Hydrogeochemical Characteristics of a Multi-Layer Groundwater System in a Coal Mine Area: A Case Study
Abstract
:1. Introduction
2. Study Area
3. Sample Collection and Analysis
4. Results and Discussion
4.1. Analysis of the Hydrogeochemical Properties
4.2. Multivariate Statistical Analysis
4.3. Hydrogeochemical Evolution
4.4. Hydrogeochemical Characteristics of the Ordovician Limestone Aquifer
4.5. Hydrogeological Conceptual Model
5. Conclusions
- The groundwater in the Dongtan Coal Mine is generally alkaline. The soluble minerals, which affect the hydrogeochemical properties of the groundwater, include calcite, dolomite, gypsum, and halite. Moreover, the groundwater was subject to the effects of silicate weathering, cation exchange, and pyrite oxidation. Dolomite dissolution is an important source of Ca2+ and Mg2+, while the weathering of silicate and dissolution of halite are the main sources of Na+. SO42− exhibits the greatest influence on the mineralization and hardness of the groundwater, and it is mainly derived from the dissolution of gypsum and secondarily from pyrite oxidation; the O2 aquifer especially contains pyrite crystals, and the pyrite from the 17# coal seam can also affect the groundwater quality through cracks.
- Q-mode analysis and R-mode clustering analyses were carried out. The Q-mode analysis shows that the water quality of the O2 aquifer is quite different from that of the other aquifers particularly because of the local karst development. The other four aquifers, especially P and C, exhibit similar hydrochemical properties, and the water quality characteristics are related to the distribution of the drill holes of the water samples. The R-mode analysis shows the occurrence of carbonate dissolution, the weathering of silicate, and halite dissolution in the aquifers; and Ca2+, Mg2+, SO42− exhibited the greatest influence on the hardness and salinity of the groundwater. In the future, the O2 aquifer will have a significant impact on the chemical properties of the groundwater in the Dongtan Coal Mine and attention must be paid to it. The results of the correlation analysis are consistent with those of the cluster analysis.
- To ensure the safety of coal mining, a large amount of mine water was discharged from the Dongtan Coal Mine, which resulted in a decrease in the water level of each aquifer to varying degrees. The Q aquifer was replenished by atmospheric precipitation; however, due to the water-repellent effect of Qmid, it had little influence on the recharge effect and chemical properties of the water in the aquifers below it, resulting in a relatively stable water level. Under the influence of mining the 3# coal seam, there exists a good hydraulic connection between the J and P aquifers and the P and C aquifers, and the water chemistry of these aquifers is similar. The Dongtan Coal Mine is located in the core and deep part of the Yanzhou syncline, and the O2 aquifer is deeply buried. Owing to the uneven karst development, regional water-rich distribution, and high water pressure, the O2 aquifer exhibits a significant influence on coal mining activity in the area. The complex geological and drainage conditions in coal mines are also an important cause of the chemical evolution of groundwater. Therefore, preventive measures must be taken in advance to guarantee the safety of coal mining and ensure that the environment is free from pollution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Gui, H.R. Hydrogeochemical characteristics of groundwater in the limestone aquifers of the Taiyuan Group and its geological significance in the Suxian mining area. Hydrogeol. Eng. Geol. 2016, 43, 33–41. [Google Scholar] [CrossRef]
- Dong, S.N.; Zheng, L.W.; Tang, S.L.; Shi, P.Z. A Scientometric Analysis of Trends in Coal Mine Water Inrush Prevention and Control for the Period 2000–2019. Mine Water Environ. 2020, 39, 3–12. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Wang, H.; He, X.W.; Guo, S.Q.; Xia, Y.; Zhou, Y.X. Research progress, problems and prospects of mine water treatment technology and resource utilization in China. Crit. Rev. Env. Sci. Tech. 2020, 50, 331–383. [Google Scholar] [CrossRef]
