Temperature May Play a More Important Role in Environmental DNA Decay than Ultraviolet Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Real-Time Fluorescence Quantitative PCR Analysis
3. Results
3.1. qPCR Standard Curve Analysis and Melt Curves Analysis
3.2. eDNA Decay with Time
3.3. Effects of Temperature and Ultraviolet Radiation on eDNA Decay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; de Bruyn, M. Environmental DNA for Wildlife Biology and Biodiversity Monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species Detection Using Environmental DNA from Water Samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards Next-Generation Biodiversity Assessment Using DNA Metabarcoding: NEXT-GENERATION DNA METABARCODING. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Matsuhashi, S.; Doi, H.; Fujiwara, A.; Watanabe, S.; Minamoto, T. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants. PLoS ONE 2016, 11, e0156217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, Present, and Future Perspectives of Environmental DNA (EDNA) Metabarcoding: A Systematic Review in Methods, Monitoring, and Applications of Global EDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Wiuf, C.; Rasmussen, M.; Gilbert, M.T.P.; Orlando, L.; Willerslev, E. Monitoring Endangered Freshwater Biodiversity Using Environmental DNA: SPECIES MONITORING BY ENVIRONMENTAL DNA. Mol. Ecol. 2012, 21, 2565–2573. [Google Scholar] [CrossRef]
- Dougherty, M.M.; Larson, E.R.; Renshaw, M.A.; Gantz, C.A.; Egan, S.P.; Erickson, D.M.; Lodge, D.M. Environmental DNA (EDNA) Detects the Invasive Rusty Crayfish Orconectes Rusticus at Low Abundances. J. Appl. Ecol. 2016, 53, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Franklin, T.W.; McKelvey, K.S.; Golding, J.D.; Mason, D.H.; Dysthe, J.C.; Pilgrim, K.L.; Squires, J.R.; Aubry, K.B.; Long, R.A.; Greaves, S.E.; et al. Using Environmental DNA Methods to Improve Winter Surveys for Rare Carnivores: DNA from Snow and Improved Noninvasive Techniques. Biol. Conserv. 2019, 229, 50–58. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, S.; Yao, M. Effective Detection of Environmental DNA from the Invasive American Bullfrog. Biol. Invasions 2019, 21, 2255–2268. [Google Scholar] [CrossRef]
- Antognazza, C.M.; Britton, J.R.; Potter, C.; Franklin, E.; Hardouin, E.A.; Gutmann Roberts, C.; Aprahamian, M.; Andreou, D. Environmental DNA as a Non-invasive Sampling Tool to Detect the Spawning Distribution of European Anadromous Shads (Alosa Spp.). Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 148–152. [Google Scholar] [CrossRef]
- Leempoel, K.; Hebert, T.; Hadly, E.A. A Comparison of EDNA to Camera Trapping for Assessment of Terrestrial Mammal Diversity. Proc. R. Soc. B 2020, 287, 20192353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, N.; Nakajima, F.; Tobino, T. A Microcosm Study of Surface Sediment Environmental DNA: Decay Observation, Abundance Estimation, and Fragment Length Comparison. Environ. Sci. Technol. 2018, 52, 12428–12435. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of Size and Temperature on Metabolic Rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichmiller, J.J.; Best, S.E.; Sorensen, P.W. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water. Environ. Sci. Technol. 2016, 50, 1859–1867. [Google Scholar] [CrossRef]
- Jo, T.; Murakami, H.; Yamamoto, S.; Masuda, R.; Minamoto, T. Effect of Water Temperature and Fish Biomass on Environmental DNA Shedding, Degradation, and Size Distribution. Ecol. Evol. 2019, 9, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Kasai, A.; Takada, S.; Yamazaki, A.; Masuda, R.; Yamanaka, H. The Effect of Temperature on Environmental DNA Degradation of Japanese Eel. Fish. Sci. 2020, 86, 465–471. [Google Scholar] [CrossRef]
- Takahara, T.; Taguchi, J.; Yamagishi, S.; Doi, H.; Ogata, S.; Yamanaka, H.; Minamoto, T. Suppression of Environmental DNA Degradation in Water Samples Associated with Different Storage Temperature and Period Using Benzalkonium Chloride. Limnol. Oceanogr. Methods 2020, 18, 437–445. [Google Scholar] [CrossRef]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying Effects of UV-B, Temperature, and PH on EDNA Degradation in Aquatic Microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Mächler, E.; Osathanunkul, M.; Altermatt, F. Shedding Light on EDNA: Neither Natural Levels of UV Radiation nor the Presence of a Filter Feeder Affect EDNA-Based Detection of Aquatic Organisms. PLoS ONE 2018, 13, e0195529. [Google Scholar] [CrossRef]
- Andruszkiewicz, E.A.; Sassoubre, L.M.; Boehm, A.B. Persistence of Marine Fish Environmental DNA and the Influence of Sunlight. PLOS ONE 2017, 12, e0185043. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Goldberg, C.S.; Arkle, R.S.; Waits, L.P. Factors Influencing Detection of EDNA from a Stream-Dwelling Amphibian. Mol. Ecol. Resour. 2014, 14, 109–116. [Google Scholar] [CrossRef] [PubMed]
Treatment Groups | 4 °C | 20 °C | 20 °C + UV |
---|---|---|---|
18S rRNA gene in October | 10.59% | 34.61% | 43.45% |
18S rRNA gene in December | −2.69% | 33.31% | 37.51% |
16S rRNA gene in October | 6.83% | 18.79% | 22.07% |
16S rRNA gene in December | −2.99% | 15.18% | 23.54% |
Average | 2.94% | 25.47% | 31.64% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Zhou, J.; Wei, J.; Zhang, B.; Lu, X. Temperature May Play a More Important Role in Environmental DNA Decay than Ultraviolet Radiation. Water 2022, 14, 3178. https://doi.org/10.3390/w14193178
Yu X, Zhou J, Wei J, Zhang B, Lu X. Temperature May Play a More Important Role in Environmental DNA Decay than Ultraviolet Radiation. Water. 2022; 14(19):3178. https://doi.org/10.3390/w14193178
Chicago/Turabian StyleYu, Xue, Jiaying Zhou, Jun Wei, Bo Zhang, and Xueqiang Lu. 2022. "Temperature May Play a More Important Role in Environmental DNA Decay than Ultraviolet Radiation" Water 14, no. 19: 3178. https://doi.org/10.3390/w14193178
APA StyleYu, X., Zhou, J., Wei, J., Zhang, B., & Lu, X. (2022). Temperature May Play a More Important Role in Environmental DNA Decay than Ultraviolet Radiation. Water, 14(19), 3178. https://doi.org/10.3390/w14193178