Dispersal and Survival of Captive-Reared Threatened Fishes in a Tonle Sap Lake Reserve
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.J.; Paukert, C.; Hogan, Z. Endangered river fish: Factors hindering conservation and restoration. Endanger. Species Res. 2012, 17, 179–191. [Google Scholar] [CrossRef]
- He, F.; Zarfl, C.; Bremerich, V.; David, J.N.W.; Hogan, Z.; Kalinkat, G.; Tockner, K.; Jähnig, S.C. The global decline of freshwater megafauna. Glob. Change Biol. 2019, 25, 3883–3892. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zarfl, C.; Bremerich, V.; Henshaw, A.; Darwall, W.; Tockner, K.; Jaehnig, S.C. Disappearing giants: A review of threats to freshwater megafauna. Wiley Interdiscip. Rev. Water 2017, 4, e1208. [Google Scholar] [CrossRef]
- Hogan, Z.S. Ecology and Conservation of Large-Bodied Freshwater Catfish: A Global Perspective. In Conservation, Ecology, and Management of Catfish; Michaletz, P.H., Travnichek, V.H., Eds.; American Fisheries Society: Bethesda, MD, USA, 2011; Volume 77, pp. 39–53. [Google Scholar]
- Gupta, N.; Kanagavel, A.; Dandekar, P.; Dahanukar, N.; Sivakumar, K.; Mathur, V.B.; Raghavan, R. God’s fishes: Religion, culture and freshwater fish conservation in India. Oryx 2016, 50, 244–249. [Google Scholar] [CrossRef]
- Collen, B.; Whitton, F.; Dyer, E.E.; Baillie, J.E.M.; Cumberlidge, N.; Darwall, W.R.T.; Pollock, C.; Richman, N.I.; Soulsby, A.M.; Bohm, M. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 2014, 23, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots; Springer: Berlin\Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Bremerich, V.; Zarfl, C.; Geldmann, J.; Langhans, S.D.; David, J.N.W.; Darwall, W.; Tockner, K.; Jähnig, S.C. Freshwater megafauna diversity: Patterns, status and threats. Divers. Distrib. 2018, 24, 1395–1404. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Version 2021-3. International Union for the Conservation of Nature. 2021. Available online: http://www.iucnredlist.org (accessed on 15 August 2022).
- Hogan, Z.S.; Moyle, P.B.; May, B.; Vander Zanden, M.J.; Baird, I.G. The imperiled giants of the Mekong. Am. Sci. 2004, 92, 228–237. [Google Scholar]
- Campbell, T.; Pin, K.; Ngor, P.B.; Hogan, Z. Conserving Mekong megafishes: Current status and critical threats in Cambodia. Water 2020, 12, 1820. [Google Scholar] [CrossRef]
- Cooperman, M.S.; So, N.; Arias, M.; Cochrane, T.A.; Elliott, V.; Hand, T.; Hannah, L.; Holtgrieve, G.W.; Kaufman, L.; Koning, A.A. A watershed moment for the Mekong: Newly announced community use and conservation areas for the Tonle Sap Lake may boost sustainability of the world’s largest inland fishery. Cambodian J. Nat. Hist. 2012, 2012, 101–106. [Google Scholar]
- Campbell, I.C.; Poole, C.; Giesen, W.; Valbo-Jorgensen, J. Species diversity and ecology of Tonle Sap Great Lake, Cambodia. Aquat. Sci. 2006, 68, 355–373. [Google Scholar] [CrossRef]
- Lim, P.; Lek, S.; Touch, S.T.; Mao, S.-O.; Chhouk, B. Diversity and spatial distribution of freshwater fish in Great Lake and Tonle Sap river (Cambodia, Southeast Asia). Aquat. Living Resour. 1999, 12, 379–386. [Google Scholar] [CrossRef]
- Hogan, Z.S.; Pengbun, N.; van Zalinge, N. Status and conservation of two endangered fish species, the Mekong giant catfish Pangasianodon gigas and the giant carp Catlocarpio siamensis. Cambodia’s Tonle Sap River. Nat. Hist. Bull. Siam Soc. 2001, 49, 269–282. [Google Scholar]
