The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics
Abstract
:1. Introduction
2. Mechanism of Different Methods
2.1. Biological Treatment Method
2.2. Physical Treatment Method
2.3. Chemical Treatment Method
3. Application of Different Methods in the Removal of Antibiotic
3.1. Antibiotic Biological Treatment
3.1.1. Activated Sludge Process
3.1.2. Membrane Bioreactor
3.2. Antibiotic Physical Treatment
3.2.1. Adsorption Method
3.2.2. Membrane Filtration Method
3.2.3. Ion Resin Method
3.3. Antibiotics Chemical Treatment
3.3.1. Strong Oxidant Oxidation Method
3.3.2. Advanced Oxidation Method
Fenton Oxidation
Ozone or Ozone Catalytic Oxidation
Photocatalytic Oxidation
3.4. Combination Method
4. Advantages and Disadvantages of Treatment Methods
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzetti, S.; Ghisi, R. The environmental release and fate of antibiotics. Mar. Pollut. Bull. 2014, 79, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.M.; Lopatkin, A.J.; Lobritz, M.A.; Collins, J.J. Bacterial Metabolism and Antibiotic Efficacy. Cell Metab. 2019, 30, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.-J.; Lee, J.-W.; Lee, E.-S.; Shin, S.-K.; Hwang, S.-R.; Oh, J.-E. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 2011, 82, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China—A systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Liu, Y.; Du, P.-P.; Zeng, L.-J.; Mo, C.-H.; Li, Y.-W.; Lu, H.; Cai, Q.-Y. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Sci. Total Environ. 2019, 670, 170–180. [Google Scholar] [CrossRef]
- Szekeres, E.; Chiriac, C.M.; Baricz, A.; Szoke-Nagy, T.; Lung, I.; Soran, M.-L.; Rudi, K.; Dragos, N.; Coman, C. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ. Pollut. 2018, 236, 734–744. [Google Scholar] [CrossRef]
- Sanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Hena, S.; Gutierrez, L.; Croue, J.-P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Pulcini, C.; Piddock, L.J.V. Antibiotic resistance: A geopolitical issue. Clin. Microbiol. Infect. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 949–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.-Y.; Ma, Y.-L.; Zhang, J.-T.; Fan, N.-S.; Huang, B.-C.; Jin, R.-C. A critical review of antibiotic removal strategies: Performance and mechanisms. J. Water Process Eng. 2020, 38, 101681. [Google Scholar] [CrossRef]
- Prado, N.; Ochoa, J.; Amrane, A. Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system. Process Biochem. 2009, 44, 1302–1306. [Google Scholar] [CrossRef]
- Xiao, Y.; Yaohari, H.; De Araujo, C.; Sze, C.C.; Stuckey, D.C. Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chem. Eng. J. 2017, 321, 335–345. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Sillanpaa, M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater. 2015, 298, 102–110. [Google Scholar] [CrossRef]
- Dolar, D.; Perisa, M.; Kosutic, K.; Babic, S. NF/RO removal of enrofloxacin and its photodegradation products from water. Desalination Water Treat. Sci. Eng. 2013, 51, 469–475. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, W.; Zhang, Z.; Yang, Z.; Wang, Y. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J. Environ. Sci. 2015, 31, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rangel, A.; Sanchez-Polo, M.; Rozalen, M.; Rivera-Utrilla, J.; Polo, A.M.S.; Berber-Mendoza, M.S.; Lopez-Ramon, M.V. Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment. J. Environ. Manag. 2020, 255, 109927. [Google Scholar] [CrossRef]
- Group, O.N. Chemistry of Ozone in Water and Wastewater Treatment. Ozone News 2011, 39, 11. [Google Scholar]
- Khalil, M.; Liu, Y. Greywater biodegradability and biological treatment technologies: A critical review. Int. Biodeterior. Biodegrad. 2021, 161, 105211. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Cui, C.-Y.; Zhang, X.-J.; Lin, Z.-Y.; Jia, Q.-L.; Li, C.; Ren, H.; Cai, D.-T.; Zheng, Z.-J.; Long, T.-F.; et al. Reducing tetracycline antibiotics residues in aqueous environments using Tet(X) degrading enzymes expressed in Pichia pastoris. Sci. Total Environ. 2021, 799, 149360. [Google Scholar] [CrossRef]
- Jiang, B.; Li, A.; Cui, D.; Cai, R.; Ma, F.; Wang, Y. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl. Microbiol. Biotechnol. 2014, 98, 4671–4681. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.-H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. A J. Int. Water Assoc. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, R.V.; Pakshirajan, K.; Pugazhenthi, G. Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution. Powder Technol. Int. J. Sci. Technol. Wet Dry Part. Syst. 2017, 321, 259–269. [Google Scholar] [CrossRef]
- Choi, K.J.; Son, H.J.; Kim, S.H. Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Sci. Total Environ. 2007, 387, 247–256. [Google Scholar] [CrossRef]
- Yin, F.; Lin, S.; Zhou, X.; Dong, H.; Zhan, Y. Fate of antibiotics during membrane separation followed by physical-chemical treatment processes. Sci. Total Environ. 2021, 759, 143520. [Google Scholar] [CrossRef]
- Removal of ciprofloxacin from seawater by reverse osmosis. J. Environ. Manag. 2018, 217, 337–345. [CrossRef] [PubMed]
- Dar, A.A.; Pan, B.; Qin, J.; Zhu, Q.; Lichtfouse, E.; Usman, M.; Wang, C. Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater. Environ. Pollut. 2021, 290, 117957. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, X.; Yin, F.; Xu, G. Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. Sci. Total Environ. 2019, 650, 2437–2445. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, W.; Luo, H.; Xing, C.; Wang, H.; Liu, B.; Si, Q.; Li, D.; Sun, L.; Ren, N. Insights into removal of sulfonamides in anaerobic activated sludge system: Mechanisms, degradation pathways and stress responses. J. Hazard. Mater. 2022, 423, 127248. [Google Scholar] [CrossRef]
