 116311. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Wang, Y.; Sun, W. A review on degradation of perfluorinated compounds based on ultraviolet advanced oxidation. Environ. Pollut. 2021, 291, 118014. [Google Scholar] [CrossRef]
- Du, Z.; Deng, S.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef]
- Niu, J.; Li, Y.; Shang, E.; Xu, Z.; Liu, J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 2016, 146, 526–538. [Google Scholar] [CrossRef]
- Li, P.; Zhi, D.; Zhang, X.; Zhu, H.; Li, Z.; Peng, Y.; He, Y.; Luo, L.; Rong, X.; Zhou, Y. Research progress on the removal of hazardous perfluorochemicals: A review. J. Environ. Manag. 2019, 250, 109488. [Google Scholar] [CrossRef]
- Leung, S.C.E.; Shukla, P.; Chen, D.; Eftekhari, E.; An, H.; Zare, F.; Ghasemi, N.; Zhang, D.; Nguyen, N.-T.; Li, Q. Emerging technologies for PFOS/PFOA degradation and removal: A review. Sci. Total Environ. 2022, 827, 153669. [Google Scholar] [CrossRef]
- Rahman, M.F.; Peldszus, S.; Anderson, W.B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res. 2014, 50, 318–340. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)—A review of recent advances. Chem. Eng. J. 2018, 336, 170–199. [Google Scholar] [CrossRef]
- Choi, Y.J.; Helbling, D.E.; Liu, J.; Olivares, C.I.; Higgins, C.P. Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. Sci. Total Environ. 2022, 824, 153711. [Google Scholar] [CrossRef] [PubMed]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Boucher, J.M.; Scheringer, M.; Cousins, I.T.; Hungerbühler, K. Toward a Comprehensive Global Emission Inventory of C4–C10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C8-Based Products and Ongoing Industrial Transition. Environ. Sci. Technol. 2017, 51, 4482–4493. [Google Scholar] [CrossRef] [PubMed]
- Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Toxicological interactions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) with selected pollutants. J. Hazard. Mater. 2012, 201–202, 209–218. [Google Scholar] [CrossRef]
- Bao, Y.; Niu, J.; Xu, Z.; Gao, D.; Shi, J.; Sun, X.; Huang, Q. Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: Mechanisms and influencing factors. J. Colloid Interface Sci. 2014, 434, 59–64. [Google Scholar] [CrossRef]
- Jogsten, I.E.; Nadal, M.; van Bavel, B.; Lindström, G.; Domingo, J.L. Per- and polyfluorinated compounds (PFCs) in house dust and indoor air in Catalonia, Spain: Implications for human exposure. Environ. Int. 2012, 39, 172–180. [Google Scholar] [CrossRef]
- Houde, M.; De Silva, A.O.; Muir, D.C.G.; Letcher, R.J. Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review. Environ. Sci. Technol. 2011, 45, 7962–7973. [Google Scholar] [CrossRef]
- Bečanová, J.; Komprdová, K.; Vrana, B.; Klánová, J. Annual dynamics of perfluorinated compounds in sediment: A case study in the Morava River in Zlín district, Czech Republic. Chemosphere 2016, 151, 225–233. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, H.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B. Toxicity of perfluorinated compounds to soil microbial activity: Effect of carbon chain length, functional group and soil properties. Sci. Total Environ. 2019, 690, 1162–1169. [Google Scholar] [CrossRef]
- Dietz, R.; Bossi, R.; Rigét, F.F.; Sonne, C.; Born, E.W. Increasing Perfluoroalkyl Contaminants in East Greenland Polar Bears (Ursus maritimus): A New Toxic Threat to the Arctic Bears. Environ. Sci. Technol. 2008, 42, 2701–2707. [Google Scholar] [CrossRef]
