Occurrence, Distribution and Ecological Risk Assessment of Contaminants in Baiyangdian Lake, China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Sampling Sites
2.3. Data Sources and Quality Assurance
2.4. Single-Factor Ecological Risk Assessment Methods
2.5. Comprehensive Ecological Risk Assessment Method
3. Results
3.1. Occurrence and Distribution of Contaminants in Lake Surface Water
3.2. Conventional Pollution Index in Ecological Risk Assessment
3.3. Eutrophication Index in Ecological Risk Assessment
3.4. Heavy Metal in Ecological Risk Assessment
3.5. Organic Pollutants in Ecological Risk Assessment
3.6. Comprehensive Ecological Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, F.; Cao, C.; Qi, H.S.; Su, X.Z.; Lei, G.; Liu, J.H.; Zhao, S.H.; Liu, G.; Zhu, K. Rapid migration of mainland China’s coastal erosion vulnerability due to anthropogenic changes. J. Environ. Manag. 2022, 319, 115632. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Mei, Z.K.; Xu, X.Y.; Feng, Y.Z.; Ren, G.X. Landscape Ecological Risk Assessment Based on Land Use Change in the Yellow River Basin of Shannxi, China. Int. J. Environ. Res. Public Health 2022, 19, 9547. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zeng, D.; Wang, X.T.; Tai, L.Y.; Zhou, W.W.; Zhuoma, Q.D.; Lin, F.W. Pollution Levels and Risk Assessment of Heavy Metals in the Soil of a Landfill Site: A Case Study in Lhasa, Tibet. Int. J. Environ. Res. Public Health 2022, 19, 10704. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Z.; Zhang, H.H.; Zhu, W.Z.; Zhang, X.L.; Yang, Q.; Liu, M.; Chen, Q.G. Characteristics and Health Risk Assessment of Heavy Metal Pollution in Haikou Bay and Adjacent Seas. Int. J. Environ. Res. Public Health 2022, 19, 7896. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, M.Y.; Yu, X.M.; Liu, M.D. Heavy Metal Pollution and Health Risk Assessment of Vegetable–Soil Systems of Facilities Irrigated with Wastewater in Northern China. Int. J. Environ. Res. Public Health 2022, 19, 9835. [Google Scholar] [CrossRef]
- Lu, J.; Wu, J.; Zhang, C.; Zhang, Y.X.; Lin, Y.C.; Luo, Y.M. Occurrence, distribution, and ecological-health risks of selected antibiotics in coastal waters along the coastline of China. Sci. Total Environ. 2018, 644, 1469–1476. [Google Scholar] [CrossRef]
- Teng, Y.G.; Zuo, R.; Xiong, Y.N.; Wu, J.; Zhai, Y.Z.; Su, J. Risk assessment framework for nitrate contamination in groundwater for regional management. Sci. Total Environ. 2019, 697, 134102. [Google Scholar] [CrossRef]
- Sorensen, M.T.; Margolin, J.A. Ecological risk assessment guidance and procedural documents: An annotated compilation and evaluation of reference materials. Hum. Ecol. Risk Assess. 1998, 4, 1085–1101. [Google Scholar] [CrossRef]
- Noori, R.; Ansari, E.; Jeong, Y.W.; Aradpour, S.; Maghrebi, M.; Hosseinzadeh, M. Hyper-Nutrient Enrichment Status in the Sabalan Lake, Iran. Water 2021, 13, 2874. [Google Scholar] [CrossRef]
- Mollo, V.M.; Nomngongo, P.N.; Ramontja, J. Evaluation of Surface Water Quality Using Various Indices for Heavy Metals in Sasolburg, South Africa. Water 2022, 14, 2375. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, X.H.; Yang, Z.F.; Wang, F. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.; Abou El-Safa, M.M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Guan, X.; Ren, X.; Tao, Y.; Chang, X.; Li, B. Study of the Water Environment Risk Assessment of the Upper Reaches of the Baiyangdian Lake, China. Water 2022, 14, 2557. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wei, W.; Qin, J.F. Study on single factor evaluation system of water quality based on intimate value method. Sci. Innov. 2022, 23, 83–86. (In Chinese) [Google Scholar]
