Potential Toxic Impacts of Hg Migration in the Disjointed Hyporheic Zone in the Gold Mining Area Experiencing River Water Level Changes
Abstract
:1. Introduction
2. Background of the Study Area
3. Survey Analysis and Evaluation Methods
3.1. In-Situ Test and Sample Analysis
3.2. Potential Ecological Risks
4. Results
4.1. The Influence of the Occurrence Form and Content of Soil Vertical Hg in the Hyporheic Zone of the Alluvial-Proluvial Area in the High and Low Water Season
4.2. The Influence of the Occurrence Form and Content of Vertical Hg in the Hyporheic Zone under Different Hydrodynamic Excitation Conditions during High and Low Water Seasons
5. Discussion
5.1. Factors Affecting Mercury Migration and Transformation
5.2. Potential Ecological Risks
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- White, D.S. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc. 1993, 12, 61–69. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V. The hyporheic habitat of river ecosystems. Nature 1988, 335, 64–66. [Google Scholar] [CrossRef]
- Biddulph, M. Chapter: 3.11.1: Hyporheic Zone. In Situ Sampling; Cook, S.J., Clarke, L.E., Nield, J.M., Eds.; Geomorphological Techniques (Online Edition); British Society for Geomorphology: London, UK, 2015; ISSN 2047-0371. [Google Scholar]
- Triska, F.J.; Kennedy, V.C.; Avanzino, R.J. Retention and transport of nutrients in a third- order stream in northwestern California: Hyporheic processes. Ecology 1989, 70, 1893–1905. [Google Scholar] [CrossRef]
- Elliott, A.H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with forms: Theory. Water Resour. Res. 1997, 33, 123–136. [Google Scholar] [CrossRef]
- Kasahara, T.; Wondzell, S.M. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour. Res. 2003, 39, 1–14. [Google Scholar] [CrossRef]
- Wondzell, S.M. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrol. Processes 2006, 20, 267–287. [Google Scholar] [CrossRef]
- Boulton, A.J. Hyporheic rehabilitation in rivers: Restoring vertical connectivity. Freshw. Biol. 2007, 52, 632–650. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; He, X. Interactions between surface water and groundwater in selected tributaries of the Wei River (China) revealed by hydrochemistry and stable isotopes. Hum. Ecol. Risk Assess. 2022, 28, 79–99. [Google Scholar] [CrossRef]
- Singh, M.; Ansari, A.A.; Muller, G.; Singh, I.B. Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River) effects of human activities. Environ. Geol. 1997, 29, 246–252. [Google Scholar] [CrossRef]
- Calmano, W.; Ahlf, W.; Forstner, U. Exchange of Heavy Metals Between Sediment Components and Water. In Metal Speciation in the Environment; Springer: Berlin/Heidelberg, Germany, 1990; pp. 503–522. [Google Scholar]
- Batley, G.E. Trace Element Specification: Analytical Methods and Problems; CRC Press: Boca Raton, FL, USA, 2000; ISBN 9780849347122. [Google Scholar]
- Altın, A.; Filiz, Z.; Iscen, C.F. Assessment of seasonal variations of surface water quality characteristics for Porsuk Stream. Environ. Monit. Assess. 2009, 158, 51–65. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S. Heavy metal concentrations in 845 soil and wild plants growing around Pb-Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchem. J. 2011, 99, 67–75. [Google Scholar] [CrossRef]