- Agartan, E.; Yazicigil, H. Assessment of water supply impacts for a mine site in western Turkey. Mine Water Environ. 2012, 31, 112–128. [Google Scholar] [CrossRef]
- Luan, J.K.; Zhang, Y.Q.; Tian, J.; Meresa, H.; Liu, D.F. Coal mining impacts on catchment runoff. J. Hydrol. 2020, 589, 125101. [Google Scholar] [CrossRef]
- Zhang, J.C. Investigations of water inrushes from aquifers under coal seams. Int. J. Rock Mech. Min. 2005, 42, 350–360. [Google Scholar] [CrossRef]
- Meng, Z.P.; Li, G.Q.; Xie, X.T. A geological assessment method of floor water inrush risk and its application. Eng. Geol. 2012, 143, 51–60. [Google Scholar] [CrossRef]
- Ma, D.; Cai, X.; Li, Q.; Duan, H.Y. In-Situ and Numerical Investigation of Groundwater Inrush Hazard from Grouted Karst Collapse Pillar in Longwall Mining. Water 2018, 10, 1187. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Qian, J.Z.; Zhao, W.D.; Curtis, Z.; Zhang, R.G. Hydrogeochemical analysis of multiple aquifers in a coal mine based on nonlinear PCA and GIS. Environ. Earth Sci. 2016, 75, 716. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Zhu, G.; Qian, C. Predicting mine water inflow and groundwater levels for coal mining operations in the Pangpangta coalfield, China. Environ. Earth Sci. 2019, 78, 130. [Google Scholar] [CrossRef]
- Li, X.; Dong, D.; Liu, K.; Zhao, Y.; Li, M. Identifification of Mine Mixed Water Inrush Source Based on Genetic Algorithm and XGBoost Algorithm: A Case Study of Huangyuchuan Mine. Water 2022, 14, 2150. [Google Scholar] [CrossRef]
- Wu, Q. Progress, problems and prospects of prevention and control technology of mine water and reutilizationin China. J. China Coal Soc. 2014, 39, 795–805. [Google Scholar] [CrossRef]
- Reghunath, R.; Sreedhara Murthy, T.R.; Raghavan, B.R. The utility of multivariate statistical techniques in hydrogeochemical studies:an example from Karnataka, India. Water Res. 2002, 36, 2437–2442. [Google Scholar] [CrossRef]
- Cidu, R.; Biddau, R.; Fanfani, L. Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J. Geochem. Explor. 2009, 100, 125–132. [Google Scholar] [CrossRef]
- Li, P.Y.; Qian, H.; Wu, J.H.; Zhang, Y.Q.; Zhang, H.B. Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfifield, Ordos Basin, China. Mine Water Environ. 2013, 32, 195–206. [Google Scholar] [CrossRef]
- Arkoc, O.; Ucar, S.; Ozcan, C. Assessment of impact of coal mining on ground and surface waters in Tozakh coal field, Kirklareli, northeast of Thrace, Turkey. Environ. Earth Sci. 2016, 75, 514. [Google Scholar] [CrossRef]
- Qiao, W.; Li, W.P.; Zhang, S.C.; Niu, Y.F. Effects of coal mining on the evolution of groundwater hydrogeochemistry. Hydrogeol. J. 2019, 27, 2245–2262. [Google Scholar] [CrossRef]
- Qiu, H.L.; Gui, H.R.; Fang, P.; Li, G.P. Hydrogeochemistry and Quality Assessment of Groundwater Based on Fuzzy Analytical Hierarchy Process: A Case Study from Sulin Coal-Mining District in Northern Anhui, China. Pol. J. Environ. Stud. 2021, 30, 3203–3211. [Google Scholar] [CrossRef]
- Singh, A.K.; Mahato, M.K.; Neogi, B.; Singh, K.K. Quality assessment of mine water in the Raniganj coalfeld area, India. Mine Water Environ. 2010, 29, 248–262. [Google Scholar] [CrossRef]
- Utom, A.U.; Odoh, B.I.; Egboka, B.C.E. Assessment of hydrogeochemical characteristics of groundwater quality in the vicinity of Okpara coal and Obwetti freclay mines, near Enugu town, Nigeria. Appl. Water Sci. 2013, 3, 271–283. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, P.Y.; Qian, H.; Duan, Z.; Zhang, X.D. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: A case study in Laoheba phosphorite mine in Sichuan, China. Arab J. Geosci. 2014, 7, 3973–3982. [Google Scholar] [CrossRef]
- Wang, W.; Qiang, Y.X.; Wang, Y.; Sun, Q.M.; Zhang, M. Impacts of Yuyang coal mine on groundwater quality in Hongshixia water source, Northwest China: A physicochemical and modeling research. Expo. Health 2016, 8, 431–442. [Google Scholar] [CrossRef]