- Hu, Q.J. Application of attribute identification model based on superscalar multiple method in surface water quality assessment. Jiangsu Water Conserv. 2021, 5, 31–36. (In Chinese) [Google Scholar]
- Li, Z.Y.; Zhang, H.J. Trophic state index and its correlation with lake parameters. Acta Sci. Circumstantiae 1993, 13, 391–397. (In Chinese) [Google Scholar] [CrossRef]
- Chen, M.X.; Xiong, G.Y.; Zhang, J.P. Comprehensive assessment and spatial-temporal evolution analysis of water quality in Xiangjiang River BasiN. Environ. Eng. 2019, 37, 83–90, 104. (In Chinese) [Google Scholar]
- Wang, X.X.; Zhang, M.X.; Xu, B.B. Joint application of fuzzy identification index and correspondence analysis method in water quality assessment. J. Environ. Sci. 2012, 32, 1227–1235. (In Chinese) [Google Scholar]
- Hernando, M.; Mezcua, M.; Fernandez-Alba, A.R.; Barcelo, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Huang, L.L.; Rad, S.; Xu, L.; Gui, L.Y.; Song, X.H.; Li, Y.H.; Wu, Z.Q.; Chen, Z.B. Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland, South China. Water 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.X.; Shen, Y.M.; Tang, J. Hydrodynamics and water renewal in the Pearl River Estuary, China: A numerical study from the perspective of water age. Ocean Eng. 2021, 237, 109639. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, Y.; Zhang, H. Assessing heavy metal contamination and ecological risk in Poyang Lake area, China. Environ. Earth Sci. 2016, 75, 549. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, W.; Han, Q.; Chen, H.; Chen, H.; Jin, Y.; Tian, Z. Assessment of Spatial Variation in River Water Quality of the Baiyangdian Basin (China) during Environmental Water Release Period of Upstream Reservoirs. Water 2020, 12, 688. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Z.; Liu, M.Z.; Dai, Y.; Luo, Y.; Zhang, S.L. Health and ecotoxicological risk assessment for human and aquatic organism exposure to polycyclic aromatic hydrocarbons in the Baiyangdian Lake. Environ. Sci. Pollut. Res. 2020, 28, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.K.; Yin, Y.L.; Wu, P.T.; Wang, Y.B.; Luan, X.B.; Li, C. Geographical Evolution of Agricultural Production in China and Its Effects on Water Stress, Economy, and the Environment: The Virtual Water Perspective. Water Resour. 2019, 55, 4014–4029. [Google Scholar] [CrossRef]
- Wang, L.J.; Bie, W.J.; Li, H.C.; Liao, T.H.; Ding, X.X.; Wu, G.F.; Fei, T. Small Water Body Detection and Water Quality Variations with Changing Human Activity Intensity in Wuhan. Remote Sens. 2022, 14, 200. [Google Scholar] [CrossRef]
Site | Site Location | Geographic Location (N, E) | |
---|---|---|---|
S1 | Nanliuzhuang | 115°56′41.23″ | 38°54′11.46″ |
S2 | Shaochedian | 115°59′54.15″ | 38°56′40.21″ |
S3 | Wangjiazhai | 116°00′42.24″ | 38°55′05.18″ |
S4 | Guangdianzhangzhuang | 116°01′46.95″ | 38°54′00.64″ |
S5 | Zaolinzhuang | 116°05′1.6″ | 38°54′00.32″ |
S6 | Quantou | 116°01′21.44″ | 38°57′08.80″ |
S7 | Caiputai | 116°00′46.69″ | 38°49′41.61″ |
S8 | Duancun | 115°57′07.76″ | 38°50′55.28″ |
Test Items | Test Method | Test Standard | Instrument |