- Ngor, P.B.; McCann, K.S.; Grenouillet, G.; So, N.; McMeans, B.C.; Fraser, E.; Lek, S. Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Sci. Rep. 2018, 8, 8947. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, Y.; Nagata, M.; Takeuchi, K.; Sugiwaka, K.; Kitada, S. Effectiveness of stocking masu salmon Oncorhynchus masou fry as a means of increasing commercial catches. Fish. Sci. 2001, 67, 1184–1186. [Google Scholar] [CrossRef]
- Cucherousset, J.; Lassus, R.; Riepe, C.; Millet, P.; Santoul, F.; Arlinghaus, R.; Buoro, M. Quantitative estimates of freshwater fish stocking practices by recreational angling clubs in France. Fish. Manag. Ecol. 2021, 28, 295–304. [Google Scholar] [CrossRef]
- Everard, M.; Pinder, A.C.; Raghavan, R.; Kataria, G. Are well-intended Buddhist practices an under-appreciated threat to global aquatic biodiversity? Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 136–141. [Google Scholar] [CrossRef]
- Berger-Tal, O.; Blumstein, D.T.; Swaisgood, R.R. Conservation translocations: A review of common difficulties and promising directions. Anim. Conserv. 2020, 23, 121–131. [Google Scholar] [CrossRef]
- Conniff, R. Gone fishing. Sci. Am. 2017, 317, 42–47. [Google Scholar] [CrossRef]
- Shiu, H.; Stokes, L. Buddhist animal release practices: Historic, environmental, public health and economic concerns. Contemp. Buddhism 2008, 9, 181–196. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chang, P.-H.; Shih, C.-H.; Shiao, J.-C.; Tzeng, T.-D.; Chang, W.-C. The impact of religious release fish on conservation. Glob. Ecol. Conserv. 2021, 27, e01556. [Google Scholar] [CrossRef]
- Laikre, L.; Schwartz, M.K.; Waples, R.S.; Ryman, N.; Ge, M.W.G. Compromising genetic diversity in the wild: Unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 2010, 25, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Franssen, N.R.; Gilbert, E.I.; Gido, K.B.; Propst, D.L. Hatchery-reared endangered Colorado pikeminnow (Ptychocheilus lucius) undergo a gradual transition to piscivory after introduction to the wild. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 24–38. [Google Scholar] [CrossRef]
- Lessard, J.; Cavallo, B.; Anders, P.; Sommer, T.; Schreier, B.; Gille, D.; Schreier, A.; Finger, A.; Hung, T.-C.; Hobbs, J. Considerations for the use of captive-reared delta smelt for species recovery and research. San Fr. Estuary Watershed Sci. 2018, 16, 3. [Google Scholar] [CrossRef]
- Rytwinski, T.; Kelly, L.A.; Donaldson, L.A.; Taylor, J.J.; Smith, A.; Drake, D.A.R.; Martel, A.L.; Geist, J.; Morris, T.J.; George, A.L. What evidence exists for evaluating the effectiveness of conservation-oriented captive breeding and release programs for imperilled freshwater fishes and mussels? Can. J. Fish. Aquat. Sci. 2021, 78, 1332–1346. [Google Scholar] [CrossRef]
- Murphy, B.R.; Willis, D.W. Fisheries Techniquess; American Fisheries Society: Bethesda, MD, USA, 1996. [Google Scholar]
- Akins, J.L.; Morris, J.A., Jr.; Green, S.J. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol. Evol. 2014, 4, 3768–3777. [Google Scholar] [CrossRef]
- Kamikawa, K.T.; Friedlander, A.M.; Harding, K.K.; Filous, A.; Donovan, M.K.; Schemmel, E. Bonefishes in Hawai’i and the importance of angler-based data to inform fisheries management. Environ. Biol. Fishes 2015, 98, 2147–2157. [Google Scholar] [CrossRef]