- Appleman, T.D.; Higgins, C.P.; Quiñones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R.V. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef]
- Bai, X.; Son, Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Sci. Total Environ. 2021, 751, 141622. [Google Scholar] [CrossRef]
- Boone, J.S.; Guan, B.; Vigo, C.; Boone, T.; Byrne, C.; Ferrario, J. A method for the analysis of perfluorinated compounds in environmental and drinking waters and the determination of their lowest concentration minimal reporting levels. J. Chromatogr. A 2014, 1345, 68–77. [Google Scholar] [CrossRef]
- Lasier, P.J.; Washington, J.W.; Hassan, S.M.; Jenkins, T.M. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus. Environ. Toxicol. Chem. 2011, 30, 2194–2201. [Google Scholar] [CrossRef]
- Nakayama, S.F.; Strynar, M.J.; Reiner, J.L.; Delinsky, A.D.; Lindstrom, A.B. Determination of Perfluorinated Compounds in the Upper Mississippi River Basin. Environ. Sci. Technol. 2010, 44, 4103–4109. [Google Scholar] [CrossRef] [PubMed]
- Newton, S.; McMahen, R.; Stoeckel, J.A.; Chislock, M.; Lindstrom, A.; Strynar, M. Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur, Alabama. Environ. Sci. Technol. 2017, 51, 1544–1552. [Google Scholar] [CrossRef]
- Zhang, X.; Lohmann, R.; Dassuncao, C.; Hu, X.C.; Weber, A.K.; Vecitis, C.D.; Sunderland, E.M. Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area. Environ. Sci. Technol. Lett. 2016, 3, 316–321. [Google Scholar] [CrossRef]
- So, M.K.; Miyake, Y.; Yeung, W.Y.; Ho, Y.M.; Taniyasu, S.; Rostkowski, P.; Yamashita, N.; Zhou, B.S.; Shi, X.J.; Wang, J.X.; et al. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 2007, 68, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H.; Deng, W. Perfluorooctane sulfonate (PFOS) Distribution and Effect Factors in the Water and Sediment of the Yellow River Estuary, China. Environ. Monit. Assess. 2013, 185, 8517–8524. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, X.; Zhang, C.; Sun, R.; Han, J.; Han, G.; Yang, W.; He, X. Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environ. Pollut. 2017, 221, 234–243. [Google Scholar] [CrossRef]
- Chen, H.; Sun, R.; Zhang, C.; Han, J.; Wang, X.; Han, G.; He, X. Occurrence, spatial and temporal distributions of perfluoroalkyl substances in wastewater, seawater and sediment from Bohai Sea, China. Environ. Pollut. 2016, 219, 389–398. [Google Scholar] [CrossRef]
- Naile, J.E.; Khim, J.S.; Wang, T.; Chen, C.; Luo, W.; Kwon, B.-O.; Park, J.; Koh, C.-H.; Jones, P.D.; Lu, Y.; et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ. Pollut. 2010, 158, 1237–1244. [Google Scholar] [CrossRef]
- Guo, R.; Sim, W.-J.; Lee, E.-S.; Lee, J.-H.; Oh, J.-E. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Res. 2010, 44, 3476–3486. [Google Scholar] [CrossRef]
- Lein, N.P.H.; Fujii, S.; Tanaka, S.; Nozoe, M.; Tanaka, H. Contamination of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in surface water of the Yodo River basin (Japan). Desalination 2008, 226, 338–347. [Google Scholar] [CrossRef]
- Labadie, P.; Chevreuil, M. Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France). Environ. Pollut. 2011, 159, 391–397. [Google Scholar] [CrossRef]
- Munoz, G.; Giraudel, J.-L.; Botta, F.; Lestremau, F.; Dévier, M.-H.; Budzinski, H.; Labadie, P. Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey. Sci. Total Environ. 2015, 517, 48–56. [Google Scholar] [CrossRef]