- Wang, L.; Qiang, Z.; Li, Y.; Ben, W. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics. J. Environ. Sci. 2017, 56, 263–271. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. EST 2019, 53, 7234–7264. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Mangalgiri, K.P.; Ibitoye, T.; Blaney, L. Molar absorption coefficients and acid dissociation constants for fluoroquinolone, sulfonamide, and tetracycline antibiotics of environmental concern. Sci. Total Environ. 2022, 835, 155508. [Google Scholar] [CrossRef]
- Yang, S.-F.; Lin, C.-F.; Wu, C.-J.; Ng, K.-K.; Yu-Chen Lin, A.; Andy Hong, P.-K. Fate of sulfonamide antibiotics in contact with activated sludge–Sorption and biodegradation. Water Res. 2012, 46, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, D.; Zhang, G.; Frigon, M.; Meng, X.; Li, K. Adsorption mechanisms and the effect of oxytetracycline on activated sludge. Bioresour. Technol. 2014, 151, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Torresi, E.; Fowler, S.J.; Polesel, F.; Bester, K.; Andersen, H.R.; Smets, B.F.; Plósz, B.G.; Christensson, M. Biofilm Thickness Influences Biodiversity in Nitrifying MBBRs-Implications on Micropollutant Removal. Environ. Sci. Technol. 2016, 50, 9279–9288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Tian, S.; Chen, D.; Zhang, W.; Wu, J.; Chen, L. Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3. J. Environ. Sci. 2012, 24, 1594–1599. [Google Scholar] [CrossRef]
- Neyestani, M.; Dickenson, E.; McLain, J.; Robleto, E.; Rock, C.; Gerrity, D. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole. Chemosphere 2017, 182, 149–158. [Google Scholar] [CrossRef]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors–A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Dutta, K.; Lee, M.-Y.; Lai, W.W.-P.; Lee, C.H.; Lin, A.Y.-C.; Lin, C.-F.; Lin, J.-G. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresour. Technol. 2014, 165, 42–49. [Google Scholar] [CrossRef]
- Raghavan, D.S.S.; Qiu, G.; Ting, Y.-P. Fate and removal of selected antibiotics in an osmotic membrane bioreactor. Chem. Eng. J. 2018, 334, 198–205. [Google Scholar] [CrossRef]
- Zarei-Baygi, A.; Harb, M.; Wang, P.; Stadler, L.B.; Smith, A.L. Evaluating Antibiotic Resistance Gene Correlations with Antibiotic Exposure Conditions in Anaerobic Membrane Bioreactors. Environ. Sci. Technol. 2019, 53, 3599–3609. [Google Scholar] [CrossRef]
- Harb, M.; Zarei-Baygi, A.; Wang, P.; Sawaya, C.B.; McCurry, D.L.; Stadler, L.B.; Smith, A.L. Antibiotic transformation in an anaerobic membrane bioreactor linked to membrane biofilm microbial activity. Environ. Res. 2021, 200, 111456. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, W.; Liu, R.; Song, X.; Wei, D.; Qiu, S.; Zhao, Y. Treatment of digested piggery wastewater with a membrane bioreactor. Environ. Eng. Manag. J. 2016, 15, 2181–2188. [Google Scholar] [CrossRef]
- Song, X.; Liu, R.; Chen, L.; Kawagishi, T. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: Simultaneous removal of nitrogen and antibiotics. Front. Environ. Sci. Eng. 2017, 11, 11. [Google Scholar] [CrossRef]
- Xu, Z.; Song, X.; Li, Y.; Li, G.; Luo, W. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. Sci. Total Environ. 2019, 684, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, H.-C.; Cui, D.; Zhang, B.; Chen, Z.-B.; Wang, A.-J. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR). Chem. Eng. J. 2018, 341, 238–247. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Bui, X.-T.; Luu, V.-P.; Nguyen, P.-D.; Guo, W.; Ngo, H.-H. Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: Comparison between hollow fiber and flat sheet membrane systems. Bioresour. Technol. 2017, 240, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Hamjinda, N.S.; Chiemchaisri, W.; Chiemchaisri, C. Upgrading two-stage membrane bioreactor by bioaugmentation of Pseudomonas putida entrapment in PVA/SA gel beads in treatment of ciprofloxacin. Int. Biodeterior. Biodegrad. 2017, 119, 595–604. [Google Scholar] [CrossRef]
- Wei, C.-H.; Sanchez-Huerta, C.; Leiknes, T.; Amy, G.; Zhou, H.; Hu, X.; Fang, Q.; Rong, H. Removal and biotransformation pathway of antibiotic sulfamethoxazole from municipal wastewater treatment by anaerobic membrane bioreactor. J. Hazard. Mater. 2019, 380, 120894. [Google Scholar] [CrossRef]
- Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Walha, K.; Salvadó, V.; Monclús, H. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf. Environ. Prot. 2018, 118, 1–9. [Google Scholar] [CrossRef]
- Najmi, M.; Mehrnia, M.R.; Tashauoei, H.R.; Iranpoury, A.; Alivand, M.S. Removal of personal care products (PCPs) from greywater using a submerged membrane bioreactor (SMBR): The effect of hydraulic retention time. J. Environ. Chem. Eng. 2020, 8, 104432. [Google Scholar] [CrossRef]
- Zhao, W.; Sui, Q.; Mei, X.; Cheng, X. Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox condition. Sci. Total Environ. 2018, 633, 668–676. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Deng, L.; Li, Y.; Guo, J. Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system. Bioresour. Technol. 2018, 268, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Hamadeen, H.M.; Elkhatib, E.A. New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms. Environ. Res. 2022, 210, 112929. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Li, X.; Wang, J.; Lin, P.; Chen, C.; Zhang, X.; Suffet, I.H. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci. 2017, 56, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Qiang, Z.; Chang, J.-H.; Ben, W.; Qu, J. Synthesis of carbon-coated magnetic nanocomposite (Fe_3O_4@C) and its application for sulfonamide antibiotics removal from water. J. Environ. Sci. 2014, 26, 962–969. [Google Scholar] [CrossRef]
