Insight into the Removal of Enoxacin in an Anaerobic Sulfur-Mediated Wastewater Treatment System: Performance, Kinetics and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. SRUSB Bioreactor Setup and Operation
2.2. Batch Experiments
2.2.1. Adsorption and Biodegradation
2.2.2. Adsorption Isotherms and Thermodynamics
2.3. Kinetic Models
2.3.1. Adsorption Kinetic Models
2.3.2. Biodegradation Kinetic Models
2.4. Microbial Community Analyses
2.5. Analytical Methods
3. Results and Discussion
3.1. Performance of the SRUSB Bioreactor
3.2. Removal of ENO in the SRUSB Bioreactor
3.3. ENO Adsorption
3.3.1. ENO Adsorption and Kinetics
3.3.2. ENO Adsorption Isotherms and Thermodynamics
3.4. ENO Biodegradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kümmerer, K. Antibiotics in the aquatic environment—A review–Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Kim, S.; Carlson, K.; Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Janecko, N.; Pokludova, L.; Blahova, J.; Svobodova, Z.; Literak, I. Implications of fluoroquinolone contamination for the aquatic environment—A review. Environ. Toxicol Chem. 2016, 35, 2647–2656. [Google Scholar] [CrossRef] [PubMed]
- Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.D.; Demeestere, K. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci. Total Environ. 2014, 500–501, 250–269. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Feng, B.; Hua, X.; Li, Y.; Zhang, W.; Guo, Z. The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite. Sci. Total Environ. 2022, 823, 153707. [Google Scholar] [CrossRef]
- Adachi, F.; Yamamoto, A.; Takakura, K.; Kawahara, R. Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Sci. Total Environ. 2013, 444, 508–514. [Google Scholar] [CrossRef]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar]
- Fick, J.; Soderstrom, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.G. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009, 28, 2522–2527. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, R.; Zou, S.; Yang, Y.; Li, J.; Wang, Y.; Fen, T.; Cheng, J.; Zhang, G. Occurrence, Distribution and Ecological Risks of Fluoroquinolone Antibiotics in the Dongjiang River and the Beijiang River, Pearl River Delta, South China. Bull. Environ. Contam. Toxicol. 2017, 99, 46–53. [Google Scholar] [CrossRef]
- Santoke, H.; Tong, A.Y.; Mezyk, S.P.; Johnston, K.M.; Braund, R.; Cooper, W.J.; Peake, B.M. UV Photodegradation of Enoxacin in Water: Kinetics and Degradation Pathways. J. Environ. Eng. 2015, 141, 04015027. [Google Scholar]
- Annabi, C.; Fourcade, F.; Soutrel, I.; Geneste, F.; Floner, D.; Bellakhal, N.; Amrane, A. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism. J. Environ. Manag. 2016, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Ekama, G.A.; Wu, D.; Feng, J.; van Loosdrecht, M.C.; Chen, G.H. SANI® process realizes sustainable saline sewage treatment: Steady state model-based evaluation of the pilot-scale trial of the process. Water Res. 2012, 46, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ekama, G.A.; Chui, H.K.; Wang, B.; Cui, Y.X.; Hao, T.W.; van Loosdrecht, M.C.; Chen, G.H. Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI®) process in saline sewage treatment. Water Res. 2016, 100, 496–507. [Google Scholar] [PubMed]
- Chelliapan, S.; Sallis, P. Anaerobic treatment of high sulphate containing pharmaceutical wastewater. J. Sci. Ind. Res. 2015, 74, 526–530. [Google Scholar]
- Jia, Y.Y.; Khanal, S.K.; Zhang, H.Q.; Chen, G.H.; Lu, H. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system. Water Res. 2017, 119, 12–20. [Google Scholar]
- Zhang, H.; Jia, Y.; Khanal, S.K.; Lu, H.; Fang, H.; Zhao, Q. Understanding the role of extracellular polymeric substances (EPS) on ciprofloxacin (CIP) adsorption in aerobic sludge, anaerobic sludge and sulfate-reducing bacteria (SRB) sludge systems. Environ. Sci. Technol. 2018, 52, 6476–6486. [Google Scholar] [CrossRef]
- Amorim, C.L.; Maia, A.S.; Mesquita, R.B.R.; Rangel, A.O.S.S.; van Loosdrecht, M.C.M.; Tiritan, M.E.; Castro, P.M.L. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water Res. 2014, 50, 101–113. [Google Scholar]
- Dorival-García, N.; Zafra-Gómez, A.; Navalón, A.; González-López, J.; Vílchez, J.L. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors. Sci. Total Environ. 2013, 442, 317–328. [Google Scholar] [CrossRef]
- Polesel, F.; Lehnberg, K.; Dott, W.; Trapp, S.; Thomas, K.V.; Plósz, B.G. Factors influencing sorption of ciprofloxacin onto activated sludge: Experimental assessment and modelling implications. Chemosphere. 2015, 119, 105–111. [Google Scholar] [CrossRef]
- Polesel, F.; Andersen, H.R.; Trapp, S.; Plόsz, B.G. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X). Environ. Sci. Technol. 2016, 50, 10316–10334. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, T. Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environ. Sci. Technol. 2010, 44, 3468–3473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Shi, L.; Chen, J.; Qiang, Z.; Zhang, T.C. Partitioning of fluoroquinolones on wastewater sludge. Clean Soil Air Water 2013, 41, 820–827. [Google Scholar] [CrossRef]