- Campo, J.; Pérez, F.; Masiá, A.; Picó, Y.; Farré, M.l.; Barceló, D. Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Sci. Total Environ. 2015, 503–504, 48–57. [Google Scholar] [CrossRef]
- Möller, A.; Ahrens, L.; Surm, R.; Westerveld, J.; van der Wielen, F.; Ebinghaus, R.; de Voogt, P. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environ. Pollut. 2010, 158, 3243–3250. [Google Scholar] [CrossRef] [Green Version]
- Skutlarek, D.; Exner, M.; Färber, H. Perfluorinated surfactants in surface and drinking waters. Environ. Sci. Pollut. Res. Int. 2006, 13, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L.; Crozier, P.W.; Helm, P.A.; Brimacombe, C.; Furdui, V.I.; Reiner, E.J.; Burniston, D.; Marvin, C.H. Fate, distribution, and contrasting temporal trends of perfluoroalkyl substances (PFASs) in Lake Ontario, Canada. Environ. Int. 2012, 44, 92–99. [Google Scholar] [CrossRef]
- Mussabek, D.; Ahrens, L.; Persson, K.M.; Berndtsson, R. Temporal trends and sediment–water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment. Chemosphere 2019, 227, 624–629. [Google Scholar] [CrossRef]
- Yu, N.; Shi, W.; Zhang, B.; Su, G.; Feng, J.; Zhang, X.; Wei, S.; Yu, H. Occurrence of Perfluoroalkyl Acids Including Perfluorooctane Sulfonate Isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China. Environ. Sci. Technol. 2013, 47, 710–717. [Google Scholar] [CrossRef]
- Li, F.; Sun, H.; Hao, Z.; He, N.; Zhao, L.; Zhang, T.; Sun, T. Perfluorinated compounds in Haihe River and Dagu Drainage Canal in Tianjin, China. Chemosphere 2011, 84, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, L.; Pan, X.; Fang, S.; Zhang, Y.; Yang, L. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China. Water Res. 2015, 80, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, K.; Ohi, E.; Sajwan, K.; Takasuga, T.; Kannan, K. Perfluorinated Compounds in River Water, River Sediment, Market Fish, and Wildlife Samples from Japan. Bull. Environ. Contam. Toxicol. 2007, 79, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Roach, A.; Eaglesham, G.; Bartkow, M.E.; Edge, K.; Mueller, J.F. Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings. Mar. Pollut. Bull. 2011, 62, 2869–2875. [Google Scholar] [CrossRef]
- Hölzer, J.; Midasch, O.; Rauchfuss, K.; Kraft, M.; Reupert, R.; Angerer, J.; Kleeschulte, P.; Marschall, N.; Wilhelm, M. Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environ. Health Perspect 2008, 116, 651–657. [Google Scholar] [CrossRef]
- Yuan, J.; Mortazavian, S.; Passeport, E.; Hofmann, R. Evaluating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal across granular activated carbon (GAC) filter-adsorbers in drinking water treatment plants. Sci. Total Environ. 2022, 838, 156406. [Google Scholar] [CrossRef]
- Fabregat-Palau, J.; Vidal, M.; Rigol, A. Examining sorption of perfluoroalkyl substances (PFAS) in biochars and other carbon-rich materials. Chemosphere 2022, 302, 134733. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, R.; Deng, S.; Huang, J.; Yu, G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res. 2009, 43, 1150–1158. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Gao, B.; Ji, R.; Li, C.; Wang, S. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2379–2414. [Google Scholar] [CrossRef]
- Carter, K.E.; Farrell, J. Removal of Perfluorooctane and Perfluorobutane Sulfonate from Water via Carbon Adsorption and Ion Exchange. Sep. Sci. Technol. 2010, 45, 762–767. [Google Scholar] [CrossRef]
