A Study on the Optimal Deep Learning Model for Dam Inflow Prediction
Abstract
:1. Introduction
2. Study Methods
2.1. ANN and RNNs
2.2. The Storage Function Model (SFM)
2.3. Study Area
2.4. Database Buliding
2.5. Input and Output Predictors
2.6. Optional Hyperparameter
2.7. Performance Evaluation of Optional Scenarios
3. Selection of Optimal Models
3.1. Drought Period
3.2. Typhoons
4. Discussion
5. Conclusions
- (1)
- To evaluate the detailed prediction capability of the deep learning model with each scenario, the data were analyzed according to quartile values after differentiating the entire period and the drought period. To select a deep learning model most suitable to the drought and normal season based on the scenario, predictions and observations for the inflows of the 1st, 2nd and 3rd quartiles and peak inflow were compared using the daily time series data. In Andong Dam, the RNN model produced the closest quartile values to the observed inflow in the total period (2017–2020) and it also derived the closest to the measurements in the normal and drought period. In Imha Dam, the LSTM model showed the closest to the observations in the normal season. During the drought period, the LSTM prediction showed the smallest difference from the observations in the 1st and 2nd quartiles, whereas the GRU prediction showed the smallest difference in the 3rd quartile.
- (2)
- A comparative analysis of six cases of past typhoons showed different predictions depending on the deep learning models. In Andong Dam, the GRU model showed higher accuracy compared to other models in the inflow prediction. In Imha Dam, unlike Andong Dam, the predicted inflow of the RNN showed the highest correlation and the most agreement with the observations. In Typhoon Mitag, R2 has a high correlation of 0.97 and a difference of 1% between the observations and predictions which is the closest to the measured value compared to other models. As a result of analyzing the selected model, since the dam inflow and precipitation were characterized as time series data, the RNN derived predicted inflow with relatively high reliability.
- (3)
- Compared with the SFM currently used to predict the inflow into the dam, the selected deep learning models derived results that were closer to the observed inflow in the maximum inflow prediction. In predicting future typhoon inflows, using a conceptual or physical model and a deep learning model together will help in efficient decision making.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, T.H. Applied Hydrology; Cheongmungag: Seoul, Korea, 2011. [Google Scholar]
- Kim, S.H.; Kim, K.U.; Hwang, S.H.; Park, J.H.; Lee, J.N.; Kang, M.S. Influence of Rainfall observation Network on Daily Dam Inflow using Artificial Neural Networks. J. Korean Soc. Agric. Eng. 2019, 61, 63–74. [Google Scholar]
- Kim, M.E.; Shon, T.S.; Joo, J.S.; Jang, Y.S.; Shin, H.S. Forecasting of Short-term Runoff with Artificial Neural Network with Pre-processing Techniques. In Preceedings of the Joint Fall Conference & Water Korea, Daegeon, Korea, 2–3 November 2011. [Google Scholar]
