Deriving Optimal Analysis Method for Road Surface Runoff with Change in Basin Geometry and Grate Inlet Installation
Abstract
:1. Introduction
2. Method
2.1. Flow Analysis Model
2.2. Cross-Sectional Shape
2.3. Drainage Basin Estimation Method
2.4. Travel Time Estimation Method
2.5. Grate Inlet Installation Method
3. Results and Discussion
3.1. Flow Characteristics Depending on Drainage Basin Geometry Estimation Methods
3.1.1. Analysis of Travel Time
3.1.2. Analysis of Road Surface Discharges
3.2. Road Surface-Runoff Analysis with Grate Inlets Installed at Regular Intervals
3.3. Deriving the Optimal Method for Road Surface-Runoff Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, F.K.S.; Griffiths, J.; Higgitt, D.; Xu, S.Y.; Zhu, F.F.; Tang, Y.T.; Xu, Y.Y.; Thorne, C. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban contex. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Meng, B.; Li, M.; Du, X.; Ye, X. Flood Control and Aquifer Recharge Effects of Sponge City: A Case Study in North China. Water 2022, 14, 92. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Low impact development practices: A review of current research and recommendations for future directions. Ecol. Chem. Eng. 2015, 22, 543–563. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, M.; Tu, N.; Li, X.; Fang, X.; Li, J.; Jin, J.; Su, D. Curb inlet efficiency evaluation under unsteady rainfall situations based on full-scale rainfall-runoff experiments. J. Hydrol. Eng. 2021, 26, 04020061. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, L.; Zhang, L.; Cheng, S. Coupling Coordination Assessment on Sponge City Construction and Its Spatial Pattern in Henan Province, China. Water 2020, 12, 3482. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Lancia, M.; Zheng, C.; He, X.; Lerner, D.N.; Tian, Y. Hydrogeological constraints and opportunities for “Sponge City” development: Shenzhen, southern China. J. Hydrol. Reg. Stud. 2020, 28, 772–778. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Fu, D. Understanding the challenges for the governance of China’s “sponge cities” initiative to sustainably manage urban stormwater and flooding. Nat. Hazards 2017, 89, 521–529. [Google Scholar] [CrossRef]
- Wei, C.; Wang, J.; Li, P.; Wu, B.; Liu, H.; Jiang, Y.; Huang, T. A New Strategy for Sponge City Construction of Urban Roads: Combining the Traditional Functions with Landscape and Drainage. Water 2021, 13, 3469. [Google Scholar] [CrossRef]
- Digman, C.J.; Ashley, R. Managing Urban Flooding from Heavy Rainfall-Encouraging the Uptake of Designing for Exceedance–Recommendations and Summary Vol CIRIA RP991; Construction Industry Research and Information Association: London, UK, 2014. [Google Scholar]
- Kemper, S.; Schlenkhoff, A. Experimental study on the hydraulic capacity of grate inlets with supercritical surface flow conditions. Water Sci. Technol. 2019, 79, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jo, J.B.; Yoon, S.E. Head loss reduction in surcharged four-way junction manholes. Water 2018, 10, 1741. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.B.; Kim, J.S.; Yoon, S.E. Experimental estimation of the head loss coefficient at surcharged four-way junction manholes. Urban Water J. 2018, 15, 780–789. [Google Scholar] [CrossRef]
- Aranda, J.Á.; Beneyto, C.; Sánchez-Juny, M.; Bladé, E. Efficient design of road drainage systems. Water 2021, 13, 1661. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Chen, G.; Gong, Y.; Wang, J.; Li, J. Evaluating curb inlet efficiency for urban drainage and road bioretention facilities. Water 2019, 11, 851. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Vojinovic, Z.; Price, R.; Sanchez, A. Modelling Infiltration Process, Overland Flow and Sewer System Interactions for Urban Flood Mitigation. Water 2021, 13, 2028. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Han, G.; Zhang, L.; Qiu, Y.; Li, J.; Jia, H. Integrated and Control-Oriented Simulation Tool for Optimizing Urban Drainage System Operation. Water 2022, 14, 25. [Google Scholar] [CrossRef]
- Jo, J.B.; Kim, J.S.; Kwak, C.J. Development of rainfall-runoff analysis algorithm on road surface. Ecol. Resilient Infrastruct. 2021, 8, 223–232. [Google Scholar]
- Dai, S.; Jin, S.; Qian, C.; Yang, N.; Ma, Y.; Liang, C. Interception efficiency of grate inlets for sustainable urban drainage systems design under different road slopes and approaching discharges. Urban Water J. 2021, 18, 650–661. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwak, C.J.; Jo, J.B. Enhanced method for estimation of flow intercepted by drainage grate inlets on roads. J. Environ. Manag. 2021, 279, 111546. [Google Scholar] [CrossRef]
- Federal Highway Administration (FHWA). Urban Drainage Design Manual. Hydraulic Engineering Circular; FHWA: Washington, DC, USA, 2013; Volume 22, pp. 4–47.