- Meyer, K.A.; Elle, F.S.; Lamansky, J.A., Jr.; Mamer, E.R.J.M.; Butts, A.E. A reward-recovery study to estimate tagged-fish reporting rates by Idaho anglers. N. Am. J. Fish. Manag. 2012, 32, 696–703. [Google Scholar] [CrossRef]
- Chan, B.; Ngor, P.B.; Hogan, Z.S.; So, N.; Brosse, S.; Lek, S. Temporal dynamics of fish assemblages as a reflection of policy shift from fishing concession to co-management in one of the world’s largest tropical flood pulse fisheries. Water 2020, 12, 2974. [Google Scholar] [CrossRef]
- Koning, A.A.; Perales, K.M.; Fluet-Chouinard, E.; McIntyre, P.B. A network of grassroots reserves protects tropical river fish diversity. Nature 2020, 588, 631–635. [Google Scholar] [CrossRef]
- Hogan, Z. Aquatic conservation zones: Community management of rivers and fisheries. Watershed 1997, 3, 29–33. [Google Scholar]
- Chhuoy, S.; Hogan, Z.S.; Chandra, S.; Chheng, P.; Touch, B.; Utsugi, K.; Ngor, P.B. Daily otolith ring validation, age composition, and origin of the endangered striped catfish in the Mekong. Glob. Ecol. Conserv. 2022, 33, e01953. [Google Scholar] [CrossRef]
- McKenzie, J.; Parsons, B.; Seitz, A.; Kopf, R.; Mesa, M.; Phelps, Q. Advances in Fish Tagging and Marking Technology; American Fisheries Society: Bethesda, MD, USA, 2012. [Google Scholar]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef] [Green Version]
- Polanco, F.A.; Richards, E.; Flück, B.; Valentini, A.; Altermatt, F.; Brosse, S.; Walser, J.C.; Eme, D.; Marques, V.; Manel, S.; et al. Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environ. DNA 2021, 3, 1113–1127. [Google Scholar] [CrossRef]
- Lorenzen, K. Understanding and managing enhancement fisheries systems. Rev. Fish. Sci. 2008, 16, 10–23. [Google Scholar] [CrossRef]
- Cochran-Biederman, J.L.; Wyman, K.E.; French, W.E.; Loppnow, G.L. Identifying correlates of success and failure of native freshwater fish reintroductions. Conserv. Biol. 2015, 29, 175–186. [Google Scholar] [CrossRef]
- Acreman, M.; Hughes, K.A.; Arthington, A.H.; Tickner, D.; Duenas, M.A. Protected areas and freshwater biodiversity: A novel systematic review distils eight lessons for effective conservation. Conserv. Lett. 2020, 13, e12684. [Google Scholar] [CrossRef]
- Hunt, T.L.; Jones, P. Informing the Great Fish Stocking Debate: An Australian Case Study. Rev. Fish. Sci. Aquac. 2018, 26, 275–308. [Google Scholar] [CrossRef]
- Jule, K.R.; Leaver, L.A.; Lea, S.E.G. The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biol. Conserv. 2008, 141, 355–363. [Google Scholar] [CrossRef]
- Hervas, S.; Lorenzen, K.; Shane, M.A.; Drawbridge, M.A. Quantitative assessment of a white seabass (Atractoscion nobilis) stock enhancement program in California: Post-release dispersal, growth and survival. Fish. Res. 2010, 105, 237–243. [Google Scholar] [CrossRef]
- Naughton, G.P.; Hogan, Z.S.; Campbell, T.; Graf, P.J.; Farwell, C.; Sukumasavin, N. Acoustic Telemetry Monitors Movements of Wild Adult Catfishes in the Mekong River, Thailand and Laos. Water 2021, 13, 641. [Google Scholar] [CrossRef]
- Hogan, Z.S.; Em, S.; Tach, P.; Hortle, K.G. Tagging Fish: A Case Study from the Tonle Sap, Cambodia; MRC Technical Paper No. 12; Mekong River Commission: Vientiane, Laos, 2006; p. 34.