---|---|---|---|
NH4 | Nessler’s reagent pectrophotometry | HJ 535-2009 | UV spectrophotometry TU-1990 |
CODMn | Potassium dichromate | GB 11914-89 | Automatic burette |
Pb | Atomic absorption spectroscopy | GB 7475-87 | Atomic absorption spectrophotometer ZEEnit 700P |
Cd | Atomic absorption spectroscopy | GB 7475-87 | Atomic absorption spectrophotometer ZEEnit 700P |
Cr | Atomic absorption spectroscopy | HJ 757-2015 | Atomic absorption spectrophotometer ZEEnit 700P |
As | Atomic fluorescence spectrometry | HJ 764-2015 | Atomic fluorescence spectrophotometer AFS-8530 |
Hg | Atomic fluorescence spectrometry | GB 23113-2017 | Atomic fluorescence spectrophotometer AFS-8530 |
Volatile phenol | 4-aminoantipyrene spectrometry | HJ 503-2009 | Spectrophotometric T8000-ph |
Cyanide | Spectrophotometry | HJ 484-2009 | Spectrophotometric PhotoTek 6000 |
Fluoride | Visual colorimetry | GB 7482-87 | Visual colorimetric JC-F-260 |
Anionic active agent | Methylene blue spectrophotometric | GB 7494-1987 | Spectrophotometric TD-270 |
Number | Main Factors | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
---|---|---|---|---|---|---|
1 | pH | 6.5~8.5 | 5.5~6.5 8.5~9 6 | <5.5 >9 | ||
2 | NH4 (mg/L) | ≤0.02 | ≤0.02 | ≤0.2 | ≤0.5 | >0.5 |
3 | CODMn (mg/L) | ≤1.0 | ≤2.0 | ≤3.0 | ≤10 | >10 |
4 | Pb (mg/L) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.1 | >0.1 |
5 | Cd (mg/L) | ≤0.0001 | ≤0.001 | ≤0.01 | ≤0.01 | >0.01 |
6 | Cr (mg/L) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.1 | >0.1 |
7 | As (mg/L) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.05 | >0.05 |
8 | Hg (mg/L) | ≤0.00005 | ≤0.0005 | ≤0.001 | ≤0.001 | >0.001 |
9 | Volatile phenol (mg/L) | ≤0.001 | ≤0.001 | ≤0.002 | ≤0.01 | >0.01 |
10 | Cyanide (mg/L) | ≤0.001 | ≤0.01 | ≤0.05 | ≤0.1 | >0.1 |
11 | Fluoride (mg/L) | ≤1.0 | ≤1.0 | ≤1.0 | ≤2.0 | >2.0 |
12 | Anionic active agent (mg/L) | - | ≤0.1 | ≤0.3 | ≤0.3 | >0.3 |
Indicators | TP | TN | SD | CODMn |
---|---|---|---|---|
rij | 0.84 | 0.82 | −0.83 | 0.83 |
rij2 | 0.7056 | 0.6724 | 0.6889 | 0.6889 |
Eutrophic Degree | |
---|---|
Low eutrophic | <30 |
Medium eutrophic | 30–50 |
High eutrophic | >50 |
Mildly eutrophic | 50–60 |
Moderately eutrophic | 60–70 |
Severely eutrophic | >70 |
Comprehensive Ecological Risk Level | Conventional Indicators | Eutrophic Degree | Comprehensive Pollution Index | Risk Quotient |
---|---|---|---|---|
Level 1 | I | Low eutrophic | No pollution | Ultra-low risk |
Level 2 | II | High eutrophic | Slightly polluted | Low risk |
Level 3 | III | Moderately eutrophic | Polluted | Medium risk |
Level 4 | IV | Severely eutrophic | Heavy pollution | High risk |
Spring | Summer | Autumn | |||||
---|---|---|---|---|---|---|---|
Range a | Mean | Range | Mean | Range | Mean | ||
Conventional factors | pH | 7.9–8.8 | 8.3 | 7.9–8.3 | 8.1 | 7.9–8.6 | 8.2 |
SD | 15.0–120.0 | 68.1 | 20.0–120.0 | 56.5 | 30.0–100.0 | 57.5 | |
DO | 6.4–9.9 | 7.9 | 3.2–9.3 | 5.7 | 5.7–9.6 | 7.1 | |
COD | 23.2–35.2 | 28.6 | 20.6–57.2 | 36.1 | 22.3–48.7 | 34.5 | |
BOD | 1.2–2.3 | 1.6 | 1.1–3.0 | 2.1 | 1.5–1.9 | 1.7 | |
CODMn (mg/L) | 3.8–6.6 | 5.0 | 4.6–12.2 | 7.9 | 5.3–9.1 | 7.0 | |
Nutrient pollution factors | TP (mg/L) | 0.1–0.2 | 0.1 | 0.1–0.2 | 0.1 | n.d.–0.2 | 0.1 |
NH4 (mg/L) | 0.2–0.6 | 0.3 | 0.4–0.6 | 0.5 | 0.2–0.6 | 0.4 | |
Metal pollution factors | Pb (μg/L) | 0.2–1.2 | 0.5 | n.d. | n.d. | n.d. | n.d. |