- Sun, Z.; Mou, X.; Tong, C.; Wang, C.; Xie, Z.; Song, H.; Sun, W.; Lv, Y. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary, China. Catena 2015, 126, 43–52. [Google Scholar] [CrossRef]
- Younger, P.L.; Banwart, S.A.; Hedin, R.S. Mine Water: Hydrology, Pollution, Remediation; Kluwer Academic Publishers: London, UK, 2002; 442p. [Google Scholar]
- Stamatis, G.; Voudouris, K.; Karefilakis, F. Groundwater pollution by heavy metals in historical mining area of Lavrio, Attica, Greece. Water Air Soil Pollut 2001, 128, 61–83. [Google Scholar] [CrossRef]
- Bird, G.; Macklin, M.G.; Brewer, P.A.; Zaharia, S.; Balteanu, D.; Driga, B.; Serban, M. Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania. Env. Geochem. Health 2009, 31, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Al-Hobaib, A.S.; Al-Jaseem QKh Baioumy, H.M.; Ahmed, A.H. Heavy metals concentrations and usability of groundwater at Mahd Adh Dhahab gold mine, Saudi Arabia. Arab. J. Geosci. 2013, 6, 259–270. [Google Scholar] [CrossRef]
- Liu, Q.J.; Huang, Y.; Hu, S.Y.; Deng, K.W.; Huang, D.; Cao, L. Chemical Forms of Hg, Pb, Cd, Cu and Zn in Beijing Urban Soil and Its Environmental Effects. Urban Geol. 2015, 10, 11–15. [Google Scholar]
- Clifton, J.C., 2nd. Mercury exposure and public health. Pediatr. Clin. N. Am. 2007, 54, 237–269. [Google Scholar] [CrossRef]
- US Department of Health and Human Services, Public Health Service. Toxicological Profile for Mercury; US Department of Health and Human Services: Atlanta, GA, USA, 1999; pp. 1–600. [Google Scholar]
- Rice, G.E.; Ambrose, R.B., Jr.; Bullock, O.R., Jr.; Smawtout, J. Mercury Study Report to Congress; US Environmental Protection Agency: Durham, NC, USA, 1997; pp. 1.1–6.30. [Google Scholar]
- Marcello, M.; Veiga, O.F. A review of the failed attempts to curb mercury use at artisanal gold mines and a proposed solution. Extr. Ind. Soc. 2020, 7, 1135–1146. [Google Scholar]
- Mantey, J.; Nyarko, K.B.; Owusu-Nimo, F.; Awua, K.A.; Bempah, C.K.; Amankwah, R.K.; Akatu, W.E.; Appiah-Effah, E. Mercury contamination of soil and water media from different illegal artisanal small-scale gold mining operations (galamsey). Heliyon 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Goldman, L.R.; Shannon, M.W. American Academy of Pediatrics: Committee on Environmental Health. Technical report: Mercury in the environment: Implications for pediatricians. Pediatrics 2001, 108, 197–205. [Google Scholar] [CrossRef]
- Harada, M.; Nakachi, S.; Cheu, T.; Hamada, H.; Ono, Y.; Tsuda, T.; Yanagida, K.; Kizaki, T.; Ohno, H. Monitoring of mercury pollution in Tanzania: Relation between head hair mercury and health. Sci. Total Environ. 1999, 227, 249–256. [Google Scholar] [CrossRef]
- Guzzi, G.; La Porta, C.A. Molecular mechanisms triggered by mercury. Toxicology 2008, 244, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.B.; Chen, Q.Y.; Yin, D.L.; Sun, T.; Wang, Y.M.; Wang, D.Y. Temporal and Spatial Variation of Mercury in the Water of the Ruxi River Estuary, a Typical Tributary of the Three Gorges Reservoir Area. Environ. Sci. 2019, 40, 2211–2218. [Google Scholar]
- Zhang, Y.F. Study on Migration Mechanism of Lead in Undulating Zone of Groundwater. Master’s Thesis, North China University of Water Resources and Hydropower, Zhengzhou, China, 2021. [Google Scholar]