- Zaggia, A.; Conte, L.; Falletti, L.; Fant, M.; Chiorboli, A. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants. Water Res. 2016, 91, 137–146. [Google Scholar] [CrossRef]
- Senevirathna, S.T.M.L.D.; Tanaka, S.; Fujii, S.; Kunacheva, C.; Harada, H.; Shivakoti, B.R.; Okamoto, R. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers. Chemosphere 2010, 80, 647–651. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.; Wang, X.; Qiao, J.; Chen, H. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere 2011, 83, 1313–1319. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, Q.; Nie, Y.; Wei, H.; Wang, B.; Huang, J.; Yu, G.; Xing, B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environ. Pollut. 2012, 168, 138–144. [Google Scholar] [CrossRef]
- Bei, Y.; Deng, S.; Du, Z.; Wang, B.; Huang, J.; Yu, G. Adsorption of perfluorooctane sulfonate on carbon nanotubes: Influence of pH and competitive ions. Water Sci. Technol. 2014, 69, 1489–1495. [Google Scholar] [CrossRef]
- Johnson, R.L.; Anschutz, A.J.; Smolen, J.M.; Simcik, M.F.; Penn, R.L. The Adsorption of Perfluorooctane Sulfonate onto Sand, Clay, and Iron Oxide Surfaces. J. Chem. Eng. Data 2007, 52, 1165–1170. [Google Scholar] [CrossRef]
- Chang, P.-H.; Chen, C.-Y.; Mukhopadhyay, R.; Chen, W.; Tzou, Y.-M.; Sarkar, B. Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water. J. Colloid Interface Sci. 2022, 623, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bian, J.; Zhang, Y.; Zhu, L.; Liu, Z. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. Chemosphere 2014, 114, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Niu, H.; Pan, Y.; Shi, Y.; Cai, Y. Chitosan-Coated Octadecyl-Functionalized Magnetite Nanoparticles: Preparation and Application in Extraction of Trace Pollutants from Environmental Water Samples. Anal. Chem. 2010, 82, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Ma, T.; Zhao, S.; Rong, H.; Tian, Y.; Zhu, G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem. Eng. J. 2020, 382, 122893. [Google Scholar] [CrossRef]
- Elanchezhiyan, S.S.; Preethi, J.; Rathinam, K.; Njaramba, L.K.; Park, C.M. Synthesis of magnetic chitosan biopolymeric spheres and their adsorption performances for PFOA and PFOS from aqueous environment. Carbohydr. Polym. 2021, 267, 118165. [Google Scholar] [CrossRef]
- He, C.; Yang, Y.; Hou, Y.-J.; Luan, T.; Deng, J. Chitosan-coated fluoro-functionalized covalent organic framework as adsorbent for efficient removal of per- and polyfluoroalkyl substances from water. Sep. Purif. Technol. 2022, 294, 121195. [Google Scholar] [CrossRef]
- Lei, X.; Yao, L.; Lian, Q.; Zhang, X.; Wang, T.; Holmes, W.; Ding, G.; Gang, D.D.; Zappi, M.E. Enhanced adsorption of perfluorooctanoate (PFOA) onto low oxygen content ordered mesoporous carbon (OMC): Adsorption behaviors and mechanisms. J. Hazard. Mater. 2022, 421, 126810. [Google Scholar] [CrossRef]
- Liu, N.; Wu, C.; Lyu, G.; Li, M. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). Sci. Total Environ. 2021, 798, 149191. [Google Scholar] [CrossRef]
- Fagbayigbo, B.O.; Opeolu, B.O.; Fatoki, O.S.; Akenga, T.A.; Olatunji, O.S. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environ. Sci. Pollut. Res. 2017, 24, 13107–13120. [Google Scholar] [CrossRef]
- Deng, S.; Yu, Q.; Huang, J.; Yu, G. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Res. 2010, 44, 5188–5195. [Google Scholar] [CrossRef]