- Yangli, K.; Guiying, L.; Zhenpeng, G.; Shangqing, L.; Jing, A.; Dongsheng, W. Preparation of N-doped graphitic carbon nanofibers composites via pyrolysis strategy and its application in the antibiotics treatment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127656. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, J.; Zheng, H.; Li, X.; Wang, Y.; Li, X.; Xing, B. Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. Sci. Total Environ. 2020, 738, 139685. [Google Scholar] [CrossRef]
- Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 2015, 282, 201–207. [Google Scholar] [CrossRef]
- Wang, F.; Ma, S.; Si, Y.; Dong, L.; Wang, X.; Yao, J.; Chen, H.; Yi, Z.; Yao, W.; Xing, B. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon 2017, 114, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Ok, Y.S.; Mohan, D.; Pittman, C.U.; Dou, X. Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. Environ. Res. 2019, 169, 434–444. [Google Scholar] [CrossRef]
- Xiong, W.; Zeng, Z.; Li, X.; Zeng, G.; Xiao, R.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Hu, L.; et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere 2018, 210, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Guanrong, Y.; Yuhang, L.; Siyuan, Y.; Jihai, L.; Xin, C.; Qiongzhi, G.; Yueping, F.; Feng, P.; Shengsen, Z. Surface oxidized nano-cobalt wrapped by nitrogen-doped carbon nanotubes for efficient purification of organic wastewater. Sep. Purif. Technol. 2021, 259, 118298. [Google Scholar] [CrossRef]
- Avcı, A.; İnci, İ.; Baylan, N. Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube. J. Mol. Struct. 2020, 1206, 127711. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Xie, S.; Sun, Q.; Zhang, Z.-X.; Zeng, G. Adsorption behavior of carbamazepine on Zn-MOFs derived nanoporous carbons: Defect enhancement, role of N doping and adsorption mechanism. J. Environ. Chem. Eng. 2022, 10, 107660. [Google Scholar] [CrossRef]
- Han, R.; Zhao, M.; Li, X.; Cui, S.; Yang, J. N-doped regular octahedron MOF-199 derived porous carbon for ultra-efficient adsorption of oxytetracycline. Sep. Purif. Technol. 2022, 302, 121960. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 2014, 45, 219–226. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef]
- Bin, L.; Guohe, H.; Yao, Y.; Chunjiang, A.; Peng, Z.; Kai, Z. Investigation into the influencing factors and adsorption characteristics in the removal of sulfonamide antibiotics by carbonaceous materials. J. Clean. Prod. 2021, 319, 128692. [Google Scholar] [CrossRef]
- Dolar, D.; Kosutic, K.; Perisa, M. Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes. Sep. Purif. Technol. 2013, 115, 1–8. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Liu, Y.; Guo, Z.; Shao, L. Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J. Membr. Sci. 2015, 493, 156–166. [Google Scholar] [CrossRef]
- Zhao, S.; Ba, C.; Yao, Y.; Zheng, W.; Economy, J.; Wang, P. Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes: Relating membrane performance to surface charge characteristics. Chem. Eng. J. 2018, 335, 101–109. [Google Scholar] [CrossRef]
- Reza, D.; Maryam, H.; Ahmad, A.; Reza, M.M. Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane. J. Environ. Health Sci. Eng. 2013, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, C.; He, S. Synthesis and characterization of a novel magnetic resin (m-MAR resin) and its removal performance for alkaline amino acids. Environ. Res. 2022, 214, 114067. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ji, M.; Li, X.; Song, H.; Wang, G.; Qi, C.; Li, A. Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin. Bioresour. Technol. 2019, 293, 122068. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Pan, X.; Ben, W.; Wang, J.; Hou, P.; Qiang, Z. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 2017, 52, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, H.; Shuang, C.; Li, A.; Wang, C.; Huang, Y. Effect of pore structure on adsorption behavior of ibuprofen by magnetic anion exchange resins. Microporous Mesoporous Mater. 2015, 210, 94–100. [Google Scholar] [CrossRef]
- Wang, P.; He, Y.-L.; Huang, C.-H. Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Res. 2010, 45, 1838–1846. [Google Scholar] [CrossRef]
- Moreno-Palacios, A.V.; Palma-Goyes, R.E.; Vazquez-Arenas, J.; Torres-Palma, R.A. Bench-scale reactor for Cefadroxil oxidation and elimination of its antibiotic activity using electro-generated active chlorine. J. Environ. Chem. Eng. 2019, 7, 103173. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Jojoa-Sierra, S.D.; Berrio-Perlaza, K.E.; Ferraro, F.; Torres-Palma, R.A. Structure-reactivity relationship in the degradation of three representative fluoroquinolone antibiotics in water by electrogenerated active chlorine. Chem. Eng. J. 2017, 315, 552–561. [Google Scholar] [CrossRef]
- Ye, Z.-X.; Shao, K.-L.; Huang, H.; Yang, X. Tetracycline antibiotics as precursors of dichloroacetamide and other disinfection byproducts during chlorination and chloramination. Chemosphere: Environ. Toxicol. Risk Assess. 2021, 270, 128628. [Google Scholar] [CrossRef]
- Guilin, H.; Tuqiao, Z.; Yunfei, L.; Jinzhe, L.; Feiyong, C.; Jun, H.; Feilong, D. Comparison of fleroxacin oxidation by chlorine and chlorine dioxide: Kinetics, mechanism and halogenated DBPs formation. Chemosphere 2022, 286, 286. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, L.; Wang, M.; Zhang, Q.; Zhang, Y.; Li, Y. The influence of bromide and iodide ions on the sulfamethoxazole (SMX) halogenation during chlorination. Sci. Total Environ. 2022, 848, 157687. [Google Scholar] [CrossRef]