- Xiong, J.Q. Study on the Effect of DOM on the Bioavailability of Heavy Metals under Poyang Lake Water Level. Master’s Thesis, Nanchang University, Nanchang, China, 2021. [Google Scholar]
- Wang, P.A. Dynamic Variation of Mercury Species in Soil in Wet-Dry Rotation Environment. Master’s Thesis, Southwest University, Chongqing, China, 2007. [Google Scholar]
- Tang, X.C.; Lin, T.; Xia, P.H.; Huang, X.F.; Ma, L.; Yang, Y. Speciation distribution and risk assessment of Hg and As in sediment of Lake Caohai wetlands under different water level gradionts, Guizhou Province. J. Lake Sci. 2020, 32, 100–110. [Google Scholar]
- Zhang, C.; Chen, H.; Sun, R.G.; Zhang, X.; Wang, D.Y. Risk Assessment of Mercury in Soil at Different Water-level Altitudes in Drawdown Areas of Three Gorges Reservior. J. Soil Water Conserv. 2014, 28, 0242–0246. [Google Scholar]
- Wu, Z.R. Experimental Study on the Vertical Migration of Typical Heavy Metals from the Saturated Zone to Hyporheic zone. Master’s Thesis, Hefei University of Technology, Hefei, China, 2020. [Google Scholar]
- Tian, Y.; Yang, W.C. Analysis on Migration of Heavy Metals in Groundwater Fluctuation Zone. Environ. Sci. Manag. 2020, 44, 40–44. [Google Scholar]
- Li, Y.; Li, P.; Liu, L. Source Identification and Potential Ecological Risk Assessment of Heavy Metals in the Topsoil of the Weining Plain (Northwest China). Expo. Health 2022, 14, 281–294. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.E.; Zhang, F.S. Pollution status and potential ecological risk assessment of heavy metals in the surface sediments of Qingdao intertidal zone. Environ. Pollut. Control 2021, 43, 492–501. [Google Scholar]
- Dai, Q. Environmental geochemistry study of mercury contamination from gold mining areas by amalgamation technique in China—a case study from Tongguan county of Shaanxi Province. Master’s Thesis, Institute of Geochemistry, Chinese Academy of Sciences, Beijing, China, 2004. [Google Scholar]
- Xu, Y.N.; Ke, H.L.; Zhao, A.I. Assessment of heavy metals contamination of farmland soils in some gold mining area of Xiao Qinling. Chin. J. Soil 2007, 4, 24. [Google Scholar]
- Jiang, N.; Xu, J.; Song, M. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shaanxi and Henan Provinces, People’s Republic of China. Min. Depos. 1999, 34, 150–162. [Google Scholar]
- Liu, R.P.; Xu, Y.N.; Rui, H.C.; El-Wardany, R.M.; Ying, D. Migration and speciation transformation mechanisms of mercury in undercurrent zones of the Tongguan gold mining area, Shaanxi Loess Plateau and impact on the environment. China Geol. 2021, 4, 311–328. [Google Scholar]
- Xiao, R.; Wang, S.; Li, R.H.; Wang, J.J.; Zhang, Z.Q. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.N.; Zhang, J.H. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining ar ea, Shaaxi, China, and contamination assessments. Geol. Bull. China 2008, 27, 1263–1671. [Google Scholar]
- Li, G.; Lu, N.; Wei, Y.; Zhu, D.W. Relationship between Heavy Metal Content in Polluted Soil and Soil Organic Matter and pH in Mining Areas. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 052081. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Zhang, J.; Hu, S.; Liu, K. Heavy metals pollution and the identification of their sources in soil over Xiaoqinling gold-mining region, Shaanxi, China. Environ. Earth Sci. 2011, 64, 1585–1592. [Google Scholar] [CrossRef]
