Effects of Artificial Water Withdrawal on the Terrestrial Water Cycle in the Yangtze River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Description of CLM Model
2.3.2. Artificial Water Withdrawal Module
2.3.3. Experimental Design
3. Results
3.1. Water Consumption Estimate
3.2. Model Validation
3.2.1. Discharge Validation
3.2.2. Water and Heat Fluxes Validation
3.3. Influence of Artificial Water Withdrawal on Water Cycle Process
3.3.1. Variation of Groundwater Table Depth
3.3.2. Variation in Soil Moisture
3.3.3. Variation in Discharge
4. Discussion
4.1. Attribution Analysis of Soil Moisture Change
4.2. Modeling Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.H.; Liao, W.H.; Ding, Y.; Wang, X.; Jiang, Y.Z.; Song, X.S.; Lei, X.H. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes. Quat. Int. 2015, 380–381, 187–196. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Lei, K. Influence of human-water interactions on the water resources and environment in the Yangtze River Basin from the perspective of multiplex networks. J. Clean. Prod. 2020, 265, 121783. [Google Scholar] [CrossRef]
- Cao, L.J.; Zhang, Y.; Shi, Y. Climate change effect on hydrological processes over the Yangtze River basin. Quat. Int. 2011, 244, 202–210. [Google Scholar] [CrossRef]
- Xu, J.J.; Yang, D.W.; Yi, Y.H.; Lei, Z.D.; Chen, J.; Yang, W.J. Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years. Quat. Int. 2008, 186, 32–42. [Google Scholar] [CrossRef]
- Xu, X.B.; Yang, G.S.; Tan, Y.; Liu, J.P.; Hu, H.Z. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef]
- Yang, D.W.; Yang, Y.T.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Rodrigo, C.D.; Water, C.; Diogo, C.B. Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrol. Process. 2013, 27, 333–346. [Google Scholar]
- Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Dai, Y.J.; Zeng, Q.C. A land surface model (IAP94) for climate studies. Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci. 1997, 14, 433–460. [Google Scholar]
- Dai, Y.J.; Zeng, X.B.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, S.; Dirmeyer, P.; Houser, P.R.; Niu, G.Y.; et al. The common land model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Bierkens, M.F.P. Global hydrology 2015: State, trends, and directions. Water Resour. Res. 2015, 51, 4923–4947. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.N. A review on land surface processes modelling over complex terrain. Adv. Meteorol. 2015, 2015, 607181. [Google Scholar] [CrossRef] [Green Version]
- Maayar, M.E.; Price, D.T.; Chen, J.M. Simulating daily, monthly and annual water balances in a land surface model using alternative root water uptake schemes. Adv. Water Resour. 2009, 32, 1444–1459. [Google Scholar] [CrossRef]
- Jiao, Y.; Lei, H.M.; Yang, D.W.; Huang, M.Y.; Liu, D.F.; Yuan, X. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. J. Hydrol. 2017, 551, 116–131. [Google Scholar] [CrossRef]
- Benoit, R.; Pellerin, P.; Kouwen, N.; Ritchie, H.; Donaldson, N.; Joe, P.; Soulis, E.D. Toward the use of coupled atmospheric and hydrologic models at regional scale. Mon. Weather Rev. 2000, 128, 1681–1706. [Google Scholar] [CrossRef]
- Chen, F.; Xie, Z.H. Effects of interbasin water transfer on regional climate: A case study of the Middle Route of South-to-North Water Transfer Project in China. J. Geophys. Res. 2010, 115, D11112. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Xie, Z.H.; Zhan, C.S.; Qin, P.H.; Sun, Q.; Jia, B.H.; Xia, J. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China. J. Hydrol. 2015, 524, 625–641. [Google Scholar] [CrossRef]