- Li, P.Y.; Tian, R.; Xue, C.Y.; Wu, J.H. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ. Sci. Pollut. Res. 2017, 24, 13224–13234. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, A.K. Hydrogeochemistry and quality assessment of surface and sub-surface water resources in Raniganj coalfield area, Damodar Valley, India. Int. J. Environ. Anal. Chem. 2020, 2, 9653. [Google Scholar] [CrossRef]
- Hao, C.M.; Huang, Y.; Ma, D.J.; Fan, X. Hydro-geochemistry evolution in Ordovician limestone water induced by mountainous coal mining: A case study from North China. J. Mt. Sci. 2020, 17, 5485. [Google Scholar] [CrossRef]
- Gao, X.B.; Wang, Y.X.; Ma, T.; Hu, Q.H.; Xing, X.L.; Yu, Q. Anthropogenic impact assessment of Niangziguan karst water. Water Manag. 2011, 164, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Ren, H.X.; Wu, Y.Z.; Cao, F.L.; Jia, F.J.; Qu, P.C. The evolution of hydrogeochemical characteristics of a typical piedmont karst groundwater system in a coal-mining area, Northern China. Environ. Earth Sci. 2019, 78, 557. [Google Scholar] [CrossRef]
- Cao, D.T. A hydrogeological property of Jurassic red strata in Yanzhou coal mining area. Coal Geol. Explor. 2007, 35, 54–57. [Google Scholar]
- Hu, Z.X.; Han, B.P.; Wang, X.Y. Occurrence Features and Hydrogeotogical significance of Red Bed in Yanzhou Coal Field. Coal Sci. Technol. Mag. 2002, 1, 15–17. [Google Scholar]
- Liu, R.X. Analysison Features of Ordovician LimestoneWatery in Yanzhou Coalfield. Coal Sci. Technol. 2009, 37, 112–115. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, X.; Cao, D.T.; Liang, Y.P. Impermeability evaluation method and its application on the ancient weathering crust of carbonatite in middle ordovician system in North China coalfild. J. China Coal Soc. 2014, 39, 1735–1741. [Google Scholar] [CrossRef]
- Bian, Y.Y.; Zhao, D.; Han, Y. Hydrochemical Characteristics and Formation Mechanism of Ordovician Limestone Groundwater in the Yanzhou Coalfield. Acta Geosci. Sin. 2017, 38, 236–242. [Google Scholar] [CrossRef]
- Han, Y.; Wang, G.C.; Charles, A.C.; Hu, W.Y.; Bian, Y.Y.; Zhang, Z.W.; Liu, Y.Y. Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrol. Process 2013, 27, 2247–2257. [Google Scholar] [CrossRef]
- Li, K. Study on hydrogeologic conditions of Ordovician limestone aquifer in medium deep section of Yanzhou Coal Field. Coal Sci. Technol. 2016, 44, 146–149. [Google Scholar] [CrossRef]
- Qiao, W.; Howard, K.W.F.; Li, W.P.; Zhang, S.C.; Zhang, X.; Niu, Y.F. Coordinated exploitation of both coal and deep groundwater resources. Environ. Earth Sci. 2020, 79, 120. [Google Scholar] [CrossRef]
- Hou, J.H.; Xie, C.L.; Zhang, D. Hydrochemical Characteristics and Genesis of Underground Water of Ordovician Limestone in Dongtan Mine. Shandong Coal Sci. Technol. 2021, 10, 177–180. [Google Scholar] [CrossRef]
- Xiang, X.R. Study on Hydro-Chemical Characteristics and Evolution of Groundwater and Discriminating Models of Water Brusting in Xinglongzhuang Coalmine; North China Institute of Science & Technology: Langfang, China, 2016. [Google Scholar]
- Niu, Y.F.; Qiao, W.; Lei, L.J.; Tian, Y. Research of floor water inrush risk near water-bearing fault under high crustal stress. J. Eng. Geol. 2016, 24, 756–764. [Google Scholar] [CrossRef]
- Dong, J.; Wang, H.; Qin, S.; Fu, F.C.; Sun, N.H.; Meng, Q.J.; Feng, Q.Y. Evolution of water environment under the influence of mining in Yanzhou coalfield. China Min. Mag. 2020, 29, 127–132. [Google Scholar] [CrossRef]
- Zhang, X. Water Abundance Law of Ordovician and Water Inrush Forecast in Yanzhou Mine Area. Ph.D. Thesis, China of Mining and Technology University, Xuzhou, China, 2016. [Google Scholar]
- Xu, H.; Hou, Z.H.; An, Z.S.; Liu, X.Y.; Dong, J.B. Major ion chemistry of waters in Lake Qinghai catchments, NE Qinghai-Tibet plateau, China. Quatern Int. 2010, 212, 37–41. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Wu, Y.X.; Groves, C.; Yuan, D.X.; Kambesis, P. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J. Contam. Hydrol. 2009, 109, 49–61. [Google Scholar] [CrossRef]