- Li, Z.; Liu, G.J.; Shen, M.C.; Liu, Y. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei. Cent. China. Chemosphere 2022, 302, 134864. [Google Scholar]
- Hakanson, L. An Ecological risk index for quality pollution control:a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhao, A.N. The Assessment of Contamination And Corerlation on Heavy Metal between Farmland and Crops in Tongguan Gold Mining Area in Shaanxi. Master’s Thesis, Chang’an University, Xi’an, China, 2006; pp. 1–73. [Google Scholar]
- Wang, X.W. The Research about the Relationship between Heavy metals contamination and Crops on farmland soi1 in the Goldfield. Master’s Thesis, Chang’an University, Xi’an, China, 2010; pp. 1–84. [Google Scholar]
- Zhou, Y.; Wang, X.M.; Jiang, Y.Z.; Zhao, Y.F.; Ji, H.B. Speciation and ecological risk assessment of arsenic and mercury in soil around a gold mining area in pinggu district, beijing. Environ. Eng. 2021, 39, 164+204–210. [Google Scholar]
- Liu, R.P.; Xu, Y.N.; Zhang, J.H. The Relationship and Influencing Factors of Water-Gas Interface Mercury Emission Flux and Water Suspended Mercury of a Gold Mining Area River. In Sustainable Development of Water Resources and Hydraulic Engineering in China; Springer Cham: Cham, Switzerland, 2016. [Google Scholar]
- Dong, W.; Lian, Y.Q.; Zhang, Y. (Eds.) Environmental Earth Sciences; Springer Science+Business Media: Berlin, Germany, 2018; Volume 35, pp. 407–415. [Google Scholar]
- DOU, W.Q.; Yi, A.N.; Li, Q.; Zeng, Q.N. Xia, Q. Research progress on effects of soil pH on migration and transformation of mercury. J. Agric. Resour. Environ. 2019, 36, 1–8. [Google Scholar]
- Ran, M.X.; Yang, H.Y.; Huang, J.Y.; Li, Z.; Chen, Y.; Feng, Q.Z.; Li, Y.; Liu, L.Y. Effect of humic acids on the mercury speciation in soils of Wanshan area in Guizhou Province. J. Anhui Agric. Univ. 2020, 47, 95–102. [Google Scholar]
- Guang, Q.; Li, L. Advancement in the hyporheic exchange in rivers. Adv. Water Sci. 2008, 19, 285–293. [Google Scholar]
- Salehin, M.; Packman, A.; Paradis, M. Hyporheic exchange with heterogeneous streambeds: Laboratory experiment sand modeling. Water Resour. 2004, 40, W11504. [Google Scholar]
- Xu, Y.N.; Zhang, J.H.; Chen, S.B.; Ke, H.L. Distribution of Contents of Heavy Metals in Soil Profile Contaminated in Different Ways in Xiaoqinling Gold Mining Area. J. Agro-Environ. Sci. 2008, 27, 0200–0206. [Google Scholar]
Depth | T | C0 (mg/kg) |
---|---|---|
0–20 | 40 | 0.070 |
20–30 | 40 | 0.036 |
30–50 | 40 | 0.032 |
50–70 | 40 | 0.018 |
Potential Ecological Hazard Coefficient (EHg) | Potential Ecological Risk Degree Grading |
---|---|
<40 | Mild ecological hazard |
40–80 | Moderate ecological hazard |
80–160 | Intensity Ecological Hazard |
160–320 | Very high ecological hazard |
>320 | Extremely ecologically hazardous |
Different Hydrodynamic Excitation | Sample No. | pH | Moisture Content | The Hg Speciation Content | The Percentage of Hg Speciation Content in the Total Amount | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Water Soluble State | Ion Exchange State | Carbonate State Humic Acid State | Humic Acid State | Iron-Manganese Oxidation State | Strong Organic State | Residue State | Water Soluble State | Ion Exchange State | Carbonate State Humic Acid State | Humic Acid State | Iron Manganese Oxidation State | Strong Organic State | Residue State | ||||
% | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | % | % | % | % | % | % | % | |||
Low water level infiltration test | dd-1 | 8.56 | 8.67 | 1.038 | 0.001 | 0.002 | 0.005 | 0.010 | 0.008 | 0.003 | 1.009 | 0.09 | 0.19 | 0.50 | 0.92 | 0.78 | 0.29 | 97.24 |
dd-2 | 8.82 | 16.52 | 0.423 | 0.001 | 0.001 | 0.002 | 0.005 | 0.004 | 0.003 | 0.407 | 0.20 | 0.25 | 0.56 | 1.24 | 0.98 | 0.60 | 96.17 | |
dd-3 | 8.49 | 11.39 | 4.106 | 0.008 | 0.005 | 0.008 | 0.245 | 0.086 | 0.562 | 3.194 | 0.19 | 0.11 | 0.18 | 5.96 | 2.08 | 13.69 | 77.78 | |
dd-4 | 8.89 | 3.24 | 0.355 | 0.010 | 0.001 | 0.001 | 0.054 | 0.045 | 0.226 | 0.018 | 2.81 | 0.32 | 0.37 | 15.09 | 12.63 | 63.82 | 4.95 | |
High water level infiltration test | gd-1 | 8.68 | 8.3 | 0.923 | 0.001 | 0.001 | 0.006 | 0.003 | 0.003 | 0.004 | 0.904 | 0.13 | 0.14 | 0.67 | 0.34 | 0.28 | 0.44 | 97.99 |
gd-2 | 8.82 | 12.14 | 0.152 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.003 | 0.141 | 0.39 | 0.67 | 1.18 | 1.23 | 1.28 | 2.22 | 93.02 | |
gd-3 | 8.35 | 17.26 | 25.220 | 0.014 | 0.020 | 0.018 | 0.024 | 0.143 | 0.376 | 24.626 | 0.05 | 0.08 | 0.07 | 0.10 | 0.57 | 1.49 | 97.64 | |
gd-4 | 8.82 | 4.82 | 0.853 | 0.028 | 0.002 | 0.002 | 0.184 | 0.010 | 0.547 | 0.081 | 3.31 | 0.18 | 0.18 | 21.59 | 1.21 | 64.08 | 9.44 | |
Befurer infiltration test | yd-1 | 8.75 | 9.1 | 1.473 | 0.002 | 0.002 | 0.002 | 0.004 | 0.004 | 0.011 | 1.449 | 0.11 | 0.16 | 0.11 | 0.26 | 0.27 | 0.74 | 98.34 |
yd-2 | 8.8 | 15.48 | 0.367 | 0.000 | 0.001 | 0.002 | 0.083 | 0.006 | 0.114 | 0.162 | 0.11 | 0.28 | 0.44 | 22.45 | 1.63 | 30.91 | 44.18 | |
yd-3 | 8.39 | 12.55 | 20.004 | 0.011 | 0.026 | 0.012 | 0.037 | 0.139 | 0.285 | 19.494 | 0.05 | 0.13 | 0.06 | 0.18 | 0.70 | 1.43 | 97.45 | |
yd-4 | 8.78 | 5.57 | 0.970 | 0.056 | 0.002 | 0.002 | 0.217 | 0.015 | 0.521 | 0.158 | 5.71 | 0.21 | 0.16 | 22.39 | 1.54 | 53.70 | 16.29 |
Different Hydrodynamic Excitation | Sample No. | pH | Moisture Content | The Hg Speciation Content | The Percentage of Hg Speciation Content in the Total Amount | Different Hydrodynamic Excitation | Sample No. | pH | Moisture Content | The Hg Speciation Content | The Percentage of Hg Speciation Content in the Total Amount | Different Hydrodynamic Excitation | Sample No. | pH | Moisture Content | The Hg Speciation Content | The Percentage of Hg Speciation Content in the Total Amount | Different Hydrodynamic Excitation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Different Hydrodynamic Excitation | Sample No. | pH | Moisture Content | Total | Ion Exchange State | Carbonate State Humic Acid State | Humic Acid State | Iron-Manganese Oxidation State | Total | Water Soluble State | Ion Exchange State | Carbonate State Humic Acid State | Humic Acid State | Total | Residue State | |||
% | mg/kg | mg/kg | mg/kg | % | mg/kg | mg/kg | % | % | mg/kg | mg/kg | % | |||||||
Low water level infiltration test | dd- 1 | 8.38 | 9.98 | 0.625 | 0.001 | 0.001 | 0.001 | 0.054 | 0.007 | 0.005 | 0.555 | 0.21 | 0.19 | 0.21 | 8.70 | 1.17 | 0.75 | 88.77 |
dd- 2 | 8.59 | 10.04 | 1.042 | 0.001 | 0.001 | 0.001 | 0.041 | 0.006 | 0.003 | 0.987 | 0.14 | 0.11 | 0.13 | 3.97 | 0.59 | 0.31 | 94.75 | |