- Tian, D.; Geng, D.; Mehler, W.T.; Goss, G.; Wang, T.; Yang, S.; Niu, Y.; Zheng, Y.; Zhang, Y. Removal of perfluorooctanoic acid (PFOA) from aqueous solution by amino-functionalized graphene oxide (AGO) aerogels: Influencing factors, kinetics, isotherms, and thermodynamic studies. Sci. Total Environ. 2021, 783, 147041. [Google Scholar] [CrossRef]
- Rattanaoudom, R.; Visvanathan, C.; Boontanon, S. Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite. J. Water Sustain. 2012, 2, 245–258. [Google Scholar]
- Punyapalakul, P.; Suksomboon, K.; Prarat, P.; Khaodhiar, S. Effects of Surface Functional Groups and Porous Structures on Adsorption and Recovery of Perfluorinated Compounds by Inorganic Porous Silicas. Sep. Sci. Technol. 2013, 48, 775–788. [Google Scholar] [CrossRef]
- Zhou, Q.; Pan, G.; Shen, W. Enhanced sorption of perfluorooctane sulfonate and Cr(VI) on organo montmorillonite: Influence of solution pH and uptake mechanism. Adsorption 2013, 19, 709–715. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, Y.; Xiao, F.; Ma, J.; Zou, Y.; Tang, W. Perfluorooctane sulfonate removal by metal-organic frameworks (MOFs): Insights into the effect and mechanism of metal nodes and organic ligands. Chem. Eng. J. 2021, 406, 126852. [Google Scholar] [CrossRef]
- Yu, Q.; Deng, S.; Yu, G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res. 2008, 42, 3089–3097. [Google Scholar] [CrossRef]
- Deng, S.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Res. 2011, 45, 1774–1780. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Yu, L.; Li, P.; Wang, T.; Xu, Y. Removal of perfluorooctane sulfonates from water by a hybrid coagulation–nanofiltration process. Chem. Eng. J. 2016, 289, 7–16. [Google Scholar] [CrossRef]
- Xiao, F.; Simcik, M.F.; Gulliver, J.S. Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Res. 2013, 47, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Mo, C.-H.; Luo, X.; He, K.-Y.; Yan, J.-F.; Wu, Q.; Yu, P.-F.; Han, W.; Feng, N.-X.; Yeung, K.L.; et al. Exploring key reaction sites and deep degradation mechanism of perfluorooctane sulfonate via peroxymonosulfate activation under electrocoagulation process. Water Res. 2021, 207, 117849. [Google Scholar] [CrossRef]
- Pi, N.; Ng, J.Z.; Kelly, B.C. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes. Water Res. 2017, 117, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Watanabe, I.; Tanabe, S.; Kannan, K. Fate of Perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Res. 2011, 45, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
- Szajdzinska-Pietek, E.; Gebicki, J.L. Pulse radiolytic investigation of perfluorinated surfactants in aqueous solutions. Res. Chem. Intermed. 2000, 26, 897–912. [Google Scholar] [CrossRef]
- Qian, Y.; Guo, X.; Zhang, Y.; Peng, Y.; Sun, P.; Huang, C.-H.; Niu, J.; Zhou, X.; Crittenden, J.C. Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environ. Sci. Technol. 2016, 50, 772–781. [Google Scholar] [CrossRef]
- Huang, L.; Dong, W.; Hou, H. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chem. Phys. Lett. 2007, 436, 124–128. [Google Scholar] [CrossRef]
- Nawrocki, J.; Kasprzyk-Hordern, B. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ahmad, M.; Teel, A.L.; Watts, R.J. Degradation of Perfluorooctanoic Acid by Reactive Species Generated through Catalyzed H2O2 Propagation Reactions. Environ. Sci. Technol. Lett. 2014, 1, 117–121. [Google Scholar] [CrossRef]
- Tang, H.; Xiang, Q.; Lei, M.; Yan, J.; Zhu, L.; Zou, J. Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chem. Eng. J. 2012, 184, 156–162. [Google Scholar] [CrossRef]