- Mok, J.Y.; Choi, J.H.; Moon, Y.I. Prediction of Multipose Dam Inflow using Deep Learning. J. Korea Water Resour. Assoc. 2020, 53, 97–105. [Google Scholar]
- Lee, J.Y.; Kim, H.I.; Han, K.Y. Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood. J. Korean Soc. Civ. Eng. 2020, 40, 303–314. [Google Scholar]
- Chang, F.J.; Hsu, K.; Chang, L.C. Flood Forecasting Using Machine Learning Methods; MDPI: Basel, Switzerland, 2019; ISBN 978-3-03897-549-6. [Google Scholar]
- Chang, F.J.; Chiang, Y.M.; Tsai, M.J.; Shieh, M.C.; Hsu, K.L.; Sorooshian, S. Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. J. Hydrol. 2014, 508, 374–384. [Google Scholar] [CrossRef]
- Chakravarti, A.; Joshi, N.; Panjiar, H. Rainfall Runoff Analysis Using the Artificial Neural Network. Indian J. Sci. Technol. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Kao, I.F.; Zhou, Y.; Chang, L.C.; Chang, F.J. Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. J. Hydrol. 2020, 583, 124631. [Google Scholar] [CrossRef]
- Shen, C.; Laloy, E.; Elshorbagy, A.; Albert, A.; Bales, J.; Chang, F.J.; Ganguly, S.; Hsu, K.L.; Kifer, D.; Fang, Z.; et al. HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community. Hydrol. Earth Syst. Sci. 2018, 22, 5639–5656. [Google Scholar]
- Tokar, A.S.; Markus, M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5, 156–161. [Google Scholar] [CrossRef]
- Chen, S.M.; Wang, Y.M.; Tsou, I. Using artificial neural network approach for modelling rainfall–runoff due to typhoon. J. Earth Syst. Sci. 2013, 122, 399–405. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobee, B. Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng. 2001, 6, 367–376. [Google Scholar]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021; ISBN 1638350094. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [PubMed]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Korea Water Resources Corporation (K-water). Hydrometeorology and Watershed Management; K-water: Daejeon, Korea, 2016. [Google Scholar]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar]
Category | Andong | Imha |
---|---|---|
Storage(106 m3) | 1248 | 595 |
Flood control capacity(106 m3) | 110 | 80 |
Water supply (106 m3/y) | 926.0 | 615.3 |
Flood volume (m3/s) | 6480 | 4500 |
Discharge (m3/s) | 4600 | 2500 |
Optimization | Grid Search | T and E | |
---|---|---|---|
Sequence | day | 7, 14, 21 | 1~100 |
hour | 12, 24, 48 | ||
Batch size | day | 7, 14, 21, 28, 35 | 1~100 |
hour | 12, 24, 36, 48, 60, 72 | ||
Epoch | - | 100~500 (Early stop) | |
Learning rate | - | 0.01~0.0001 | |
Dropout | - | 0.1~0.25 | |
Hidden layer | - | 2~5 |
Scenario | Input | Statistical Indices | Selection | |||||
---|---|---|---|---|---|---|---|---|
Sequence | Batch | R2 | MAE | RMSE | VE | |||
Day | ADA-S1 | 7 | 7 | 0.89 | 12.01 | 25.17 | 0.29 | |
… | ||||||||
ADA-S4 | 14 | 14 | 0.83 | 9.56 | 20.10 | 0.13 | ||
… | ||||||||
ADA-S7 | 21 | 21 | 0.81 | 9.83 | 22.37 | 0.31 | ||
ADA-S8 | 21 | 28 | 0.86 | 9.54 | 28.62 | 0.33 | ||