- He, G.; Zhang, T.; Zheng, F.; Li, C.; Zhang, Q.; Dong, F.; Huang, Y. Reaction of fleroxacin with chlorine and chlorine dioxide in drinking water distribution systems: Kinetics, transformation mechanisms and toxicity evaluations. Chem. Eng. J. 2019, 374, 1191–1203. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chen, L.; Zboril, R. Review on High Valent Fe~(VI) (Ferrate): A Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. ACS Sustain. Chem. Eng. 2016, 4, 18–34. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, N.; Li, C. Degradation and Pathway of Tetracycline Hydrochloride in Aqueous Solution by Potassium Ferrate. Environ. Eng. Sci. 2012, 29, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jiang, J.-Q. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere 2015, 119, S95–S100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalakova, P.; Cizmas, L.; Feng, M.; McDonald, T.J.; Marsalek, B.; Sharma, V.K. Oxidation of antibiotics by ferrate(VI) in water: Evaluation of their removal efficiency and toxicity changes. Chemosphere 2021, 277, 130365. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, F.; Luo, F.; Li, C. Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI). J. Environ. Sci. 2018, 73, 89–95. [Google Scholar] [CrossRef]
- Wang, D.; Zeng, Z.; Zhang, H.; Zhang, J.; Bai, R. How does pH influence ferrate(VI) oxidation of fluoroquinolone antibiotics? Chem. Eng. J. 2022, 431, 133381. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Q.; Yu, Y.; Liu, Z.; Xue, G. Influence of Fenton’s reagent doses on the degradation and mineralization of H-acid. J. Hazard. Mater. 2013, 263, 593–599. [Google Scholar] [CrossRef]
- Barhoumi, N.; Oturan, N.; Olvera-Vargas, H.; Brillas, E.; Gadri, A.; Ammar, S.; Oturan, M.A. Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Res. 2016, 94, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Garg, A. Degradation of ciprofloxacin using Fenton’s oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. Chemosphere 2018, 193, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Zhag, M.-h.; Dong, H.; Zhao, L.; Wang, D.-x.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Y.; Han, S.; Guo, C.; Wen, Z.; Tian, X.; Li, J. Electro-Fenton oxidation of a β-lactam antibiotic cefoperazone: Mineralization, biodegradability and degradation mechanism. Chemosphere 2021, 270, 129486. [Google Scholar] [CrossRef]
- Salari, M.; Rakhshandehroo, G.R.; Nikoo, M.R. Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products. Chemosphere Environ. Toxicol. Risk Assess. 2018, 206, 157–167. [Google Scholar] [CrossRef]
- Sarrai, A.E.; Hanini, S.; Merzouk, N.K.; Tassalit, D.; Szabó, T.; Hernádi, K.; Nagy, L. Using Central Composite Experimental Design to Optimize the Degradation of Tylosin from Aqueous Solution by Photo-Fenton Reaction. Materials 2016, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Yang, C.; Cheng, X.; Xu, S.; Fan, Z.; Wang, G.; Wang, S.; Guan, X.; Sun, X. Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon. Sep. Purif. Technol. 2017, 189, 357–365. [Google Scholar] [CrossRef]
- Han, C.-H.; Park, H.-D.; Kim, S.-B.; Yargeau, V.; Choi, J.-W.; Lee, S.-H.; Park, J.-A. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Water Res. 2020, 172, 115514. [Google Scholar] [CrossRef]
- Yao, B.; Luo, Z.; Yang, J.; Zhi, D.; Zhou, Y. FeIIFeIII layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process. Environ. Res. 2021, 197, 111144. [Google Scholar] [CrossRef]
- Luo, T.; Feng, H.; Tang, L.; Lu, Y.; Tang, W.; Chen, S.; Yu, J.; Xie, Q.; Ouyang, X.; Chen, Z. Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway. Chem. Eng. J. 2020, 382, 122970. [Google Scholar] [CrossRef]
- Hang, J.; Yi, X.-H.; Wang, C.-C.; Fu, H.; Wang, P.; Zhao, Y. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe). J. Hazard. Mater. 2022, 424, 127415. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Karaca, M.; Karaca, S.; Khataee, A.; Açışlı, Ö.; Yılmaz, B. Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. J. Environ. Manag. 2018, 211, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, J.; Fang, Z.; Tsang, E.P. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline. Chem. Eng. J. 2019, 369, 588–599. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J. Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst. Chem. Eng. J. 2018, 351, 1085–1094. [Google Scholar] [CrossRef]
- Xie, D.-H.; Guo, P.-C.; Zhong, K.-Q.; Sheng, G.-P. Highly dispersed Co/Fe bimetal in carbonaceous cages as heterogeneous Fenton nanocatalysts for enhanced sulfamethoxazole degradation. Appl. Catal. B Environ. 2022, 319, 121923. [Google Scholar] [CrossRef]
- Lai, W.; Xie, G.; Dai, R.; Kuang, C.; Xu, Y.; Pan, Z.; Zheng, L.; Yu, L.; Ye, S.; Chen, Z.; et al. Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode. J. Environ. Manag. 2020, 257, 109968. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Zhi, D.; Tang, H.; Jiang, L.; Luo, S.; Zhou, Y. Effect of Fe2+, Mn2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage. Sci. Total Environ. 2020, 720, 137560. [Google Scholar] [CrossRef]
- Farinelli, G.; Minella, M.; Pazzi, M.; Giannakis, S.; Pulgarin, C.; Vione, D.; Tiraferri, A. Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments. J. Hazard. Mater. 2020, 393, 122413. [Google Scholar] [CrossRef]
- Alalm, M.G.; Tawfik, A.; Ookawara, S. Degradation of four pharmaceuticals by solar photo-Fenton process: Kinetics and costs estimation. J. Environ. Chem. Eng. 2015, 3, 46–51. [Google Scholar] [CrossRef]