Cd (μg/L) | n.d. b | n.d. | n.d. | n.d. | n.d. | n.d. | |
Cr (μg/L) | 2.0–2.0 | 2.0 | 2.0–2.0 | 2.0 | 2.0–2.0 | 2.0 | |
As (μg/L) | 1.4–2.5 | 1.8 | 2.4–7.6 | 4.9 | 1.6–2.9 | 2.4 | |
Hg (μg/L) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Organic pollution factor | Volatile phenol (μg/L) | 0.2–0.2 | 0.2 | 0.2–0.2 | 0.2 | 0.2–0.2 | 0.2 |
Cyanide (μg/L) | 2.0–2.0 | 2.0 | 2.0–2.0 | 2.0 | 2.0–2.0 | 2.0 | |
Fluoride (mg/L) | 0.5–0.7 | 0.6 | 0.4–0.8 | 0.7 | 0.7–0.8 | 0.7 | |
Petro (μg/L) | 10.0–50.0 | 28.8 | 5.0–50.0 | 27.5 | 5.0–50.0 | 27.5 | |
Anionic active agent (μg/L) | 74.0–98.0 | 88.8 | 75.0–94.0 | 85.0 | 25.0–66.0 | 35.3 |
Season | Sampling Sites | Single Factor Pollution Index (Pi) | Comprehensive Pollution Index (I) | Degree of Pollution | ||||
---|---|---|---|---|---|---|---|---|
Pb | Cd | Cr | As | Hg | ||||
Spring | S1 | 0.420 | 4.100 | 0.400 | 0.570 | 0.400 | 1.178 | slightly polluted |
S2 | 0.064 | 0.300 | 0.400 | 0.318 | 0.400 | 0.296 | no pollution | |
S3 | 0.042 | 0.300 | 0.400 | 0.274 | 0.400 | 0.283 | no pollution | |
S4 | 0.060 | 0.300 | 0.400 | 0.304 | 0.400 | 0.293 | no pollution | |
S5 | 0.052 | 0.300 | 0.400 | 0.294 | 0.400 | 0.289 | no pollution | |
S6 | 0.110 | 0.300 | 0.400 | 0.360 | 0.400 | 0.314 | no pollution | |
S7 | 0.096 | 0.300 | 0.400 | 0.388 | 0.400 | 0.317 | no pollution | |
S8 | 0.234 | 0.300 | 0.400 | 0.506 | 0.400 | 0.368 | no pollution | |
Summer | S1 | 0.009 | 0.300 | 0.400 | 0.474 | 0.400 | 0.317 | no pollution |
S2 | 0.009 | 0.300 | 0.400 | 0.696 | 0.400 | 0.361 | no pollution | |
S3 | 0.009 | 0.300 | 0.400 | 0.976 | 0.400 | 0.417 | no pollution | |
S4 | 0.009 | 0.300 | 0.400 | 0.790 | 0.400 | 0.380 | no pollution | |
S5 | 0.009 | 0.300 | 0.400 | 0.646 | 0.400 | 0.351 | no pollution | |
S6 | 0.009 | 0.300 | 0.400 | 0.888 | 0.400 | 0.399 | no pollution | |
S7 | 0.009 | 0.300 | 0.400 | 0.998 | 0.400 | 0.421 | no pollution | |
S8 | 0.009 | 0.300 | 0.400 | 1.520 | 0.400 | 0.526 | no pollution | |
Autumn | S1 | 0.009 | 0.300 | 0.400 | 0.312 | 0.400 | 0.284 | no pollution |
S2 | 0.009 | 0.300 | 0.400 | 0.372 | 0.400 | 0.296 | no pollution | |
S3 | 0.009 | 0.300 | 0.400 | 0.474 | 0.400 | 0.317 | no pollution | |
S4 | 0.009 | 0.300 | 0.400 | 0.446 | 0.400 | 0.311 | no pollution | |
S5 | 0.009 | 0.300 | 0.400 | 0.374 | 0.400 | 0.297 | no pollution | |
S6 | 0.009 | 0.300 | 0.400 | 0.512 | 0.860 | 0.416 | no pollution | |
S7 | 0.009 | 0.300 | 0.400 | 0.570 | 0.400 | 0.336 | no pollution | |
S8 | 0.009 | 0.300 | 0.400 | 0.586 | 0.400 | 0.339 | no pollution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Lin, M.; Shi, L.; Chen, D. Occurrence, Distribution and Ecological Risk Assessment of Contaminants in Baiyangdian Lake, China. Water 2022, 14, 3352. https://doi.org/10.3390/w14213352
He S, Lin M, Shi L, Chen D. Occurrence, Distribution and Ecological Risk Assessment of Contaminants in Baiyangdian Lake, China. Water. 2022; 14(21):3352. https://doi.org/10.3390/w14213352
Chicago/Turabian StyleHe, Sinan, Mengjing Lin, Longyu Shi, and Dingkai Chen. 2022. "Occurrence, Distribution and Ecological Risk Assessment of Contaminants in Baiyangdian Lake, China" Water 14, no. 21: 3352. https://doi.org/10.3390/w14213352
APA StyleHe, S., Lin, M., Shi, L., & Chen, D. (2022). Occurrence, Distribution and Ecological Risk Assessment of Contaminants in Baiyangdian Lake, China. Water, 14(21), 3352. https://doi.org/10.3390/w14213352