- Singh, A.K.; Mahato, M.K.; Neogi, B.; Mondal, G.C.; Singh, T.B. Hydrogeochemistry, elemental flux, and quality assessment of mine water in the Pootkee-Balihari Mining Area, Jharia coalfield, India. Mine Water Environ. 2011, 30, 197. [Google Scholar] [CrossRef]
- Adhikari, K.; Mal, U. Application of multivariate statistics in the analysis of groundwater geochemistry in and around the open cast coal mines of Barjora block, Bankura district, West Bengal, India. Environ. Earth Sci. 2019, 78, 72. [Google Scholar] [CrossRef]
- Hu, C.H.; Zhou, W.B.; Xia, S.Q. characteristics of major ions and the influence factors in poyang lake catchment. Environ. Chem. 2011, 30, 1620–1626. [Google Scholar]
- Zhang, R.X.; Wu, P.; Ye, H.J.; Li, X.X. Hydrogeochemical Characteristics and Quality Assessment of Mine Water in Coalfeld Area, Guizhou Province, Southwest China. Bull. Environ. Contam. Toxicol. 2021, 107, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.Y.; Li, Z.Q.; Xu, M. Groundwater Chemical Characteristics and Recharge Source Identification of Heilongtan Spring Area. Yellow River 2020, 42, 63–67. [Google Scholar] [CrossRef]
- Gad, M.; Elsayed, S.; Moghanm, F.S.; Almarshadi, M.H.; Alshammari, A.S.; Khedher, K.M.; Eid, E.M.; Hussein, H. Combining Water Quality Indices and Multivariate Modeling to Assess Surface Water Quality in the Northern Nile Delta, Egypt. Water 2020, 12, 2142. [Google Scholar] [CrossRef]
- Touche, G.D.L.; Alexander, S.; Birch, J.; Gwynn, X. Application of Multivariate Statistical Methods to Hydrogeological Property Parameterisation from Geotechnical and Geophysical Data. Mine Water Environ. 2019, 38, 695–699. [Google Scholar] [CrossRef]
- Spanos, T.; Ene, A.; Xatzixristou, C.; Papaioannou, A. Assessment of groundwater quality and hydrogeological profile of Kavala area, Northern Greece. Rom. J. Phys. 2015, 60, 1139–1150. [Google Scholar] [CrossRef]
- Liu, H.H.; Yang, J.; Ye, M.; Tang, Z.H.; Jie, D.; Xing, T.J. Using one-way clustering and co-clustering methods to reveal spatio-temporal patterns and controlling factors of groundwater geochemistry. J. Hydrol. 2021, 603, 127085. [Google Scholar] [CrossRef]
- Li, P.Y.; Tian, R.; Liu, R. Solute Geochemistry and Multivariate Analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo. Health 2019, 11, 81–94. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States–An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Heidel, C.; Tichomirowa, M. The isotopic composition of sulfate from anaerobic and low oxygen pyrite oxidation experiments with ferric iron—New insights into oxidation mechanisms. Chem. Geol. 2011, 281, 305–316. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, S.Y.; Xiao, S.J. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in diferent mining districts. Nat. Hazards 2019, 99, 689–704. [Google Scholar] [CrossRef]
- Narany, T.S.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Juahir, H.; Fakharian, K. Identification of the Hydrogeochemical Processes in Groundwater Using Classic Integrated Geochemical Methods and Geostatistical Techniques, in Amol-Babol Plain, Iran. Sci. World J. 2014, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.H.; Shen, Z.L. Hydrogeochemistry; Encyclopaedia of China Publishing House: Beijing, China, 1993. [Google Scholar]
- Wang, L.H.; Dong, Y.H.; Xu, Z.F.; Qiao, X.J. Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China. Hydrogeol. J. 2017, 25, 2363. [Google Scholar] [CrossRef]
- Ma, M.; Liu, Z.B.; Ma, X.M.; Zhao, R.J.; Mao, D.Q. Exploration of Ordovician limestone aquifer heterogeneity with tomographic water releasing tests. J. Hydrol. 2022, 608, 127655. [Google Scholar] [CrossRef]
- Jeong, S.W.; Wu, Y.H.; Cho, Y.C.; Ji, S.W. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea. Geomorphology 2018, 301, 79–91. [Google Scholar] [CrossRef]
- Sun, Y.J.; Zhang, L.; Xu, Z.M.; Chen, G.; Zhao, X.M.; Li, X.; Gao, Y.T.; Zhang, S.G.; Zhu, L.L. Multi-field action mechanism and research progress of coal mine water quality formation and evolution. J. China Coal Soc. 2022, 47, 423–437. [Google Scholar] [CrossRef]