- Dorival-García, N.; Zafra-Gómez, A.; Navalón, A.; González-López, J.; Hontoria, E.; Vílchez, J.L. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions. J. Environ. Manag. 2013, 120, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.Y.; Zhang, H.Q.; Khanal, S.K.; Yin, L.W.; Lu, H. Insights into pharmaceuticals removal in an anaerobic sulfate-reducing bacteria sludge system. Water Res. 2019, 161, 191–201. [Google Scholar] [CrossRef]
- Larsson, D.; de Pedro, C.; Paxeus, N. Effluent from drug manufacturers contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Wang, L.; Qiang, Z.; Li, Y.; Ben, W. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics. J. Environ. Sci. 2017, 56, 263–271. [Google Scholar] [CrossRef]
- Ahmed, M.J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ. Toxicol. Pharm. 2017, 50, 1–10. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Khanal, S.K.; Shu, H.Y.; Zhang, H.Q.; Chen, G.H.; Lu, H. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Water Res. 2018, 136, 64–74. [Google Scholar] [CrossRef]
- Jia, A.; Wan, Y.; Xiao, Y.; Hu, J. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res. 2012, 46, 387–394. [Google Scholar] [CrossRef]
- Lindberg, R.H.; Olofsson, U.; Rendahl, P.; Johansson, M.I.; Tysklind, M.; Andersson, B.A.V. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ. Sci. Technol. 2006, 40, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Conkle, J.L.; Lattao, C.; White, J.R.; Cook, R.L. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere 2010, 80, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil. Environ. Sci. Technol. 2003, 15, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Tolls, J. Sorption of Veterinary Pharmaceuticals in Soils: A Review. Environ. Sci. Technol. 2001, 17, 3397–3406. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Wang, X.H.; Qi, Z.; Diao, M.H.; Gao, M.M.; Xing, S.F.; Wang, S.G.; Zhao, X.C. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. J. Hazard. Mater. 2011, 191, 103–109. [Google Scholar] [CrossRef]
- Yang, S.F.; Lin, C.F.; Lin, A.Y.C.; Hong, P.K.A. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. Water Res. 2011, 45, 3389–3397. [Google Scholar] [CrossRef]
- Sun, Y.; Yue, Q.; Gao, B.; Wang, B.; Li, Q.; Huang, L.; Xu, X. Comparison of activated carbons from Arundo donax Linn with H4P2O7 activation by conventional and microwave heating methods. Chem. Eng. J. 2012, 192, 308–314. [Google Scholar] [CrossRef]
- Sun, Y.; Yue, Q.; Gao, B.; Huang, L.; Xu, X.; Li, Q. Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor. Chem. Eng. J. 2012, 181–182, 790–797. [Google Scholar] [CrossRef]
- Doğan, M.; Alkan, M. Removal of methyl violet from aqueous solution by perlite. J. Colloid Interf. Sci. 2003, 267, 32–41. [Google Scholar] [CrossRef]
- Weber, W., Jr.; DiGiano, F. Process Dynamics in Environmental Systems; Wiley Publishers: New York, NY, USA, 1996; p. 943. [Google Scholar]
- Zhang, J.; Wu, C.; Jia, A.; Hu, B. Kinetics, equilibrium and thermodynamics of the sorption of p-nitrophenol on two variable charge soils of Southern China. Appl. Surf. Sci. 2014, 298, 95–101. [Google Scholar] [CrossRef]
- Xu, K.; Harper, W.F., Jr.; Zhao, D. 17α-Ethinylestradiol sorption to activated sludge biomass: Thermodynamic properties and reaction mechanisms. Water Res. 2008, 42, 3146–3152. [Google Scholar] [CrossRef] [PubMed]
- Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ. 2018, 622–623, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Microbial degradation of sulfamethoxazole in the environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573–3582. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Sun, P.Z.; Pavlostathis, S.G.; Zhou, X.F.; Zhang, Y.L. Inhibitory effects and biotransformation potential of ciprofloxacin under anoxic/anaerobic conditions. Bioresour. Technol. 2013, 150, 28–35. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Ou, Y.; Yang, B.; Jia, Y.; Sun, L.; Lu, H. Insight into the Removal of Enoxacin in an Anaerobic Sulfur-Mediated Wastewater Treatment System: Performance, Kinetics and Mechanisms. Water 2022, 14, 2896. https://doi.org/10.3390/w14182896
Yan Y, Ou Y, Yang B, Jia Y, Sun L, Lu H. Insight into the Removal of Enoxacin in an Anaerobic Sulfur-Mediated Wastewater Treatment System: Performance, Kinetics and Mechanisms. Water. 2022; 14(18):2896. https://doi.org/10.3390/w14182896
Chicago/Turabian StyleYan, Yujian, Yuyi Ou, Boyi Yang, Yanyan Jia, Lianpeng Sun, and Hui Lu. 2022. "Insight into the Removal of Enoxacin in an Anaerobic Sulfur-Mediated Wastewater Treatment System: Performance, Kinetics and Mechanisms" Water 14, no. 18: 2896. https://doi.org/10.3390/w14182896
APA StyleYan, Y., Ou, Y., Yang, B., Jia, Y., Sun, L., & Lu, H. (2022). Insight into the Removal of Enoxacin in an Anaerobic Sulfur-Mediated Wastewater Treatment System: Performance, Kinetics and Mechanisms. Water, 14(18), 2896. https://doi.org/10.3390/w14182896