- Kelley, J.L.; Magurran, A.E.; Macías-Garcia, C. The influence of rearing experience on the behaviour of an endangered Mexican fish, Skiffia multipunctata. Biol. Conserv. 2005, 122, 223–230. [Google Scholar] [CrossRef]
- Salvanes, A.G.V.; Moberg, O.; Braithwaite, V.A. Effects of early experience on group behaviour in fish. Anim. Behav. 2007, 74, 805–811. [Google Scholar] [CrossRef]
- Nelson, T.C.; Rosenau, M.L.; Johnston, N.T. Behavior and survival of wild and hatchery-origin winter steelhead spawners caught and released in a recreational fishery. N. Am. J. Fish. Manag. 2005, 25, 931–943. [Google Scholar] [CrossRef]
- Allan, J.D.; Abell, R.; Hogan, Z.E.B.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. BioScience 2005, 55, 1041–1051. [Google Scholar] [CrossRef]
- Brennan, N.P.; Darcy, M.C.; Leber, K.M. Predator-free enclosures improve post-release survival of stocked common snook. J. Exp. Mar. Biol. Ecol. 2006, 335, 302–311. [Google Scholar] [CrossRef]
- Klinard, N.V.; Matley, J.K.; Halfyard, E.A.; Connerton, M.; Johnson, T.B.; Fisk, A.T. Post-stocking movement and survival of hatchery-reared bloater (Coregonus hoyi) reintroduced to Lake Ontario. Freshw. Biol. 2020, 65, 1073–1085. [Google Scholar] [CrossRef]
- Hogan, Z.; Baird, I.G.; Radtke, R.; Vander Zanden, M.J. Long distance migration and marine habitation in the tropical Asian catfish, Pangasius krempfi. J. Fish Biol. 2007, 71, 818–832. [Google Scholar] [CrossRef]
- Thorstad, E.B.; Uglem, I.; Finstad, B.; Chittenden, C.M.; Nilsen, R.; Okland, F.; Bjorn, P.A. Stocking location and predation by marine fishes affect survival of hatchery-reared Atlantic salmon smolts. Fish. Manag. Ecol. 2012, 19, 400–409. [Google Scholar] [CrossRef]
- Holsman, K.K.; Scheuerell, M.D.; Buhle, E.; Emmett, R. Interacting effects of translocation, artificial propagation, and environmental conditions on the marine survival of Chinook Salmon from the Columbia River, Washington, USA. Conserv. Biol. 2012, 26, 912–922. [Google Scholar] [CrossRef]
- Harmon, T.S. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: A review of the basics. Rev. Aquac. 2009, 1, 58–66. [Google Scholar] [CrossRef]
- Finstad, B.; Iversen, M.; Sandodden, R. Stress-reducing methods for releases of Atlantic salmon (Salmo salar) smolts in Norway. Aquaculture 2003, 222, 203–214. [Google Scholar] [CrossRef]
- Cinner, J.E.; McClanahan, T.R.; Graham, N.A.J.; Pratchett, M.S.; Wilson, S.K.; Raina, J.B. Gear-based fisheries management as a potential adaptive response to climate change and coral mortality. J. Appl. Ecol. 2009, 46, 724–732. [Google Scholar] [CrossRef]
- Piovano, S.; Clò, S.; Giacoma, C. Reducing longline bycatch: The larger the hook, the fewer the stingrays. Biol. Conserv. 2010, 143, 261–264. [Google Scholar] [CrossRef]
- Zollett, E.A. Bycatch of protected species and other species of concern in US east coast commercial fisheries. Endanger. Species Res. 2009, 9, 49–59. [Google Scholar] [CrossRef]
- Vaidyanathan, T.; Zhang, X.; Balakrishnan, R.; Vincent, A. Catch and trade bans for seahorses can be negated by non-selective fisheries. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 43–59. [Google Scholar] [CrossRef]