No. | Sample Location | Label | Ca2+ | Mg2+ | Na+ | HCO3− | SO42− | Cl− | pH | TDS | TH | Type | SI (Calcite) | SI (Dolomite) | SI (Gypsum) | SI (Halite) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Quaternary aquifer | Q-1 | 225.55 | 21.14 | 70.05 | 543.88 | 155.09 | 125.13 | 7.80 | 874.36 | 650.32 | HCO3-Ca | 3.62 | 6.39 | 1.03 | −4.07 |
2 | Q-2 | 169.14 | 6.23 | 126.32 | 23.61 | 500.32 | 102.01 | 10.60 | 931.30 | 448.05 | SO4-Ca·Na | 3.54 | 5.76 | 1.39 | −3.95 | |
3 | Q-3 | 23.20 | 3.66 | 15.41 | 31.56 | 12.85 | 48.14 | 7.54 | 119.43 | 73.01 | Cl-Ca·Na | 1.83 | 3 | −0.13 | −4.95 | |
4 | Q-4 | 26.81 | 12.38 | 53.61 | 196.97 | 30.03 | 40.60 | 8.38 | 272.13 | 117.94 | HCO3-Na·Ca | 3.11 | 6.08 | −0.14 | −4.57 | |
5 | Jurassic aquifer | J-1 | 68.39 | 0.22 | 113.05 | 0.00 | 189.41 | 77.42 | 11.38 | 499.33 | 171.69 | SO4·Cl-Na·Ca | −1.39 | −6.65 | ||
6 | J-2 | 44.15 | 17.73 | 143.11 | 280.83 | 168.72 | 62.34 | 7.90 | 577.19 | 10.27 | HCO3·SO4-Na | 0.43 | 0.8 | −1.65 | −6.64 | |
7 | J-3 | 83.13 | 10.80 | 273.57 | 36.42 | 488.99 | 161.01 | 9.38 | 1103.55 | 252.07 | SO4·Cl-Na·Ca | 1.07 | 1.58 | −1.06 | −5.98 | |
8 | J-4 | 13.21 | 6.77 | 295.37 | 126.68 | 442.06 | 49.49 | 9.00 | 911.82 | 60.87 | SO4-Na | 0.52 | 1.1 | −1.86 | −6.45 | |
9 | J-5 | 16.83 | 3.42 | 105.32 | 76.03 | 78.20 | 74.23 | 8.60 | 365.40 | 56.12 | Cl·SO4-Na | 0.22 | 0.1 | −2.25 | −6.68 | |
10 | J-6 | 1.51 | 0.02 | 205.70 | 9.71 | 9.56 | 64.97 | 11.19 | 475.64 | 3.78 | Cl-Na | −0.19 | −2.03 | −4.21 | −6.44 | |
11 | J-7 | 8.02 | 0.73 | 243.94 | 89.07 | 188.51 | 93.41 | 9.80 | 580.34 | 23.03 | SO4·Cl-Na | 0.84 | 1.02 | −2.38 | −6.24 | |
12 | J-8 | 5.15 | 1.68 | 161.54 | 212.74 | 67.37 | 54.72 | 8.40 | 421.60 | 19.77 | HCO3-Na | −0.06 | −0.26 | −2.85 | −6.63 | |
13 | J-9 | 25.34 | 14.89 | 103.85 | 256.28 | 39.85 | 74.01 | 8.10 | 392.34 | 124.56 | HCO3-Na | 0.42 | 0.96 | −2.42 | −6.69 | |
14 | J-10 | 28.96 | 10.36 | 118.36 | 0.00 | 142.41 | 74.41 | 11.60 | 443.61 | 114.99 | SO4·Cl-Na | −1.85 | −6.64 | |||
15 | J-11 | 1.10 | 0.02 | 195.45 | 140.81 | 66.68 | 93.04 | 9.53 | 488.89 | 2.76 | Cl·HCO3-Na | 0.04 | −1.27 | −3.62 | −6.32 | |
16 | J-12 | 35.52 | 19.62 | 171.98 | 419.40 | 100.26 | 45.77 | 8.20 | 603.72 | 169.49 | HCO3-Na | 0.81 | 1.71 | −1.97 | −6.7 | |
17 | J-13 | 25.09 | 10.14 | 99.35 | 255.15 | 71.15 | 26.34 | 8.20 | 365.52 | 104.40 | HCO3-Na | 0.5 | 0.97 | −2.17 | −7.16 | |
18 | J-14 | 34.97 | 4.49 | 438.71 | 105.39 | 914.16 | 54.75 | 7.70 | 1501.42 | 105.82 | SO4-Na | −0.51 | −1.58 | −1.26 | −6.26 | |
19 | J-15 | 21.40 | 3.24 | 274.19 | 77.27 | 530.55 | 51.48 | 8.20 | 943.74 | 66.78 | SO4-Na | −0.25 | −0.99 | −1.57 | −6.47 | |
20 | J-16 | 28.91 | 5.68 | 209.55 | 190.22 | 229.28 | 93.84 | 8.50 | 672.57 | 95.58 | SO4·HCO3-Na | 0.64 | 0.93 | −1.71 | −6.3 | |
21 | Permian sandstone aquifer | P-1 | 5.43 | 0.33 | 555.08 | 1295.01 | 7.00 | 83.43 | 8.50 | 1320.49 | 0.84 | HCO3-Na | 0.63 | 0.44 | −0.41 | −5.96 |
22 | P-2 | 6.25 | 0.00 | 476.54 | 1172.54 | 6.17 | 60.03 | 8.00 | 1135.50 | 0.87 | HCO3-Na | 0.23 | −4.01 | −6.16 | ||
23 | P-3 | 403.20 | 26.69 | 704.65 | 0.00 | 31.28 | 124.60 | 12.90 | 1390.03 | 1117.00 | Cl-Na·Ca | −2.02 | −5.78 | |||
24 | P-4 | 125.57 | 20.12 | 112.52 | 488.77 | 165.87 | 25.67 | 8.00 | 726.66 | 396.53 | HCO3·SO4-Ca·Na | 1.18 | 1.92 | −1.29 | −7.15 | |
25 | P-5 | 13.78 | 0.02 | 47.73 | 7.28 | 39.17 | 19.40 | 10.34 | 196.20 | 34.42 | SO4·Cl-Na | 0.51 | −1.49 | −2.54 | −7.58 | |
26 | P-6 | 31.10 | 0.02 | 339.73 | 0.00 | 19.88 | 10.11 | 11.87 | 621.03 | 77.67 | SO4·Cl-Na | −2.69 | −7.06 | |||
27 | P-7 | 4.68 | 5.30 | 53.58 | 138.38 | 1.00 | 31.58 | 8.46 | 179.49 | 33.49 | HCO3·Cl-Na | −0.14 | 0.13 | −4.6 | −7.32 | |
28 | P-8 | 64.59 | 18.53 | 56.65 | 354.17 | 46.14 | 10.66 | 7.44 | 374.18 | 237.61 | HCO3-Ca·Na | 0.28 | 0.36 | −1.99 | −7.8 | |
29 | P-9 | 46.90 | 30.34 | 37.12 | 170.71 | 41.75 | 27.40 | 7.40 | 415.37 | 242.02 | HCO3-Mg·Ca | −0.2 | −0.23 | −2.15 | −7.57 | |
30 | P-10 | 60.64 | 0.00 | 194.30 | 0.00 | 118.54 | 96.28 | 11.60 | 643.10 | 151.48 | SO4·Cl-Na·Ca | −1.64 | −6.32 | |||