ADA-S9 | 21 | 35 | 0.91 | 9.40 | 19.18 | 0.03 | ○ | |
ADA-Opt | 20 | 20 | 0.82 | 11.36 | 24.40 | 0.28 | ||
Hour | AHA-S1 | 12 | 12 | 0.80 | 20.70 | 42.42 | 0.17 | |
… | ||||||||
AHA-S4 | 24 | 24 | 0.94 | 12.26 | 22.94 | 0.12 | ○ | |
AHA-S5 | 24 | 36 | 0.89 | 11.34 | 30.50 | 0.20 | ||
AHA-S6 | 24 | 48 | 0.88 | 11.82 | 32.52 | 0.29 | ||
AHA-S7 | 48 | 48 | 0.91 | 12.59 | 27.72 | 0.27 | ||
… | ||||||||
AHA-Opt | 10 | 10 | 0.91 | 11.77 | 29.45 | 0.13 |
Dam/Time | Observed (m3/s) | Simulated (m3/s), R2 | ||||
---|---|---|---|---|---|---|
ANN | RNN | LSTM | GRU | |||
Andong | Day | 998.5 | ADA-S9 | ADR-Opt | ADL-S1 | ADG-S1 |
696.8 | 725.7 | 921.6 | 956.1 | |||
0.91 | 0.82 | 0.81 | 0.79 | |||
Hour | 2629.1 | AHA-S4 | AHR-S8 | AHL-S9 | AHG-S6 | |
1835.3 | 2327.7 | 3458.1 | 3053.5 | |||
0.94 | 0.86 | 0.87 | 0.87 | |||
Imha | Day | 935.1 | IDA-S9 | IDR-S4 | IDL-Opt | IDG-S5 |
653.0 | 915.17 | 925.2 | 988.1 | |||
0.92 | 0.82 | 0.79 | 0.87 | |||
Hour | 4890.1 | IHA-S4 | IHR-S9 | IHL-S6 | IHG-S7 | |
3909.0 | 4226.0 | 4855.6 | 4248.5 | |||
0.92 | 0.95 | 0.95 | 0.95 |
Performance Rating | RSR | NSE |
---|---|---|
Very Good | 0.00 ≤ RSR ≤ 0.50 | 0.75 < NSE ≤ 1.00 |
Good | 0.50 < RSR ≤ 0.60 | 0.65 < NSE ≤ 0.75 |
Satisfactory | 0.60 < RSR ≤ 0.70 | 0.50 < NSE ≤ 0.65 |
Unsatisfactory | RSR > 0.70 | NSE ≤ 0.50 |
Case | RSR/NSE | |||||
---|---|---|---|---|---|---|
ANN | RNN | LSTM | GRU | |||
Andong | Day | Validation | 0.31/0.91 | 0.55/0.70 | 0.56/0.72 | 0.54/0.68 |
Test | 0.31/0.90 | 0.53/0.68 | 0.56/0.75 | 0.56/0.66 | ||
Evaluation | Very Good | Good | Good | Good | ||
Hour | Validation | 0.33/0.99 | 0.38/0.99 | 0.38/0.99 | 0.37/0.99 | |
Test | 0.34/0.89 | 0.48/0.96 | 0.48/0.95 | 0.46/0.96 | ||
Evaluation | Very Good | Very Good | Very Good | Very Good | ||
Imha | Day | Validation | 0.36/0.87 | 0.54/0.68 | 0.52/0.70 | 0.59/0.73 |
Test | 0.36/0.87 | 0.54/0.66 | 0.53/0.70 | 0.58/0.70 | ||
Evaluation | Very Good | Good | Good | Good | ||
Hour | Validation | 0.28/0.99 | 0.22/0.99 | 0.20/0.99 | 0.20/0.99 | |
Test | 0.29/0.91 | 0.24/0.95 | 0.25/0.96 | 0.24/0.96 | ||
Evaluation | Very Good | Very Good | Very Good | Very Good |
Andong | Observed (m3/s) | Simulated (m3/s) | ||||
---|---|---|---|---|---|---|
ANN | RNN | LSTM | GRU | |||
Total period (2017–2020) | 25% | 3.70 | 10.88 | 5.61 | 1.56 | 4.43 |
50% | 8.12 | 11.09 | 8.50 | 4.43 | 7.54 | |
75% | 20.41 | 24.44 | 21.75 | 16.09 | 14.49 | |
Drought period (2017–2018) | 25% | 3.38 | 10.88 | 5.61 | 1.15 | 4.65 |
50% | 6.38 | 10.88 | 6.52 | 2.28 | 7.26 | |
75% | 14.62 | 16.65 | 13.65 | 10.94 | 8.67 | |
Max | 299.03 | 214.77 | 305.28 | 241.11 | 258.09 |
Imha | Observed (m3/s) | Simulated (m3/s) | ||||
---|---|---|---|---|---|---|
ANN | RNN | LSTM | GRU | |||
Total period (2017–2020) | 25% | 1.58 | 3.20 | 11.18 | 1.16 | 3.49 |
50% | 4.12 | 3.87 | 12.82 | 4.57 | 5.08 | |
75% | 10.55 | 7.27 | 20.15 | 12.82 | 14.79 | |
Drought period (2017–2018) | 25% | 1.19 | 3.18 | 10.72 | 0.60 | 3.70 |
50% | 2.52 | 3.40 | 11.80 | 2.61 | 4.91 | |
75% | 7.88 | 5.27 | 15.26 | 9.00 | 7.61 | |