- FiA (Fisheries Administration). Law on Fisheries. In Phnom Penh: Fisheries Administration; Ministry of Agriculture, Forestry and Fisheries: Phnom Penh, Cambodia, 2006. [Google Scholar]
- Bubac, C.M.; Johnson, A.C.; Fox, J.A.; Cullingham, C.I. Conservation translocations and post-release monitoring: Identifying trends in failures, biases, and challenges from around the world. Biol. Conserv. 2019, 238, 108239. [Google Scholar] [CrossRef]
- McElroy, M.E.; Dressler, T.L.; Titcomb, G.C.; Wilson, E.A.; Deiner, K.; Dudley, T.L.; Eliason, E.J.; Evans, N.T.; Gaines, S.D.; Lafferty, K.D. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Front. Ecol. Evol. 2020, 8, 276. [Google Scholar] [CrossRef]
- West, K.; Travers, M.J.; Stat, M.; Harvey, E.S.; Richards, Z.T.; DiBattista, J.D.; Newman, S.J.; Harry, A.; Skepper, C.L.; Heydenrych, M. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 2021, 27, 1942–1957. [Google Scholar] [CrossRef]
- Jerde, C.L.; Mahon, A.R.; Campbell, T.; McElroy, M.E.; Pin, K.; Childress, J.N.; Armstrong, M.N.; Zehnpfennig, J.R.; Kelson, S.J.; Koning, A.A. Are genetic reference libraries sufficient for environmental DNA metabarcoding of Mekong River basin fish? Water 2021, 13, 1767. [Google Scholar] [CrossRef]
- Loury, E.K.; Eschenroeder, J.C.; Seat, L.; Chea, S.; Chhut, C.; Kritsanavarin, S.; Lovgren, S.; Ramsay, E.G.; Thao, D.; Hogan, Z.S. Communicating for Aquatic Conservation in Cambodia and Beyond: Lessons Learned from In-Person and Media-Based Environmental Education and Outreach Strategies. Water 2021, 13, 1853. [Google Scholar] [CrossRef]
- Sarath, S. Hun Sen Orders Crackdown on Illegal Fishing to Prevent Tonle Sap Devastation; Cambodian Journalists Alliance Association: Phnom Penh, Cambodia, 2022. [Google Scholar]
- George, A.L.; Kuhajda, B.R.; Williams, J.D.; Cantrell, M.A.; Rakes, P.L.; Shute, J.R. Guidelines for propagation and translocation for freshwater fish conservation. Fisheries 2009, 34, 529–545. [Google Scholar] [CrossRef]
- Hogan, Z.S. Threatened fishes of the world: Pangasianodon gigas Chevey, 1931 (Pangasiidae). Environ. Biol. Fishes 2004, 70, 210. [Google Scholar] [CrossRef]
- Galanti, L.; Shasha, D.; Gunsalus, K.C. Pheniqs 2.0: Accurate, high-performance Bayesian decoding and confidence estimation for combinatorial barcode indexing. BMC Bioinform 2021, 22, 359. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2014, 4, e2584. [Google Scholar]
- Edgar, R.C.; Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 2015, 31, 3476–3482. [Google Scholar]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016, 081257. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2005, 33 (suppl. 1), D34–D38. [Google Scholar]
Sample | Date | Time | Location | Total Volume (mL) |
---|---|---|---|---|
1 | 1 March 2022 | 15:20 | Lot 4, Tonle Sap Lake | 60 |
2 | 3 March 2022 | 16:45 | P. hypophthalmus tank | 13 |
3 | 4 March 2022 | 8:50 | C. siamensis tank | 25 |
4 | 4 March 2022 | 9:05 | P. gigas tank | 65 |
5 | 5 March 2022 | 14:20 | Lot 4, Tonle Sap Lake | 50 |