- Zou, J.; Xie, Z.H.; Yu, Y.; Zhan, C.S.; Sun, Q. Climatic responses to anthropogenic groundwater exploitation: A case study of the Haihe River Basin, Northern China. Clim. Dyn. 2014, 42, 2125–2145. [Google Scholar] [CrossRef]
- Gao, B.; Yang, D.W.; Yang, H.B. Impact of the Three Gorges Dam on flow regime in the middle and lower Yangtze River. Quat. Int. 2013, 304, 43–50. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.J.; Qin, J.; Cheng, C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.J.; Lu, H.; Qin, J.; Chen, Y.Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.H.; Yuan, X.; Ji, P.; Shi, C.X. Effects of meteorological forcings and land surface model on soil moisture simulation over China. J. Hydrol. 2021, 603, 126978. [Google Scholar] [CrossRef]
- Stefan, S.; Verena, H.; Karen, F.; Jacob, B. Global Map of Irrigation Areas Version 5; Rheinische Friedrich-Wilhelms-University: Bonn, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, D.; Yang, X.; Luo, C. Spatialization Approach to 1km Grid GDP Supported by Remote Sensing. J. Geo-Inf. Sci. 2005, 7, 120–123. [Google Scholar]
- Oleson, K.; Lawrence, D.; Bonan, G.; Drewniak, B.; Huang, M.; Koven, C.; Levis, S.; Li, F.; Riley, W.; Subin, Z. Technical Description of Version 4.5 of the Community Land Model (CLM), 1st ed.; National Center for Atmospheric Research: Boulder, CO, USA, 2013; pp. 1–11. [Google Scholar]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The community earth system model: A framework for collaborative research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Xie, Z.H.; Yu, Y.; Liu, S.; Wang, L.Y.; Zou, J.; Qin, P.H.; Jia, B.H. Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J. Adv. Model. Earth Syst. 2016, 8, 1106–1131. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M.F.P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.Y.; Lu, C.Y.; Liu, J.H.; Wang, H.; Wang, J.H.; Li, H.H.; Chu, J.Y.; Chen, G.F. Theoretical framework of dualistic nature–social water cycle. Chin. Sci. Bull. 2014, 59, 810–820. [Google Scholar] [CrossRef]
- Lu, S.B.; Zhang, X.L.; Bao, H.J.; Skitmore, M. Review of social water cycle research in a changing environment. Renew. Sustain. Energy Rev. 2016, 63, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
Station | Longitude (°) | Latitude (°) | Subbasin | Period |
---|---|---|---|---|
Xiaodeshi | 101.87 | 26.72 | Yalong River Basin | 1979–2010 |
Pingshan | 104.17 | 28.65 | Jinsha River Basin | 1979–2011 |
Gaochang | 104.42 | 28.81 | Min River Basin | 1979–2012 |
Lijiawan | 104.97 | 29.13 | Tuo River Basin | 1979–2000 |
Beibei | 106.46 | 29.81 | Jialing River Basin | 1979–2015 |
Cuntan | 106.6 | 29.62 | Upper Yangtze River Basin | 1979–2015 |
Wulong | 107.75 | 29.32 | Wu River Basin | 1979–2015 |
Yichang | 111.28 | 30.69 | Upper Yangtze River Basin | 1979–2015 |
Changyang | 111.18 | 30.48 | Qing River Basin | 1979–2000 |
Baihe | 110.11 | 32.83 | Han River Basin | 1979–2000 |
Taoyuan | 111.49 | 28.92 | Yuan River Basin | 1979–2000 |
Xiangtan | 112.93 | 27.87 | Xiang River Basin | 1979–2000 |
Shishang | 115.72 | 28.18 | Gan River Basin | 1979–2000 |
Meigang | 116.82 | 28.44 | Xin River Basin | 1979–2000 |
Datong | 117.63 | 30.77 | Lower Yangtze River Basin | 1979–2006 |
Experiment | Simulation Period | Artificial Water Withdrawal |
---|---|---|
Experiment 1 | 1981–2010 | No |
Experiment 2 | 1981–2010 | Yes |
Parameter | Meaning | Calibrated Value |
---|---|---|