31 | P-11 | 7.07 | 4.76 | 123.82 | 291.34 | 1.53 | 47.75 | 7.97 | 339.13 | 37.27 | HCO3-Na | −0.18 | −0.17 | −4.31 | −6.8 | |
32 | P-12 | 4.18 | 0.76 | 694.79 | 1502.97 | 15.01 | 186.79 | 8.20 | 1654.72 | 13.56 | HCO3-Na | 0.29 | 0.22 | −3.19 | −5.53 | |
33 | P-13 | 67.19 | 0.13 | 355.29 | 0.00 | 66.68 | 49.90 | 12.23 | 661.02 | 168.32 | Cl-Na | −1.98 | −6.38 | |||
34 | P-14 | 50.78 | 13.13 | 226.11 | 262.45 | 339.98 | 38.50 | 8.40 | 832.26 | 180.92 | SO4·HCO3-Na | 0.88 | 1.52 | −1.37 | −6.67 | |
35 | P-15 | 6.12 | 1.59 | 723.03 | 1603.52 | 8.38 | 174.53 | 8.20 | 1718.26 | 21.83 | HCO3-Na | 0.47 | 0.74 | −4.01 | −5.54 | |
36 | P-16 | 7.31 | 4.17 | 1121.08 | 1408.82 | 6.19 | 742.25 | 8.70 | 2699.54 | 35.44 | HCO3·Cl-Na | 0.88 | 1.91 | −4.21 | −4.75 | |
37 | P-17 | 4.01 | 0.49 | 176.73 | 0.00 | 143.65 | 44.49 | 12.00 | 488.09 | 12.01 | SO4-Na | −2.74 | −6.7 | |||
38 | P-18 | 10.75 | 3.13 | 1102.25 | 1461.38 | 5.15 | 742.25 | 8.40 | 2694.18 | 39.74 | HCO3·Cl-Na | 0.82 | 1.49 | −4.08 | −4.75 | |
39 | Carboniferous aquifer | C-1 | 81.73 | 7.83 | 144.57 | 307.66 | 85.57 | 124.10 | 7.80 | 679.87 | 236.29 | HCO3·Cl-Na·Ca | 0.65 | 0.63 | −1.67 | −6.34 |
40 | C-2 | 4.18 | 0.76 | 694.79 | 1502.97 | 15.01 | 186.79 | 8.20 | 1654.72 | 13.56 | HCO3-Na | 0.29 | 0.22 | −3.19 | −5.53 | |
41 | C-3 | 6.99 | 3.71 | 529.00 | 1136.86 | 42.95 | 117.06 | 8.00 | 1269.69 | 32.74 | HCO3-Na | 0.25 | 0.59 | −3.15 | −5.83 | |
42 | C-4 | 81.73 | 10.43 | 141.84 | 288.43 | 86.60 | 124.10 | 7.80 | 669.43 | 247.03 | HCO3·Cl-Na·Ca | 0.62 | 0.7 | −1.67 | −6.35 | |
43 | C-5 | 86.03 | 20.87 | 118.53 | 358.93 | 90.72 | 103.66 | 7.50 | 659.57 | 300.74 | HCO3·Cl-Na·Ca | 0.42 | 0.58 | −1.65 | −6.51 | |
44 | C-6 | 12.90 | 3.65 | 674.83 | 999.89 | 131.96 | 341.88 | 8.30 | 1668.39 | 47.26 | HCO3·Cl-Na | 0.7 | 1.23 | −2.48 | −5.28 | |
45 | C-7 | 37.47 | 31.81 | 82.74 | 269.76 | 105.77 | 49.21 | 7.90 | 445.61 | 224.56 | HCO3·SO4-Na·Mg | 0.37 | 1.02 | −1.9 | −6.98 | |
46 | C-8 | 15.48 | 3.13 | 683.12 | 1007.58 | 132.99 | 340.45 | 8.00 | 1682.28 | 51.55 | HCO3·Cl-Na | 0.51 | 0.68 | −2.38 | −5.27 | |
47 | C-9 | 131.62 | 28.43 | 82.65 | 256.38 | 317.52 | 69.90 | 7.90 | 786.77 | 445.73 | SO4·HCO3-Ca·Na | 0.8 | 1.28 | −1.02 | −6.85 | |
48 | C-10 | 23.03 | 13.19 | 32.65 | 201.51 | 1.02 | 38.65 | 7.62 | 220.15 | 111.83 | HCO3-Na·Ca·Mg | −0.15 | −0.2 | −3.96 | −7.46 | |
49 | C-11 | 64.59 | 18.53 | 56.65 | 354.17 | 46.14 | 10.66 | 7.44 | 374.18 | 237.61 | HCO3-Ca·Na | 0.28 | 0.36 | −1.99 | −7.8 | |
50 | Ordovician limestone aquifer | O2-1 | 580.81 | 132.56 | 223.08 | 158.00 | 2076.93 | 245.65 | 7.40 | 3338.57 | 1996.09 | SO4-Ca | 0.43 | 0.56 | −0.01 | −5.96 |
51 | O2-2 | 655.10 | 135.90 | 156.17 | 147.42 | 1835.03 | 299.56 | 7.80 | 3156.12 | 2195.38 | SO4-Ca | 0.89 | 1.42 | −0.01 | −6.02 | |
52 | O2-3 | 657.83 | 133.57 | 224.00 | 202.97 | 2100.52 | 261.92 | 7.40 | 3480.86 | 2192.58 | SO4-Ca | 0.59 | 0.82 | 0.03 | −5.93 | |
53 | O2-4 | 649.51 | 145.94 | 128.51 | 211.96 | 2135.44 | 155.15 | 7.80 | 3321.10 | 2222.73 | SO4-Ca | 1.02 | 1.71 | 0.03 | −6.39 | |
54 | O2-5 | 651.59 | 145.18 | 128.69 | 205.53 | 2145.42 | 155.98 | 7.20 | 3330.19 | 2224.81 | SO4-Ca | 0.38 | 0.44 | 0.04 | −6.39 | |
55 | O2-6 | 611.52 | 158.25 | 136.17 | 176.90 | 2105.74 | 128.88 | 7.40 | 3229.56 | 2178.58 | SO4-Ca·Mg | 0.51 | 0.76 | 0.01 | −6.45 | |
56 | O2-7 | 20.88 | 10.13 | 691.31 | 436.76 | 678.64 | 320.33 | 8.30 | 2044.45 | 93.86 | SO4·Cl-Na | 0.49 | 1.0 | −1.64 | −5.31 | |
57 | O2-8 | 265.33 | 71.57 | 38.89 | 242.79 | 736.48 | 18.17 | 7.30 | 1252.33 | 957.22 | SO4-Ca·Mg | 0.36 | 0.48 | −0.53 | −7.79 | |
58 | O2-9 | 93.26 | 32.82 | 451.39 | 799.02 | 420.10 | 110.11 | 8.40 | 1540.59 | 368.03 | HCO3·SO4-Na | 1.52 | 2.95 | −1.19 | −5.95 | |
59 | O2-10 | 602.78 | 135.46 | 112.38 | 79.64 | 1885.73 | 151.29 | 6.00 | 2928.48 | 2062.88 | SO4-Ca | −1.62 | −3.55 | −0.01 | −6.45 | |
60 | O2-11 | 304.21 | 72.75 | 34.04 | 0.00 | 903.88 | 17.08 | 7.20 | 1332.96 | 1059.14 | SO4-Ca·Mg | −0.41 | −7.88 | |||
61 | O2-12 | 308.52 | 69.34 | 31.91 | 233.95 | 827.35 | 9.35 | 7.40 | 1363.81 | 1055.91 | SO4-Ca·Mg | 0.5 | 0.68 | −0.44 | −8.17 | |