- Qiao, X.X.; Yu, K.; Xu, J.Y.; Cai, Y.L.; Li, Y.F.; Cao, H.L.; Lü, J. Engineered nanoscale schwertmannites as Fenton–like catalysts for highly efficient degradation of nitrophenols. Appl. Surf. Sci. 2021, 548, 149248. [Google Scholar] [CrossRef]
- Hou, L.; Wang, L.; Royer, S.; Zhang, H. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 2016, 302, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Mei, Y.; Li, J.; Yao, T.; Yang, Y.; Jia, W.; Tong, X.; Wu, J.; Xin, B. Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chem. Eng. J. 2019, 373, 1158–1167. [Google Scholar] [CrossRef]
- Mo, R.; Huang, S.; Dai, W.; Liang, J.; Sun, S. A rapid Fenton treatment technique for sewage sludge dewatering. Chem. Eng. J. 2015, 269, 391–398. [Google Scholar] [CrossRef]
- Annabi, C.; Fourcade, F.; Soutrel, I.; Geneste, F.; Floner, D.; Bellakhal, N.; Amrane, A. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism. J. Environ. Manag. 2016, 165, 96–105. [Google Scholar] [CrossRef]
- Shokri, A.; Fard, M.S. A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment. Environ. Chall. 2022, 7, 100534. [Google Scholar] [CrossRef]
- Malvestiti, J.A.; Cruz-Alcalde, A.; Lopez-Vinent, N.; Dantas, R.F.; Sans, C. Catalytic ozonation by metal ions for municipal wastewater disinfection and simulataneous micropollutants removal. Appl. Catal. B Environ. Int. J. Devoted Catal. Sci. Its Appl. 2019, 259, 118104. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Wang, H.; Mustafa, M.; Yu, G.; Ostman, M.; Cheng, Y.; Wang, Y.; Tysklind, M. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. Chemosphere: Environ. Toxicol. Risk Assess. 2019, 235, 575–585. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.L.; Rodrigues, P.; Pereira, M.F.R.; Guimarães, L.; Almeida, C.M.R.; Silva, A.M. Antibiotics removal from aquaculture effluents by ozonation: Chemical and toxicity descriptors. Water Res. 2022, 218, 118497. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Sani, O.N.; Fezabady, A.A.N.; Yazdani, M.; Taghavi, M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J. Water Process Eng. 2019, 32, 100894. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, M.; Ma, L.; Wang, Y.; Zhang, D.; Li, L. Ozonation catalysed by ferrosilicon for the degradation of ibuprofen in water. Environ. Pollut. 2021, 268, 115722. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J. Catalytic ozonation for degradation of sulfamethazine using NiCo2O4 as catalyst. Chemosphere 2021, 268, 128840. [Google Scholar] [CrossRef]
- Yao, W.; Qu, Q.; von Gunten, U.; Chen, C.; Yu, G.; Wang, Y. Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. Water Res. 2017, 108, 373–382. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, E.; Wang, J.; Zhang, X.; Huang, H.; Yu, G.; Wang, Y. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O3/H2O2 and electro-peroxone processes. J. Hazard. Mater. 2020, 389, 121829. [Google Scholar] [CrossRef]
- Lu, P.; Lin, K.; Gan, J. Enhanced ozonation of ciprofloxacin in the presence of bromide: Kinetics, products, pathways, and toxicity. Water Res. 2020, 183, 116105. [Google Scholar] [CrossRef]
- Jahan, B.N.; Li, L.; Pagilla, K.R. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. Chemosphere 2021, 266, 128964. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Fang, Y.; Yang, Z. Heterogeneous catalytic ozonation of sulfamethazine in aqueous solution using maghemite-supported manganese oxides. Sep. Purif. Technol. 2021, 274, 118945. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J. Degradation of sulfamethoxazole by ozonation combined with ionizing radiation. J. Hazard. Mater. 2021, 407, 124377. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Wang, J.; Pan, J.; Gao, B.; Yue, Q. Catalytic ozonation performance and mechanism of Mn-CeOx@γ-Al2O3/O3 in the treatment of sulfate-containing hypersaline antibiotic wastewater. Sci. Total Environ. 2022, 807, 150867. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, W.; Yang, Z.; Yang, Y.; Li, H. Efficient ozone catalysis by manganese iron oxides/activated carbon for sulfamerazine degradation. J. Water Process Eng. 2022, 49, 103050. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Hu, D.; Chen, C.; Zhang, Y.; He, S.; Wang, J. Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst. Chemosphere 2021, 265, 129047. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, L.; Chen, Z.; Shen, B.; Wei, J.; Zeng, P.; Wen, X. Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: Efficiency, transformation and mechanism. Sci. Total Environ. 2021, 785, 147328. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fu, W.; Chen, X.; Chen, L.; Hou, C.; Tang, T.; Zhang, X. Ceramic nanofiber membrane anchoring nanosized Mn2O3 catalytic ozonation of sulfamethoxazole in water. J. Hazard. Mater. 2022, 436, 129168. [Google Scholar] [CrossRef]
- Kansal, S.K.; Kundu, P.; Sood, S. Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J. Chem. 2014, 38, 3220–3226. [Google Scholar] [CrossRef]
- Pereira, J.H.O.S.; Reis, A.C.; Queirós, D.; Nunes, O.C.; Borges, M.T.; Vilar, V.P.; Boaventura, R.A.R. Insights into solar TiO_2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Sci. Total Environ. 2013, 463–464, 274–283. [Google Scholar] [CrossRef]
- Ngo Thi, T.D.; Nguyen, L.H.; Nguyen, X.H.; Phung, H.V.; The Vinh, T.H.; Van Viet, P.; Van Thai, N.; Le, H.N.; Pham, D.T.; Van, H.T.; et al. Enhanced heterogeneous photocatalytic perozone degradation of amoxicillin by ZnO modified TiO2 nanocomposites under visible light irradiation. Mater. Sci. Semicond. Processing 2022, 142, 106456. [Google Scholar] [CrossRef]