- Santos, A.; Rodríguez, S.; Pardo, F.; Romero, A. Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water. Sci. Total Environ. 2016, 563–564, 657–663. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Thompson, J.; Eaglesham, G.; Reungoat, J.; Poussade, Y.; Bartkow, M.; Lawrence, M.; Mueller, J.F. Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia. Chemosphere 2011, 82, 9–17. [Google Scholar] [CrossRef]
- Xu, X.L.; Xu, H.Y.; Zhang, D.Y.; Shen, X.Y.; Tong, G.Z.; Lu, Y.; Wang, W. Occurrence of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Aquatic Systems from Asia. Appl. Mech. Mater. 2013, 295–298, 513–519. [Google Scholar] [CrossRef]
- Lin, A.Y.-C.; Panchangam, S.C.; Chang, C.-Y.; Hong, P.K.A.; Hsueh, H.-F. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition. J. Hazard. Mater. 2012, 243, 272–277. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation. Chem. Eng. J. 2016, 296, 329–334. [Google Scholar] [CrossRef]
- Zsilák, Z.; Szabó-Bárdos, E.; Fónagy, O.; Horváth, O.; Horváth, K.; Hajós, P. Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation. Catal. Today 2014, 230, 55–60. [Google Scholar] [CrossRef]
- Giri, R.R.; Ozaki, H.; Okada, T.; Taniguchi, S.; Takanami, R. Factors influencing UV photodecomposition of perfluorooctanoic acid in water. Chem. Eng. J. 2012, 180, 197–203. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, P.-y.; Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J. Environ. Sci. 2007, 19, 387–390. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. [Google Scholar] [CrossRef]
- Cho, I.-H. Degradation and reduction of acute toxicity of environmentally persistent perfluorooctanoic acid (PFOA) using VUV photolysis and TiO2 photocatalysis in acidic and basic aqueous solutions. Toxicol. Environ. Chem. 2011, 93, 925–940. [Google Scholar] [CrossRef]
- Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Kuo, J.; Wu, C.-H. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. J. Hazard. Mater. 2016, 303, 111–118. [Google Scholar] [CrossRef]
- Qian, L.; Georgi, A.; Gonzalez-Olmos, R.; Kopinke, F.-D. Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation. Appl. Catal. B Environ. 2020, 278, 119283. [Google Scholar] [CrossRef]
- Moriwaki, H.; Takagi, Y.; Tanaka, M.; Tsuruho, K.; Okitsu, K.; Maeda, Y. Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environ. Sci. Technol. 2005, 39, 3388–3392. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-C.; Hu, C.-Y.; Lo, S.-L. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason. Sonochem. 2016, 28, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Freire, L.; Balachandran, R.; Sierra-Alvarez, R.; Keswani, M. Effect of sound frequency and initial concentration on the sonochemical degradation of perfluorooctane sulfonate (PFOS). J. Hazard. Mater. 2015, 300, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jin, Y.-T.; Cao, D.-Y.; Yang, L.-L.; Yan, J.-F.; Zhang, Z.-X.; Liu, Z.; Huang, L.-W.; Zhou, S.-Q.; Cheng, J.-L.; et al. Efficient decomposition of perfluorooctane sulfonate by electrochemical activation of peroxymonosulfate in aqueous solution: Efficacy, reaction mechanism, active sites, and application potential. Water Res. 2022, 221, 118778. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Deng, S.; Yang, B.; Huang, J.; Wang, B.; Zhang, T.; Yu, G. Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochim. Acta 2012, 77, 17–22. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, L.; Cui, W.; Li, R.; Song, T.; Cui, Z. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Yb-doped Ti/SnO2–Sb/PbO2 anodes and determination of the optimal conditions. RSC Adv. 2015, 5, 84856–84864. [Google Scholar] [CrossRef]