62 | O2-13 | 289.11 | 71.96 | 32.50 | 196.01 | 832.52 | 19.52 | 8.00 | 1343.93 | 1018.20 | SO4-Ca·Mg | 1.0 | 1.74 | −0.46 | −7.84 | |
63 | O2-14 | 196.70 | 46.39 | 703.33 | 241.80 | 1859.54 | 72.78 | 7.60 | 3002.73 | 682.17 | SO4-Na | 0.36 | 0.42 | −0.44 | −5.98 | |
64 | O2-15 | 196.26 | 47.18 | 703.33 | 239.26 | 1819.73 | 71.96 | 7.50 | 2961.30 | 684.35 | SO4-Na | 0.26 | 0.22 | −0.45 | −5.98 | |
65 | O2-16 | 233.16 | 58.07 | 867.32 | 228.66 | 2035.66 | 278.60 | 7.70 | 3587.89 | 821.31 | SO4-Na | 0.49 | 0.71 | −0.38 | −5.32 | |
66 | O2-17 | 237.32 | 56.05 | 897.23 | 220.95 | 2060.60 | 282.77 | 7.80 | 3646.95 | 823.39 | SO4-Na | 0.58 | 0.87 | −0.37 | −5.3 | |
67 | O2-18 | 646.93 | 148.45 | 130.37 | 188.84 | 1990.50 | 134.39 | 7.80 | 3145.23 | 2,226.60 | SO4-Ca | 0.98 | 1.65 | 0.01 | −6.45 | |
68 | O2-19 | 643.87 | 152.95 | 130.37 | 193.97 | 2016.69 | 129.32 | 7.50 | 3170.39 | 2237.52 | SO4-Ca·Mg | 0.68 | 1.07 | 0.01 | −6.46 | |
69 | O2-20 | 661.17 | 140.64 | 121.34 | 205.11 | 2015.70 | 150.56 | 7.30 | 3192.25 | 2230.01 | SO4-Ca | 0.5 | 0.67 | 0.03 | −6.43 | |
70 | O2-21 | 662.00 | 141.39 | 117.39 | 203.82 | 1983.77 | 149.73 | 7.70 | 3156.62 | 2235.21 | SO4-Ca | 0.92 | 1.5 | 0.02 | −6.45 | |
71 | O2-22 | 255.71 | 66.27 | 80.17 | 218.89 | 864.30 | 22.40 | 7.30 | 1400.83 | 911.38 | SO4-Ca·Mg | 0.27 | 0.3 | −0.49 | −7.39 | |
72 | O2-23 | 509.51 | 119.04 | 151.25 | 164.43 | 1801.70 | 92.97 | 7.50 | 2757.91 | 1762.39 | SO4-Ca | 0.53 | 0.76 | −0.08 | −6.53 | |
73 | O2-24 | 43.56 | 21.13 | 39.10 | 182.54 | 31.32 | 28.71 | 8.20 | 341.71 | 195.78 | HCO3-Ca·Mg·Na | 0.62 | 1.29 | −2.28 | −7.52 | |
74 | O2-25 | 289.43 | 77.57 | 43.26 | 235.23 | 886.20 | 20.45 | 7.70 | 1439.59 | 1042.11 | SO4-Ca·Mg | 0.77 | 1.31 | −0.45 | −7.7 | |
75 | O2-26 | 7.87 | 5.83 | 544.01 | 1115.63 | 116.29 | 113.68 | 8.00 | 1349.28 | 43.66 | HCO3-Na | 0.27 | 0.78 | −2.69 | −5.84 | |
76 | O2-27 | 113.21 | 30.22 | 766.09 | 289.03 | 1482.40 | 191.44 | 7.90 | 2731.79 | 407.12 | SO4-Na | 0.54 | 0.83 | −0.73 | −5.52 | |
77 | O2-28 | 116.71 | 28.89 | 777.85 | 289.03 | 1519.06 | 191.44 | 7.90 | 2782.55 | 410.39 | SO4-Na | 0.55 | 0.82 | −0.71 | −5.51 | |
78 | O2-29 | 508.62 | 121.80 | 225.04 | 295.46 | 1649.54 | 213.64 | 7.50 | 2866.78 | 1771.54 | SO4-Ca | 0.79 | 1.29 | −0.12 | −6 | |
79 | O2-30 | 526.75 | 112.88 | 231.72 | 295.46 | 1706.60 | 220.26 | 7.80 | 2946.50 | 1805.04 | SO4-Ca | 1.1 | 1.87 | −0.1 | −5.98 | |
80 | O2-31 | 21.58 | 10.47 | 581.86 | 399.61 | 767.36 | 88.63 | 8.80 | 1705.42 | 96.97 | SO4-Na | 0.92 | 1.87 | −1.59 | −5.94 | |
81 | O2-32 | 243.80 | 59.40 | 27.33 | 240.27 | 682.56 | 15.45 | 7.40 | 1151.00 | 853.35 | SO4-Ca·Mg | 0.44 | 0.6 | −0.57 | −8.01 | |
82 | O2-33 | 303.00 | 73.50 | 24.82 | 231.23 | 873.53 | 17.02 | 7.30 | 1407.91 | 1059.25 | SO4-Ca·Mg | 0.37 | 0.46 | −0.43 | −8.02 | |
83 | O2-34 | 298.68 | 73.50 | 26.78 | 244.07 | 819.58 | 17.96 | 7.10 | 1359.48 | 1048.44 | SO4-Ca·Mg | 0.18 | 0.08 | −0.45 | −7.96 | |
84 | O2-35 | 225.59 | 61.04 | 40.65 | 244.07 | 563.55 | 42.54 | 7.50 | 1078.72 | 814.62 | SO4-Ca·Mg | 0.54 | 0.84 | −0.66 | −7.39 | |
85 | O2-36 | 264.63 | 72.35 | 33.76 | 231.23 | 730.95 | 19.38 | 7.80 | 1237.56 | 958.69 | SO4-Ca·Mg | 0.86 | 1.48 | −0.53 | −7.82 | |
86 | O2-37 | 622.54 | 133.39 | 124.63 | 202.97 | 1861.16 | 118.16 | 7.20 | 2963.07 | 2,103.70 | SO4-Ca | 0.38 | 0.43 | −0.01 | −6.52 | |
87 | O2-38 | 616.03 | 138.91 | 128.11 | 205.53 | 1871.56 | 117.69 | 7.20 | 2977.19 | 2,110.20 | SO4-Ca | 0.38 | 0.45 | −0.02 | −6.51 | |
88 | O2-39 | 232.02 | 60.90 | 55.83 | 263.34 | 693.02 | 17.02 | 7.50 | 1195.75 | 830.10 | SO4-Ca·Mg | 0.56 | 0.87 | −0.59 | −7.66 | |
89 | O2-40 | 222.46 | 59.33 | 81.44 | 244.07 | 731.40 | 18.43 | 7.70 | 1236.81 | 799.84 | SO4-Ca·Mg | 0.7 | 1.17 | −0.59 | −7.46 | |
90 | O2-42 | 511.60 | 117.77 | 464.86 | 186.27 | 2402.27 | 158.90 | 7.20 | 3751.28 | 1762.39 | SO4-Ca·Na | 0.2 | 0.09 | −0.03 | −5.83 | |
91 | O2-43 | 90.30 | 10.76 | 273.10 | 48.56 | 482.40 | 158.41 | 6.79 | 1043.04 | 269.83 | SO4·Cl-Na·Ca | −1.34 | −3.26 | −1.02 | −5.99 | |