- Al-Hamdi, A.M.; Rinner, U.; Sillanpaa, M. Tin dioxide as a photocatalyst for water treatment: A review. Trans. Inst. Chem. Engineers. Process Saf. Environ. Prot. Part B 2017, 107, 190–205. [Google Scholar] [CrossRef]
- Yuan, M.; Zhou, W.-H.; Kou, D.-X.; Zhou, Z.-J.; Meng, Y.-N.; Wu, S.-X. Cu_2ZnSnS_4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. Int. J. Hydrog. Energy 2018, 43, 20408–20416. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Yu, C.; Teng, B.; He, Y.; Zhao, L.; Fan, M. Application of Ag/AgBr/GdVO4 composite photocatalyst in wastewater treatment. J. Environ. Sci. 2018, 63, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, X.; Han, D.; Sun, Y.; Ma, C.; Liu, Y.; Huo, P.; Yan, Y. In-situ synthesis of BiVO_4 QDs/cellulose fibers composite for photocatalytic application. Int. J. Hydrog. Energy 2019, 44, 31969–31978. [Google Scholar] [CrossRef]
- Razali, N.A.M.; Salleh, W.N.W.; Aziz, F.; Jye, L.W.; Yusof, N.; Jaafar, J.; Ismail, A.F. Influence of g-C3N4 and PANI onto WO3 photocatalyst on the photocatalytic degradation of POME. Mater. Today: Proc. 2022, 65, 3054–3059. [Google Scholar] [CrossRef]
- Guoli, X.; Meiling, D.; Tao, L.; Yueping, G.; Chen, G. Facile synthesis of magnetically retrievable Fe3O4/BiVO4/CdS heterojunction composite for enhanced photocatalytic degradation of tetracycline under visible light. Sep. Purif. Technol. 2021, 275, 119157. [Google Scholar] [CrossRef]
- Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem. Eng. J. 2020, 380, 122366. [CrossRef]
- Chen, F.; Yang, Q.; Wang, Y.; Yao, F.; Ma, Y.; Huang, X.; Li, X.; Wang, D.; Zeng, G.; Yu, H. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism. Chem. Eng. J. 2018, 348, 157–170. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Z.; Zhou, L.; Yang, J.; Cao, H.; Xiong, M.; Xie, Y.; Jia, G. Hierarchical biomimetic BiVO_4 for the treatment of pharmaceutical wastewater in visible-light photocatalytic ozonation. Chemosphere Environ. Toxicol. Risk Assess. 2019, 222, 38–45. [Google Scholar] [CrossRef]
- Du, H.; Pu, W.; Wang, Y.; Yan, K.; Feng, J.; Zhang, J.; Yang, C.; Gong, J. Synthesis of BiVO4/WO3 composite film for highly efficient visible light induced photoelectrocatalytic oxidation of norfloxacin. J. Alloy. Compd. 2019, 787, 284–294. [Google Scholar] [CrossRef]
- Danping, L.; Ning, Z.; Rongfang, Y.; Huilun, C.; Fei, W.; Beihai, Z. Effect of wavelengths on photocatalytic oxidation mechanism of sulfadiazine and sulfamethoxazole in the presence of TiO2. J. Environ. Chem. Eng. 2021, 9, 106243. [Google Scholar] [CrossRef]
- Ye, S.; Zhou, X.; Xu, Y.; Lai, W.; Yan, K.; Huang, L.; Ling, J.; Zheng, L. Photocatalytic performance of multi-walled carbon nanotube/BiVO4 synthesized by electro-spinning process and its degradation mechanisms on oxytetracycline. Chem. Eng. J. 2019, 373, 880–890. [Google Scholar] [CrossRef]
- Azimi, S.; Nezamzadeh-Ejhieh, A. Enhanced activity of clinoptilolite-supported hybridized PbS–CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution. J. Mol. Catalysis. A Chem. 2015, 408, 152–160. [Google Scholar] [CrossRef]
- Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manag. 2017, 186, 55–63. [CrossRef] [PubMed]
- Saadati, F.; Keramati, N.; Ghazi, M.M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 757–782. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Wang, Y.-J.; Sun, R.-J.; Zhou, D.-M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO_2. Chemosphere: Environ. Toxicol. Risk Assess. 2013, 92, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yao, H.; Fu, W.; Xue, S.; Zhang, W. Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. J. Hazard. Mater. 2020, 386, 121955. [Google Scholar] [CrossRef] [PubMed]
- Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Alexander, J.; Schwartz, T.; Fatta-Kassinos, D. Investigation of the potential of a Membrane BioReactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants. Chem. Eng. J. 2017, 310, 491–502. [Google Scholar] [CrossRef]
- Fuqiang, L.; Xuefang, L.; Jinsheng, S.; Lili, W. Loofah sponge as an environment-friendly biocarrier for intimately coupled photocatalysis and biodegradation (ICPB). J. Water Process Eng. 2021, 40, 101965. [Google Scholar] [CrossRef]
- Cui, Y.; Zheng, J.; Wang, Z.; Li, B.; Yan, Y.; Meng, M. Magnetic induced fabrication of core-shell structure Fe3O4@TiO2 photocatalytic membrane: Enhancing photocatalytic degradation of tetracycline and antifouling performance. J. Environ. Chem. Eng. 2021, 9, 106666. [Google Scholar] [CrossRef]
- Zhou, A.; Jia, R.; Wang, Y.; Sun, S.; Xin, X.; Wang, M.; Zhao, Q.; Zhu, H. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep. Purif. Technol. 2020, 234, 116099. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res. A J. Int. Water Assoc. 2015, 87, 87–96. [Google Scholar] [CrossRef]
- Marcelino, R.B.P.; Leao, M.M.D.; Lago, R.M.; Amorim, C.C. Multistage ozone and biological treatment system for real wastewater containing antibiotics. Arch. Anim. Nutr. 2017, 71, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.-Y.; Zeng, Z.-T.; Zeng, G.-M.; Gong, J.-L.; Xiao, R.; Zhang, P.; Song, B.; Tang, W.-W.; Ren, X.-Y. Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter. Sep. Purif. Technol. 2020, 235, 116167. [Google Scholar] [CrossRef]
- Karimnezhad, H.; Navarchian, A.H.; Tavakoli Gheinani, T.; Zinadini, S. Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: Effects of input parameters and optimization by response surface methodology. Chem. Eng. Process.-Process Intensif. 2020, 147, 107785. [Google Scholar] [CrossRef]