Max | 470.37 | 652.99 | 415.17 | 425.23 | 388.09 |
Typhoon | Period | Andong (mm) | Imha (mm) | ||
---|---|---|---|---|---|
Rainfall | Hour (Max) | Rainfall | Hour (Max) | ||
Rusa | 23 August–1 September 2002 | 165.4 | 21.9 | 182.9 | 29.3 |
Maemi | 6–14 September 2003 | 251.7 | 31.5 | 220.8 | 26.9 |
Kongrey | 29 September–7 October 2018 | 94.3 | 5.1 | 128.3 | 10.4 |
Mitag | 28 September–3 October 2019 | 133.1 | 12.5 | 166.6 | 19.9 |
Maysak and Haishen | 28 August–7 September 2020 | 268.1 | 15.0 | 270.0 | 23.4 |
Typhoon | Observed (m3/s) | Simulated (m3/s) | ||||
---|---|---|---|---|---|---|
ANN | RNN | LSTM | GRU | |||
Rusa | Max | 3678 | 2570 | 3623 | 4016 | 4025 |
R2 | - | 0.94 | 0.95 | 0.94 | 0.96 | |
Maemi | Max | 4522 | 3161 | 4267 | 4339 | 4597 |
R2 | - | 0.95 | 0.94 | 0.96 | 0.96 | |
Kongrey | Max | 793 | 549 | 644 | 683 | 699 |
R2 | - | 0.62 | 0.77 | 0.81 | 0.76 | |
Mitag | Max | 1845 | 1286 | 1866 | 2117 | 1773 |
R2 | - | 0.91 | 0.95 | 0.94 | 0.95 | |
Maysak andHaishen | Max | 2629 | 1835 | 2328 | 3458 | 3053 |
R2 | - | 0.80 | 0.72 | 0.73 | 0.90 |
Case | Observed (m3/s) | Simulated (m3/s) | ||||
---|---|---|---|---|---|---|
ANN | RNN | LSTM | GRU | |||
Rusa | Max | 7113 | 5677 | 7102 | 7014 | 6709 |
R2 | - | 0.94 | 0.96 | 0.95 | 0.94 | |
Maemi | Max | 6665 | 5312 | 6221 | 6848 | 6938 |
R2 | - | 0.95 | 0.95 | 0.94 | 0.92 | |
Kongrey | Max | 2584 | 2086 | 2458 | 2174 | 2222 |
R2 | - | 0.90 | 0.97 | 0.88 | 0.87 | |
Mitag | Max | 3534 | 2856 | 3488 | 3647 | 2793 |
R2 | - | 0.96 | 0.97 | 0.94 | 0.95 | |
Maysak and Haishen | Max | 4890 | 3909 | 4226 | 4856 | 4248 |
R2 | - | 0.91 | 0.91 | 0.89 | 0.90 |
Case | Andong | Imha | |||||
---|---|---|---|---|---|---|---|
Observed (m3/s) | Simulated (m3/s) | Observed (m3/s) | Simulated (m3/s) | ||||
GRU | SFM | RNN | SFM | ||||
Rusa | Max | 3628 | 4025 | 3799 | 7113 | 7102 | 6098 |
R2 | - | 0.96 | 0.96 | - | 0.96 | 0.98 | |
Maemi | Max | 4522 | 4597 | 4267 | 6665 | 6221 | 5767 |
R2 | - | 0.96 | 0.92 | - | 0.95 | 0.96 | |
Kongrey | Max | 793 | 699 | 668 | 2584 | 2458 | 2241 |
R2 | - | 0.76 | 0.80 | - | 0.97 | 0.96 | |
Mitag | Max | 1845 | 1773 | 1982 | 3534 | 3488 | 3207 |
R2 | - | 0.95 | 0.95 | - | 0.97 | 0.98 | |
Maysak and Haishen | Max | 2629 | 3053 | 2486 | 4890 | 4226 | 4011 |
R2 | - | 0.90 | 0.89 | - | 0.91 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-J.; Lee, Y.-T.; Kim, B.-H. A Study on the Optimal Deep Learning Model for Dam Inflow Prediction. Water 2022, 14, 2766. https://doi.org/10.3390/w14172766
Kim B-J, Lee Y-T, Kim B-H. A Study on the Optimal Deep Learning Model for Dam Inflow Prediction. Water. 2022; 14(17):2766. https://doi.org/10.3390/w14172766
Chicago/Turabian StyleKim, Beom-Jin, You-Tae Lee, and Byung-Hyun Kim. 2022. "A Study on the Optimal Deep Learning Model for Dam Inflow Prediction" Water 14, no. 17: 2766. https://doi.org/10.3390/w14172766
APA StyleKim, B. -J., Lee, Y. -T., & Kim, B. -H. (2022). A Study on the Optimal Deep Learning Model for Dam Inflow Prediction. Water, 14(17), 2766. https://doi.org/10.3390/w14172766