92 | O2-44 | 13.98 | 27.30 | 32.07 | 172.37 | 1.48 | 56.91 | 7.74 | 222.08 | 147.31 | HCO3·Cl-Mg·Na | −0.32 | −0.01 | −4.05 | −7.3 | |
93 | O2-45 | 41.84 | 12.65 | 95.59 | 124.62 | 54.07 | 131.94 | 8.00 | 400.27 | 156.58 | Cl-Na·Ca | 0.22 | 0.28 | −2.07 | −6.48 | |
94 | O2-46 | 188.78 | 11.92 | 134.07 | 27.96 | 616.31 | 97.52 | 9.39 | 1073.82 | 520.53 | SO4-Ca·Na | 1.25 | 1.63 | −0.66 | −6.51 |
Sample Location | Cl− | HCO3− | SO42− | Na+ | Ca2+ | Mg2+ | TDS | TH | pH | |
---|---|---|---|---|---|---|---|---|---|---|
Quaternary aquifer | Min | 40.60 | 23.61 | 12.85 | 15.41 | 23.20 | 3.66 | 119.43 | 73.01 | 7.54 |
Max | 125.13 | 543.88 | 500.32 | 126.32 | 225.55 | 21.14 | 931.30 | 650.32 | 10.60 | |
Mean | 78.97 | 199.01 | 174.57 | 66.35 | 111.18 | 10.85 | 549.31 | 322.33 | 8.58 | |
Jurassic aquifer | Min | 26.34 | 0.00 | 9.56 | 99.35 | 1.10 | 0.02 | 365.40 | 2.76 | 7.70 |
Max | 161.01 | 419.40 | 914.16 | 438.71 | 83.13 | 19.62 | 1501.42 | 252.07 | 11.60 | |
Mean | 71.95 | 142.25 | 232.95 | 197.07 | 27.61 | 6.86 | 646.66 | 86.37 | 9.11 | |
Permian sandstone aquifer | Min | 10.11 | 0.00 | 1.00 | 37.12 | 4.01 | 0.00 | 179.49 | 0.84 | 7.40 |
Max | 742.25 | 1603.52 | 339.98 | 1121.08 | 403.20 | 30.34 | 2699.54 | 1117.00 | 12.90 | |
Mean | 139.76 | 564.30 | 59.08 | 394.50 | 51.09 | 7.20 | 1004.96 | 155.61 | 9.37 | |
Carboniferous aquifer | Min | 10.66 | 201.51 | 1.02 | 32.65 | 4.18 | 0.76 | 220.15 | 13.56 | 7.44 |
Max | 341.88 | 1502.97 | 317.52 | 694.79 | 131.62 | 31.81 | 1682.28 | 445.73 | 8.30 | |
Mean | 136.95 | 607.65 | 96.02 | 294.67 | 49.61 | 12.94 | 919.15 | 177.17 | 7.86 | |
Ordovician limestone aquifer | Min | 9.35 | 0.00 | 1.48 | 24.82 | 7.87 | 5.83 | 222.08 | 43.66 | 6.00 |
Max | 320.33 | 1115.63 | 2402.27 | 897.23 | 662.00 | 158.25 | 3751.28 | 2237.52 | 9.39 | |
Mean | 119.43 | 242.42 | 1304.93 | 250.17 | 346.60 | 81.16 | 2231.44 | 1200.16 | 7.61 |
Group | Water Samples |
---|---|
First | Q-1, Q-2, Q-4, Q-3, J-1, J-8, J-11, J-5, J-10, J-6, J-4, J-15, J-3, J-7, J-16, J-2, J-12, J-13, P-4, P-14, J-9, P-8, P-5, P-7, P-6, P-13, P-10, P-17, P-9, P-11, C-11, C-9, C-7, C-1, C-4, C-10, C-5, O2-45, O2-44, O2-24, O2-43, O2-46. |
Second | O2-8, O2-36, O2-32, O2-39, O2-40, O2-35, O2-12, O2-34, O2-13, O2-25, O2-33, O2-22, O2-11, P-3. |
Third | P-16, P-18, J-14, O2-31, O2-7, P-12, C-2, P-15, C-3, O2-26, P-2, P-1, C-6, C-8, O2-9. |
Fourth | O2-27, O2-28, O2-14, O2-15, O2-16, O2-17, O2-41, O2-42, O2-18, O2-19, O2-20, O2-21, O2-4, O2-5, O2-6, O2-1, O2-3, O2-29, O2-30, O2-37, O2-38, O2-10, O2-23, O2-2. |
Interdependency | Ca2+ | Mg2+ | Na+ | HCO3− | SO42− | Cl− | TDS | TH | pH |
---|---|---|---|---|---|---|---|---|---|
Ca2+ | 1.000 | 0.973 | −0.207 | −0.277 | 0.871 | 0.106 | 0.766 | 0.998 | −0.371 |
Mg2+ | 1.000 | −0.235 | −0.252 | 0.883 | 0.078 | 0.763 | 0.985 | −0.483 | |
Na+ | 1.000 | 0.605 | 0.063 | 0.696 | 0.424 | −0.214 | 0.110 | ||
HCO3− | 1.000 | −0.269 | 0.494 | 0.112 | −0.271 | −0.166 | |||
SO42− | 1.000 | 0.177 | 0.901 | 0.879 | −0.432 | ||||
Cl− | 1.000 | 0.522 | 0.100 | −0.058 | |||||
TDS | 1.000 | 0.770 | −0.385 | ||||||
TH | 1.000 | −0.402 | |||||||
pH | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Qiao, W.; Zhu, G.; Feng, L.; Wang, Z.; Li, W. Hydrogeochemical Characteristics of a Multi-Layer Groundwater System in a Coal Mine Area: A Case Study. Water 2022, 14, 3146. https://doi.org/10.3390/w14193146
Xu K, Qiao W, Zhu G, Feng L, Wang Z, Li W. Hydrogeochemical Characteristics of a Multi-Layer Groundwater System in a Coal Mine Area: A Case Study. Water. 2022; 14(19):3146. https://doi.org/10.3390/w14193146
Chicago/Turabian StyleXu, Kaiqing, Wei Qiao, Guanghui Zhu, Lushun Feng, Zhiwen Wang, and Wenping Li. 2022. "Hydrogeochemical Characteristics of a Multi-Layer Groundwater System in a Coal Mine Area: A Case Study" Water 14, no. 19: 3146. https://doi.org/10.3390/w14193146
APA StyleXu, K., Qiao, W., Zhu, G., Feng, L., Wang, Z., & Li, W. (2022). Hydrogeochemical Characteristics of a Multi-Layer Groundwater System in a Coal Mine Area: A Case Study. Water, 14(19), 3146. https://doi.org/10.3390/w14193146