- Lim, M.; Ahmad, R.; Guo, J.; Tibi, F.; Kim, M.; Kim, J. Removals of micropollutants in staged anaerobic fluidized bed membrane bioreactor for low-strength wastewater treatment. Process Saf. Environ. Prot. 2019, 127, 162–170. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Nguyen, X.H.; Van Thai, N.; Le, H.N.; Thi, T.T.B.; Thi, K.T.B.; Nguyen, H.M.; Le, M.T.; Van, H.T.; Nguyet, D.T.A. Promoted degradation of ofloxacin by ozone integrated with Fenton-like process using iron-containing waste mineral enriched by magnetic composite as heterogeneous catalyst. J. Water Process Eng. 2022, 49, 103000. [Google Scholar] [CrossRef]
- Lu, T.; Gao, Y.; Yang, Y.; Ming, H.; Huang, Z.; Liu, G.; Zheng, D.; Zhang, J.; Hou, Y. Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6. Chemosphere 2021, 283, 131256. [Google Scholar] [CrossRef]
Membrane Bioreactor (MBR) | Antibiotics | Removal Rate | Mechanisms | References |
---|---|---|---|---|
Sequencing-batch membrane bioreactor (SMBR) | Tetracycline Oxytetracycline Chlortetracycline | >90% | Biodegradation/biotransformation | [53] |
Anaerobic membrane bioreactor (AnMBR) | Amoxicillin Ceftriaxone Cefoperazone | 73.2 ± 4.3% 47.7 ± 2.2% 79.4 ± 4.1% | Biodegradation | [54] |
Hollow-fibre MBR | Norfloxacin Ofloxacin Ciprofloxacin Tetracycline | 62–86% 68–93% 54–70% 100% | Biodegradation | [55] |
Anoxic—aerobic MBR (2S-MBR) | Ciprofloxacin | 58% | Biodegradation | [56] |
Anaerobic membrane bioreactor(AnMBR-UF) | Sulfamethoxazole | >88% | Biodegradation | [57] |
Ultrafiltration membrane bioreactor (MBR-UF) | Triclosan Carbamazepine | 89.7 ± 8.3% 36.2 ± 6.8% | Biodegradation | [58] |
Submerged membrane bioreactor (SMBR) | Triclosan | 98.20% | Biodegradation | [59] |
Anaerobic/anoxic/oxic-membrane bioreactor (A1/A2/O-MBR) | Sulfonamides | 93.9–97.5% | Biodegradation | [60] |
Aerobic submerged membrane bioreactor | Sulfadiazine Sulfamethoxazole | 91% 88% | Biodegradation | [61] |
Absorbent Material | Antibiotics | Removal Rate or Sorption Capacity | Mechanisms | References |
---|---|---|---|---|
Carbon nanotubes | Sulfamerazine | —— | Hydrogen bonding | [67] |
Graphene oxide | Sulfamethoxazole Ciprofloxacin | 379 mg/g 240 mg/g | π–π electron donor-acceptor interaction Electrostatic attractions | [68] |
Multiwalled carbon nanotubes | Sulfamethoxazole | —— | Hydrophobic and π–π interactions | [69] |
Carbon dot-modified magnetic carbon nanotubes | Carbamazepine | 80% (65 mg/g) | π–π interactions | [70] |
MWCNT/NH2-MIL-53(Fe) | Tetracycline Chlortetracycline | 368.49 mg/g 254.04 mg/g | π–π interactions | [71] |
Co@CoO/NC | Tetracycline | 385.60 mg/g | Hydrogen bonding and π–π EDA interaction | [72] |
Multiwall carbon nanotube | Ciprofloxacin hydrochloride | 88% | Electrostatic attractions | [73] |
Zn-MOFs derived nanoporous carbons | Carbamazepine | 663.7 mg/g | Hydrophobic interaction | [74] |
N-doped regular octahedron MOF-199 derived porous carbon | Oxytetracycline | 1280.422 mg/g | The electrostatic force, hydrogen bonding and π–π interaction | [75] |
Fenton Oxidation | Antibiotics | Operating Conditions | Removal Rate | References |
---|---|---|---|---|
Photo-Fenton | Tylosin | [Tylosin]sample = 15 mg/L [H2O2] = 20 mg/L [Fe2+] = 5 mg/L pH = 2.6 UV light lamp | 97.1% | [106] |
Heterogeneous Fenton-like | Ofloxacin (OFL) | [OFL]sample = 30 mg/L Catalyst: Fe-Cu@MPSi = 1 g/L [H2O2] = 2000 mg/L pH = 9 | 85% | [107] |
Photo-Fenton | Tetracycline (TC) Oxytetracycline (OTC) | [TC]sample = 100 mg/L [OTC]sample = 100 mg/L [H2O2] = 20 mg/L [Fe2+] = 5 mg/L pH = 5.5 4 W Hg UV lamps | 94.2% 94.8% | [108] |
Electro-Fenton | Ciprofloxacin (CIP) | [CIP] = 0.2 mM [Fe2+] = 2 mM Current = 200 mA [Na2SO4] = 0.05 M pH = 3–9 | 88.11% | [109] |
Heterogeneous electro-Fenton | Tetracycline (TC) | [TC]sample = 20 mg/L Catalyst: Cu-doped Fe@Fe2O3 [Na2SO4] = 0.02 M Current =40 mA pH = 3 | 98.1% | [110] |
Heterogeneous photo-Fenton | Sulfamethoxazole (SMX) | [SMX]sample = 5 mg/L [H2O2] = 9.79 mM Catalyst: Fe3S4 = 0.3 g/L pH = 5 10 W LED | 100% | [111] |
Heterogeneous Fenton | Ciprofloxacin (CIP) | [CIP]sample = 10 mg/L Catalyst: Fe3O4 = 1.75 g/L [H2O2] = 12 mg/L pH = 3 | 89% | [112] |
Heterogeneous Fenton | Tetracycline (TC) | [TC] = 100 mg/L Catalyst: Fe0/CeO2 = 1 g/L [H2O2] = 100 mmol/L pH = 5.8 | 93% | [113] |
Fenton-like | Sulfamethoxazole (SMX) | [SMX]sample = 20 mg/L Catalyst: Fe@MesoC = 0.2 g/L [H2O2] = 3 mM pH = 4 | 100% | [114] |
Heterogeneous Fenton | Sulfamethoxazole (SMX) Carbamazepine (CBZ) Ciprofloxacin (CIP) | [SMX]sample = 20 mg/L Catalyst: CoFe50@C = 0.1 g/L [H2O2] = 15 mM Ph = 3 | 98% 90% 84% | [115] |
Electro-Fenton | Oxytetracycline (OTC) | [OTC]sample = 0.2 Mm Current = 5.17 mA [Na2SO4] = 0.05 M pH = 3 | 83.75% | [116] |
Electro-Fenton | Ciprofloxacin (CIP) | [CIP] = 50 mg/L Current = 400 Ma [Na2SO4] = 0.05 M Catalyst: Mn2+ /Fe2 + = 2:1 pH = 3 | 94% | [117] |
Fenton-like | Advantages | Disadvantages |
---|---|---|
Electro-Fenton | H2O2 can be generated in situ, avoiding the cost and risk of H2O2 transportation and storage; Fe3+ can be reduced to Fe2+ at the cathode, to realize the regeneration of Fe2+; the low iron sludge production. | The low concentration of H2O2 yield; the low current efficiency; the low unit cell body throughput; |
Photo-Fenton | Light energy promotes cycling between Fe3+ and Fe2+; the low initial Fe2+ concentration; the low iron sludge production. | The low utilization rate of light energy; the high operation costs; |
Heterogeneous Fenton | With the wide range of pH; the catalyst is stable and reusable; the low iron sludge production. | The catalyst preparation cost is high; the catalyst preparation process is complicated. |
Antibiotics | Operating Conditions | Removal Rate | References |
---|---|---|---|
Sulfamethazine (SMT) | Catalyst: MnxOy/γ-Fe2O3 = 0.3 g/L [SMT]sample = 20 mg/L [O3] = 6 mg/L pH = 7 | 100% | [139] |