- American Association of State Highway and Transportation Officials (AASHTO). Drainage Manual; AASHTO: Washington, DC, USA, 2014. [Google Scholar]
- Naqvi, M.M. Design of Linear Drainage Systems; Thomas Telford: Telford, UK, 2003. [Google Scholar]
- Izzard, C.F.; Hicks, W.I. Hydraulics of runoff from developed surfaces. Highway Res. Board Proc. 1947, 26, 129–150. [Google Scholar]
- Smith, K.V.H. Control point in a lateral spillway channel. J. Hydraul. Div. 1967, 93, 27–34. [Google Scholar] [CrossRef]
- Rhodes, D.G. Gradually varied flow solutions in Newton-Raphson form. J. Irrig. Drain. Eng. 1998, 124, 233–235. [Google Scholar] [CrossRef]
- Ku, H.; Jun, K. Design of road surface drainage facilities based on varied flow analysis. In Advances in Water Resources and Hydraulic Engineering; Springer: Berlin/Heidelberg, Germany, 1998; pp. 240–245. [Google Scholar]
- Chaudhry, M.H. Open-Channel Flow; Springer Science and Business Media: Berlin, Germany, 2007. [Google Scholar]
- Liu, J.L.; Wang, Z.Z.; Leng, C.J.; Zhao, Y.F. Explicit equations for critical depth in open channels with complex compound cross sections. Flow Meas. Instrum. 2012, 24, 13–18. [Google Scholar] [CrossRef]
- Vatankhah, A.R.; Easa, S.M. Explicit solutions for critical and normal depths in channels with different shapes. Flow Meas. Instrum. 2011, 22, 43–49. [Google Scholar] [CrossRef]
- Wang, Z. Formula for calculating critical depth of trapezoidal open channel. J. Hydraul. Eng. 1998, 124, 90–91. [Google Scholar] [CrossRef]
- Huber, W.C.; Dickinson, R.E.; Barnwell, T.O., Jr.; Branch, A. Storm Water Management Model (SWMM); Version 4; Environmental Protection Agency: Washington, DC, USA, 1988.
- Liu, X.; Chen, Y.; Shen, C. Coupled two-dimensional surface flow and three-dimensional subsurface flow modeling for drainage of permeable road pavement. J. Hydrol. Eng. 2016, 21, 04016051. [Google Scholar] [CrossRef]
- Luo, W.; Wang, K.C.P.; Li, L. Hydroplaning on sloping pavements based on inertial measurement unit (IMU) and 1-mm 3D laser imaging data. Period. Polytech. Transp. Eng. 2016, 44, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Wang, K.C.P.; Li, L. Field test validation of water film depth (WFD) prediction models for pavement surface drainage. Int. J. Pavement Eng. 2019, 20, 1170–1181. [Google Scholar] [CrossRef]
- Japan Road Association. Specifications for Highway Bridges, Part I_V; Japan Road Association: Tokyo, Japan, 2012. [Google Scholar]
- Ministry of Land, Infrastructure and Transport (MOLIT). The Guideline of Design and Maintenance Management for Drainage Facilities of Roads; MOLIT: Sejong City, Korea, 2020.
Condition | Value |
---|---|
Road width (m) | 6 (two lanes) |
Road length (m) | 20, 100, 200 |
Longitudinal slope of road (%) | 2, 4, 7, 10 |
Transverse slope of road (%) | 2 |
Transverse slope of gutter (%) | 2, 4, 7 |
(%) | (%) | (m) | Simplified Basin | Modified Basin | |||
---|---|---|---|---|---|---|---|
γ (°) | γ (°) | ||||||
2 | 2 | 6 | 6 | 90 | 8.49 | 45 | 120 |
4 | 13.43 | 26.56 | |||||
7 | 21.93 | 15.92 | |||||
10 | 30.88 | 11.27 |
Inlet Size (cm) | ||||
---|---|---|---|---|
40 × 50 | 3.243 | 0.892 | 0.317 | 0.059 |
40 × 100 | 2.525 | 0.939 | 0.244 | 0.058 |
40 × 150 | 1.748 | 0.952 | 0.159 | 0.012 |
Drainage Basin Estimation Method | Travel Time Estimation Method | |
---|---|---|
Case 1 | Simplified rectangular basin | Road surface travel time |
Case 2 | Simplified rectangular basin | Road surface travel time + Gutter travel time |
Case 3 | Modified basin considering slope conditions | Road surface travel time |
Case 4 | Modified basin considering slope conditions | Road surface travel time + Gutter travel time |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, J.; Kwak, C.; Kim, J.; Kim, S. Deriving Optimal Analysis Method for Road Surface Runoff with Change in Basin Geometry and Grate Inlet Installation. Water 2022, 14, 3132. https://doi.org/10.3390/w14193132
Jo J, Kwak C, Kim J, Kim S. Deriving Optimal Analysis Method for Road Surface Runoff with Change in Basin Geometry and Grate Inlet Installation. Water. 2022; 14(19):3132. https://doi.org/10.3390/w14193132
Chicago/Turabian StyleJo, Junbeom, Changjae Kwak, Jungsoo Kim, and Sooyoul Kim. 2022. "Deriving Optimal Analysis Method for Road Surface Runoff with Change in Basin Geometry and Grate Inlet Installation" Water 14, no. 19: 3132. https://doi.org/10.3390/w14193132
APA StyleJo, J., Kwak, C., Kim, J., & Kim, S. (2022). Deriving Optimal Analysis Method for Road Surface Runoff with Change in Basin Geometry and Grate Inlet Installation. Water, 14(19), 3132. https://doi.org/10.3390/w14193132