dd- 3 | 8.52 | 12.91 | 1.325 | 0.002 | 0.001 | 0.001 | 0.160 | 0.004 | 0.012 | 1.145 | 0.14 | 0.08 | 0.09 | 12.10 | 0.32 | 0.87 | 86.39 | |
dd- 4 | 8.65 | 10.60 | 0.868 | 0.002 | 0.001 | 0.001 | 0.099 | 0.012 | 0.044 | 0.708 | 0.28 | 0.14 | 0.13 | 11.38 | 1.43 | 5.05 | 81.59 | |
High water level infiltration test | gd- 1 | 8.18 | 12.58 | 1.029 | 0.001 | 0.001 | 0.001 | 0.033 | 0.005 | 0.004 | 0.984 | 0.14 | 0.12 | 0.12 | 3.20 | 0.45 | 0.40 | 95.58 |
gd- 2 | 8.57 | 13.16 | 0.577 | 0.002 | 0.001 | 0.001 | 0.033 | 0.003 | 0.009 | 0.528 | 0.30 | 0.21 | 0.21 | 5.70 | 0.57 | 1.52 | 91.48 | |
gd- 3 | 8.56 | 12.77 | 9.986 | 0.002 | 0.001 | 0.001 | 0.057 | 0.007 | 0.003 | 9.914 | 0.02 | 0.01 | 0.01 | 0.57 | 0.07 | 0.03 | 99.27 | |
gd- 4 | 8.71 | 12.58 | 1.682 | 0.002 | 0.001 | 0.001 | 0.060 | 0.007 | 0.048 | 1.563 | 0.13 | 0.07 | 0.08 | 3.57 | 0.42 | 2.84 | 92.90 | |
Befurer infiltration test | yd-1 | 8.75 | 9.10 | 1.474 | 0.002 | 0.002 | 0.002 | 0.004 | 0.004 | 0.011 | 1.449 | 0.11 | 0.16 | 0.11 | 0.26 | 0.27 | 0.74 | 98.87 |
yd-2 | 8.80 | 10.48 | 0.368 | 0.000 | 0.001 | 0.002 | 0.083 | 0.006 | 0.114 | 0.162 | 0.11 | 0.28 | 0.44 | 22.45 | 1.63 | 30.91 | 44.18 | |
yd-3 | 8.59 | 12.15 | 11.109 | 0.042 | 0.015 | 0.007 | 0.336 | 0.110 | 0.596 | 10.003 | 0.38 | 0.14 | 0.06 | 3.03 | 0.99 | 5.37 | 90.04 | |
yd-4 | 8.82 | 4.24 | 1.650 | 0.023 | 0.004 | 0.004 | 0.052 | 0.037 | 0.064 | 1.466 | 1.39 | 0.25 | 0.22 | 3.12 | 2.23 | 3.91 | 88.88 |
Season | Depth (cm) | The Potential Ecological Risk Value of Mercury after Seepage Test | The Potential Ecological Risk Value of Mercury before Water Seepage Test | |
---|---|---|---|---|
Low Water Level | High Water Level | Original Stratigraphic Section | ||
Winter | 0–20 | 592.91 | 527.2 | 841.94 |
20–30 | 470.22 | 168.56 | 408.11 | |
30–50 | 5133 | 31525 | 25005.5 | |
50–70 | 788.67 | 1896.44 | 2156.22 | |
Summer | 0–20 | 357.26 | 588.13 | 842.19 |
20–30 | 1157.3 | 641.64 | 408.59 | |
30–50 | 1656.07 | 12,482.71 | 13,886.48 | |
50–70 | 1927.79 | 3737.81 | 3666.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Liu, F.; Jiao, J.; Xu, Y.; Dong, Y.; R.M., E.-W.; Zhang, X.; Chen, H. Potential Toxic Impacts of Hg Migration in the Disjointed Hyporheic Zone in the Gold Mining Area Experiencing River Water Level Changes. Water 2022, 14, 2950. https://doi.org/10.3390/w14192950
Liu R, Liu F, Jiao J, Xu Y, Dong Y, R.M. E-W, Zhang X, Chen H. Potential Toxic Impacts of Hg Migration in the Disjointed Hyporheic Zone in the Gold Mining Area Experiencing River Water Level Changes. Water. 2022; 14(19):2950. https://doi.org/10.3390/w14192950
Chicago/Turabian StyleLiu, Ruiping, Fei Liu, Jiangang Jiao, Youning Xu, Ying Dong, El-Wardany R.M., Xinshe Zhang, and Huaqing Chen. 2022. "Potential Toxic Impacts of Hg Migration in the Disjointed Hyporheic Zone in the Gold Mining Area Experiencing River Water Level Changes" Water 14, no. 19: 2950. https://doi.org/10.3390/w14192950
APA StyleLiu, R., Liu, F., Jiao, J., Xu, Y., Dong, Y., R.M., E. -W., Zhang, X., & Chen, H. (2022). Potential Toxic Impacts of Hg Migration in the Disjointed Hyporheic Zone in the Gold Mining Area Experiencing River Water Level Changes. Water, 14(19), 2950. https://doi.org/10.3390/w14192950