Sulfamethoxazole (SMX) | [SMX]sample = 20 mg/L [O3] = 4.5 mg/min pH = 5.2 | 100% | [140] |
Oxytetracycline (OTC) Sulfadimethoxine (SDM) Sulfamethoxazole (SMX) Trimethoprim (TMP) | [OTC]sample = 100 ng/L [SDM]sample = 100 ng/L [SMX]sample =100 ng/L [TMP]sample =100 g/L [O3] = 1.5 mg/L pH = 8 | >98% | [129] |
Ciprofloxacin (CIP) | Catalyst: Mn-CeOx@γ-Al2O3/O3 = 0.3 g/L [CIP]sample = 50 mg/L [O3] = 14 mg/L pH = 8.5 | 100% | [141] |
Sulfamerazine (SMZ) | Catalyst: MnxFeyOz/AC = 0.05 g/L [SMZ]sample = 10 mg/L [O3] = 50 mL/min pH = 6.1 | 90.5% | [142] |
Ibuprofen (IBU) | Catalyst: FeSi2 = 1.0 g/L [IBU]sample = 10 mg/L [O3] = 9 mg/L pH = 8 | 75% | [133] |
Sulfamethazine (SMT) | Catalyst: NiCo2O4 = 0.05 g/L [SMT]sample = 20 mg/L [O3] = 4.5 mg/min pH = 5.2 | 100% | [134] |
Norfloxacin (NOF) | Catalyst: Co3O4/C = 0.05 g/L [NOF]sample = 20 mg/L [O3] = 15 mg/L pH = 6.7 | 100% | [143] |
Metoprolol (MET)Ibuprofen (IBU) | Catalyst: α-MnO2 = 0.1 g [MET]sample = 20 mg/L [IBU]sample = 20 mg/L [O3] = 1 mg/min pH = 7 | 100% | [144] |
Metronidazole (MNZ) | Catalyst: Fe3O4@Mg(OH)2 = 0.05 mol/L [MNZ]sample = 20 mg/L [O3] = 1 mg/min pH = 6.8 | 81.3% | [145] |
Types of Antibiotics | Combined Process | Removal Rate | References |
---|---|---|---|
Sulfadiazine | Light-Fenton Ceramic Membrane Filtration | 100% | [165] |
Sulfamethoxazole, erythromycin, clarithromycin | Optical Fenton—Membrane Bioreactor | 100% 100% 85% | [166] |
Salt tetracycline | Photocatalysis-Activated Sludge Process | 87.4% | [167] |
Tetracycline | Photocatalytic film (DPMR) | 79.6% | [168] |
Sulfadiazine | Ultrafiltration Membrane—Photocatalysis | 91.4% | [169] |
Amoxicillin | O3 + UV/Vis + TiO2 | 100% | [170] |
Amoxicillin | Aerobic biological + O3 | 99% | [171] |
Sulfamethoxazole Ciprofloxacin Amoxicillin | Multi-walled carbon nanotube-based electrochemical membrane. | 90% 76% 99% | [172] |
Amoxicillin | Combination of Fenton and nanofiltration processes (NF/FT) | 92.3% | [173] |
Ibuprofen Sulfamethoxazole | Staged anaerobic fluidized bed membrane bioreactor + granular activated carbon (SAF-MBR + GAC) | 100% 100% | [174] |
Sulfamethoxazole Triclosan | Anaerobic membrane bioreactor + powdered activated carbon(AnMBR + PAC) | 95.5 ± 4.6% 93.2 ± 6.6% | [18] |
Ofloxacin | Ozone + Fenton | 96.7% | [175] |
Tetracycline | Photocatalytic + ozonation | 85% | [176] |
Methods | Advantages | Disadvantages |
---|---|---|
Biological | The biological method is suitable for the treatment of high-concentration antibiotic wastewater, such as medical and aquaculture wastewater. It has the advantages of strong load tolerance, mature technology, simple process and low operating cost. In the biological treatment process, there are many species and a high abundance of microorganisms, which can use a variety of antibiotic pollutants as carbon sources addition and completely remove antibiotics through their metabolism. | Due to the bactericidal effect of antibiotics, antibiotic wastewater needs to be pretreated before biological treatment. The effectiveness of biological treatment of antibiotics is influenced by the type of biological treatment process (e.g., aerobic, anoxic or anaerobic biological treatment) and process operating parameters (e.g., sludge retention time, dissolved oxygen, physicochemical properties, pH and temperature). In addition, the biological treatment method takes a long time to degrade antibiotics and easily leads to the production of antibiotic-resistant bacteria and drug-resistant genes, which poses a potential threat to ecological security. |
Physical | The physical treatment method has the advantages of low operating cost, simple operation, wide source of raw materials, and no introduction of new pollutants. | The physical method is not degradable or destructive to the antibiotics; the enriched antibiotics are prone to secondary pollution and other problems, and secondary advanced treatment is required. |
Chemical | The chemical method has the advantages of high treatment efficiency, short time, complete removal of pollutants and no sludge generation. Chemical treatment methods rely on the strong oxidizing properties of strong oxidizing agents or advanced oxidation methods that produce highly reactive hydroxyl radicals that undergo redox reactions with antibiotics, thereby destroying the molecular structure of the antibiotic or being mineralized by the hydroxyl radicals. | The application of chemical methods suffers from the difficulty of controlling the amount of chemical reagents and the high cost of advanced oxidation processes. A number of factors including temperature, pH, catalyst, dosage and co-existing organic matter influences chemical oxidation. In addition, chemical methods are also prone to secondary pollution. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Yu, J.; Li, C.; Zhu, Q.; Zhang, Y.; Lichtfouse, E.; Marmier, N. The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics. Water 2022, 14, 3138. https://doi.org/10.3390/w14193138
Huang S, Yu J, Li C, Zhu Q, Zhang Y, Lichtfouse E, Marmier N. The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics. Water. 2022; 14(19):3138. https://doi.org/10.3390/w14193138
Chicago/Turabian StyleHuang, Saikai, Jianping Yu, Cong Li, Qijia Zhu, Yunshu Zhang, Eric Lichtfouse, and Nicolas Marmier. 2022. "The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics" Water 14, no. 19: 3138. https://doi.org/10.3390/w14193138
APA StyleHuang, S., Yu, J., Li, C., Zhu, Q., Zhang, Y., Lichtfouse, E., & Marmier, N. (2022). The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics. Water, 14(19), 3138. https://doi.org/10.3390/w14193138