dewmx | Maximum dew | 0.1 |
hksat | Hydraulic conductivity at saturation | 0.005 |
porosity | Soil porosity | 0.5 |
sucsat | Minimum soil suction | 250 |
wtfact | Fraction of model area with high water table | 0.3 |
bsw | Clapp and hornbereger “b” parameter | 5 |
wimp | Water impermeable if porosity less than wimp | 0.05 |
zlnd | Roughness length for soil | 0.01 |
pondmx | Ponding depth | 10 |
csoilc | Drag coefficient for soil under canopy | 0.004 |
zsno | Roughness length for snow | 0.0024 |
capr | Tuning factor to turn first layer T into surface T | 0.34 |
cnfac | Crank–Nicholson factor between 0 and 1 | 0.375 |
z0m | Aerodynamic roughness length | 0.175 |
ssi | Irreducible water saturation of snow | 0.035 |
Station | Subbasin | NSE | PBIAS |
---|---|---|---|
Xiaodeshi | Yalong River Basin | 0.66 | −12.2% |
Pingshan | Jinsha River Basin | 0.74 | −13.5% |
Gaochang | Min River Basin | 0.86 | −11.9% |
Lijiawan | Tuo River Basin | 0.81 | 10.8% |
Beibei | Jialing River Basin | 0.87 | 2.8% |
Cuntan | Upper Yangtze River Basin | 0.87 | −9.3% |
Wulong | Wu River Basin | 0.89 | 2.8% |
Yichang | Upper Yangtze River Basin | 0.88 | −6.9% |
Changyang | Qing River Basin | 0.89 | 16.5% |
Baihe | Han River Basin | 0.81 | −1.8% |
Taoyuan | Yuan River Basin | 0.94 | 7.5% |
Xiangtan | Xiang River Basin | 0.92 | 1.9% |
Shishang | Gan River Basin | 0.86 | 4.4% |
Meigang | Xin River Basin | 0.96 | −3.2% |
Datong | Lower Yangtze River Basin | 0.77 | 1.8% |
Station | Climate Change | Artificial Water Withdrawal | LUCC | Discharge Change | |||
---|---|---|---|---|---|---|---|
Value (m3/s) | Contribution (%) | Value (m3/s) | Contribution (%) | Value (m3/s) | Contribution (%) | Value (m3/s) | |
Xiaodeshi | 12.8 | 77.3 | −0.003 | 0.0 | 3.7 | 22.7 | 16.5 |
Pingshan | 43.9 | 90.6 | −0.078 | 0.2 | −4.5 | 9.2 | 39.4 |
Gaochang | −0.7 | 6.5 | −0.337 | 3.2 | −9.5 | 90.3 | −10.5 |
Lijiawan | −3.7 | 80.8 | −0.163 | 3.6 | −0.7 | 15.6 | −4.5 |
Beibei | −14.6 | 31.6 | −0.089 | 0.2 | −31.6 | 68.2 | −46.3 |
Cuntan | 16.8 | 55.0 | −0.002 | 0.0 | −13.8 | 45.0 | 3.1 |
Wulong | 22.0 | 82.9 | −0.694 | 2.6 | −3.8 | 14.5 | 17.5 |
Yichang | 8.7 | 57.7 | −0.519 | 3.5 | −5.8 | 38.8 | 2.3 |
Changyang | −4.2 | 60.0 | −0.001 | 0.0 | 2.8 | 40.0 | −1.4 |
Baihe | −11.1 | 38.6 | −0.021 | 0.1 | −17.7 | 61.4 | −28.8 |
Taoyuan | 33.4 | 73.3 | −0.375 | 0.8 | −11.8 | 25.9 | 21.2 |
Xiangtan | 44.6 | 68.4 | −1.135 | 1.7 | −19.4 | 29.8 | 24.0 |
Shishang | 28.6 | 58.9 | −0.448 | 0.9 | −19.5 | 40.2 | 8.6 |
Meigang | 12.5 | 91.6 | −0.090 | 0.7 | 1.1 | 7.7 | 13.4 |
Datong | 251.5 | 66.4 | −0.650 | 0.2 | −126.5 | 33.4 | 124.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Hou, B.; Yang, M.; Xiao, W.; Wang, H. Effects of Artificial Water Withdrawal on the Terrestrial Water Cycle in the Yangtze River Basin. Water 2022, 14, 3117. https://doi.org/10.3390/w14193117
Wang H, Hou B, Yang M, Xiao W, Wang H. Effects of Artificial Water Withdrawal on the Terrestrial Water Cycle in the Yangtze River Basin. Water. 2022; 14(19):3117. https://doi.org/10.3390/w14193117
Chicago/Turabian StyleWang, Hejia, Baodeng Hou, Mingxiang Yang, Weihua Xiao, and Hao Wang. 2022. "Effects of Artificial Water Withdrawal on the Terrestrial Water Cycle in the Yangtze River Basin" Water 14, no. 19: 3117. https://doi.org/10.3390/w14193117
APA StyleWang, H., Hou, B., Yang, M., Xiao, W., & Wang, H. (2022). Effects of Artificial Water Withdrawal on the Terrestrial Water Cycle in the Yangtze River Basin. Water, 14(19), 3117. https://doi.org/10.3390/w14193117