6 | 5 March 2022 | 14:25 | Lot 4, Tonle Sap Lake | 25 |
7 | 29 April 2022 | 12:48 | Lot 4, Tonle Sap Lake | 60 |
Species | Number Released | Number Recaptured |
---|---|---|
P. hypophthalmus | 1538 (832 FARDeC, 706 TSL) | 706 (345 FARDeC, 361 TSL) |
C. siamensis | 42 | 26 |
P. gigas | 2 | 0 |
TOTAL | 1582 | 732 |
Species | Statistic | Tagged Fish | Recaptured Fish |
---|---|---|---|
P. hypophthalmus | Minimum | 13.0 | 18.0 |
Mean (SD) | 32.7 (9.3) | 34.1 (8.9) | |
Maximum | 68.5 | 68.5 | |
C. siamensis | Minimum | 30.0 | 30.0 |
Mean (SD) | 42.6 (11.0) | 42.0 (11.0) | |
Maximum | 68.5 | 67.0 |
Sample | Days After Release | Taxa Detected | Sample Location |
---|---|---|---|
1 | −3 | * Cypriniformes Cyprinidae Catlocarpio siamensis | Lot 4, Tonle Sap Lake |
2 | 0 | * Siluriformes Pangasiidae Pangasianodon hypophthalmusSiluriformes Pangasiidae—genus and species unknown | P. hypophthalmus tank |
3 | 0 | * Cypriniformes Cyprinidae Catlocarpio siamensis*Siluriformes Pangasiidae Pangasianodon hypophthalmusSiluriformes Pangasiidae—genus and species unknown | C. siamensis tank |
4 | 0 | * Cypriniformes Cyprinidae Catlocarpio siamensisCypriniformes Cyprinidae—genus and species unknown* Siluriformes Pangasiidae Pangasianodon gigas* Siluriformes Pangasiidae Pangasianodon hypophthalmusSiluriformes Pangasiidae—genus and species unknown | P. gigas tank |
5 | 1 | Clupeiformes Clupeidae Clupeoides borneensis* Cypriniformes Cyprinidae Catlocarpio siamensis* Siluriformes Pangasiidae Pangasianodon gigas*Siluriformes Pangasiidae Pangasianodon hypophthalmusSiluriformes Pangasiidae—genus and species unknown | Lot 4, Tonle Sap Lake |
6 | 1 | * Siluriformes Pangasiidae Pangasianodon gigasSiluriformes Pangasiidae—genus and species unknown | Lot 4, Tonle Sap Lake |
7 | 57 | No fish taxa detected | Lot 4, Tonle Sap Lake |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, T.; Ngor, P.B.; Chan, B.; Eschenroeder, J.C.; Everest, E.; Chandra, S.; Chea, S.; Pin, K.; Chhuoy, S.; Chhorn, S.; et al. Dispersal and Survival of Captive-Reared Threatened Fishes in a Tonle Sap Lake Reserve. Water 2022, 14, 2995. https://doi.org/10.3390/w14192995
Campbell T, Ngor PB, Chan B, Eschenroeder JC, Everest E, Chandra S, Chea S, Pin K, Chhuoy S, Chhorn S, et al. Dispersal and Survival of Captive-Reared Threatened Fishes in a Tonle Sap Lake Reserve. Water. 2022; 14(19):2995. https://doi.org/10.3390/w14192995
Chicago/Turabian StyleCampbell, Teresa, Peng Bun Ngor, Bunyeth Chan, Jackman C. Eschenroeder, Elizabeth Everest, Sudeep Chandra, Seila Chea, Kakada Pin, Samol Chhuoy, Soksan Chhorn, and et al. 2022. "Dispersal and Survival of Captive-Reared Threatened Fishes in a Tonle Sap Lake Reserve" Water 14, no. 19: 2995. https://doi.org/10.3390/w14192995
APA StyleCampbell, T., Ngor, P. B., Chan, B., Eschenroeder, J. C., Everest, E., Chandra, S., Chea, S., Pin, K., Chhuoy, S., Chhorn, S., Soem, S., Sup, M., Phen, C., Sreynov, H., Somony, T., Chhut, C., & Hogan, Z. S. (2022). Dispersal and Survival of Captive-Reared Threatened Fishes in a Tonle Sap Lake Reserve. Water, 14(19), 2995. https://doi.org/10.3390/w14192995