- Zhuo, Q.; Li, X.; Yan, F.; Yang, B.; Deng, S.; Huang, J.; Yu, G. Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: Operating parameters and mechanism. J. Environ. Sci. 2014, 26, 1733–1739. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Z.; Lu, W.; Wang, L.; Zhang, C.; Su, P. Electrochemical degradation of perfluorinated compounds by Ag coated Ti (Ti/Ag) anode: Electrode preparation, characterization and application. Environ. Sci. Water Res. Technol. 2021, 7, 455–467. [Google Scholar] [CrossRef]
- Aquino, J.M.; Rocha-Filho, R.C.; Ruotolo, L.A.M.; Bocchi, N.; Biaggio, S.R. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 2014, 251, 138–145. [Google Scholar] [CrossRef]
- Ochiai, T.; Iizuka, Y.; Nakata, K.; Murakami, T.; Tryk, D.A.; Fujishima, A.; Koide, Y.; Morito, Y. Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode. Diam. Relat. Mater. 2011, 20, 64–67. [Google Scholar] [CrossRef]
- Carter, K.E.; Farrell, J. Oxidative Destruction of Perfluorooctane Sulfonate Using Boron-Doped Diamond Film Electrodes. Environ. Sci. Technol. 2008, 42, 6111–6115. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Andaya, C.; Urtiaga, A.; McKenzie, E.R.; Higgins, C.P. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). J. Hazard. Mater. 2015, 295, 170–175. [Google Scholar] [CrossRef]
PFOA | PFOS | |
---|---|---|
CAS number | 335-67-1 | 1763-23-1 |
Molecular formula | C7F15COOH | C8F17SO3H |
Molecular Structure | ||
Molecular weight | 414.07 | 500.13 |
Solubility | 13.6 g/L | 7.5 g/L |
Density | 1.84 g·cm−3 | 1.25 g·cm−3 |
Melting point | 45–50 °C | ≥400 °C |
Boiling point | 260 °C | 189~192 °C |
pKa | 0.50 | −3.27 |
PFCs | Compounds | Perfluoroalkyl Chain Length | E. horemanii | E. crassipes |
---|---|---|---|---|
PFTeDA | C13F27COOH | 13 | 29.5 ± 2.0 | 18.8 ± 1.3 |
PFTrDA | C12F25COOH | 12 | 13.7 ± 1.1 | 26.0 ± 2.2 |
PFDoDA | C11F23COOH | 11 | 19.2 ± 1.3 | 24.9 ± 1.8 |
PFUnDA | C10F21COOH | 10 | 42.0 ± 2.9 | 27.9 ± 2.0 |
PFDA | C9F19COOH | 9 | 24.5 ± 1.8 | 25.2 ± 1.5 |
PFNA | C8F17COOH | 8 | 43.0 ± 2.7 | 27.5 ± 2.9 |
PFOS | C8F17SO3H | 8 | 86.8 ± 6.5 | 89.8 ± 6.9 |
PFOA | C7F15COOH | 7 | 43.0 ± 2.7 | 27.5 ± 2.9 |
PFHpA | C6F13COOH | 6 | 24.5 ± 1.8 | 25.2 ± 1.5 |
PFHxS | C6F13SO3H | 6 | 44.7 ± 3.8 | 27.9 ± 2.0 |
PFHxA | C5F11COOH | 5 | 29.4 ± 1.9 | 24.9 ± 1.8 |
PFPeA | C4F9COOH | 4 | 13.7 ± 1.1 | 26.0 ± 2.2 |
PFBS | C3F7COOH | 3 | 29.5 ± 2.0 | 18.8 ± 1.3 |
PFPrA | C2F5COOH | 2 | - | - |
TFA | CF3COOH | 1 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Sumita; Li, C.; Sun, C.; Marmier, N. A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process. Water 2022, 14, 2692. https://doi.org/10.3390/w14172692
Zhang K, Sumita, Li C, Sun C, Marmier N. A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process. Water. 2022; 14(17):2692. https://doi.org/10.3390/w14172692
Chicago/Turabian StyleZhang, Kai, Sumita, Cong Li, Chunmeng Sun, and Nicolas Marmier. 2022. "A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process" Water 14, no. 17: 2692. https://doi.org/10.3390/w14172692
APA StyleZhang, K., Sumita, Li, C., Sun, C., & Marmier, N. (2022). A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process. Water, 14(17), 2692. https://doi.org/10.3390/w14172692