Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model Description
2.3. Data Requirements for the Model Input
2.3.1. Topography and Soil Data
2.3.2. LULC Data
2.3.3. Hydroclimatic Data
2.4. Model Set-Up and Evaluation Approach
2.4.1. SWAT Model Input
2.4.2. Model Performance and Evaluation
3. Results
3.1. Trends of LULCCs
3.2. Precipitation and Temperature Trends
3.3. SWAT Simulated Outputs
3.3.1. Spatio-Temporal Water Yield (WYLD) Distribution
3.3.2. Simulated Evapotranspiration Trend (ET)
3.3.3. Spatio-Temporal Sediment Yield (SYLD) Distribution
3.4. Calibration and Validation of the SWAT Model
4. Discussion
4.1. Impacts of LULCC on River Basin Hydrology over 29 Years (1990 to 2018)
4.2. Hydrological Stability of the WRB
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mittal, N.; Bhave, A.G.; Mishra, A.; Singh, R. Impact of Human Intervention and Climate Change on Natural Flow Regime. Water Resour. Manag. 2016, 30, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of Climate Change on Streamflows under RCP scenarios: A Case study in Xin River Basin, China. Atmos. Res. 2016, 178–179, 521–534. [Google Scholar] [CrossRef]
- Hu, M.; Sayama, T.; Duan, W.; Takara, K.; He, B.; Luo, P. Assessment of Hydrological Extremes in the Kamo River Basin, Japan. Hydrol. Sci. J. 2017, 62, 1255–1265. [Google Scholar] [CrossRef]
- Aghsaei, H.; Mobarghaee Dinan, N.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of Dynamic Land Use/Land Cover Change on Water Resources and Sediment Yield in the Anzali Wetland Catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef] [PubMed]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of Land Use Changes Based on Land Change Modeler and Attribution of Changes in the Water Balance of Ganga Basin to Land Use Change Using the SWAT Model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Tena, T.M.; Mwaanga, P.; Nguvulu, A. Impact of Land Use/Land Cover Change on Hydrological Components in Chongwe River Catchment. Sustainability 2019, 11, 6415. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.C.C.; Lo, K.F.A. Effects of Land Use Change on Sediment and Water Yields in Yang Ming Shan. Natl Parks, Taiwan. Environments 2015, 2, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, Y.; Liu, G.; Chen, L. Impact of Land-Use Change on Hydrological Processes in the Maying River Basin, China. Sci. China Ser. D Earth Sci. 2006, 49, 1098–1110. [Google Scholar] [CrossRef]
- Mutayoba, E.; Kashaigili, J.J.; Kahimba, F.C.; Mbungu, W.; Chilagane, N.A. Assessing the Impacts of Land Use and Land Cover Changes on Hydrology of the Mbarali River Sub-Catchment. The Case of Upper Great Ruaha Sub-Basin, Tanzania. Engineering 2018, 10, 616–635. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Long, D.; Bai, P. Impacts of Future Land Cover and Climate Changes on Runoff in the Mostly Afforested River Basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- Wojkowski, J.; Młyński, D.; Lepeška, T.; Wałęga, A.; Radecki-Pawlik, A. Link between hydric potential and predictability of maximum flow for selected catchments in Western Carpathians. Sci. Total Environ. 2019, 683, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-W.; Shangguan, Z.-P. The Change of Soil Water Storage in Three Land Use Types after 10 Years on the Loess Plateau. Catena 2016, 147, 87–95. [Google Scholar] [CrossRef]
- Pan, Y.; Gong, H.; Zhou, D.; Li, X.; Nakagoshi, N. Impact of Land Use Change on Groundwater Recharge in Guishui River Basin, China. Chin. Geogr. Sci. 2011, 21, 734–743. [Google Scholar] [CrossRef]
- Younis, S.M.Z.; Ammar, A. Quantification of Impact of Changes in Land Use-Land Cover on Hydrology in the Upper Indus Basin, Pakistan. Egypt. J. Remote Sens. Space Sci. 2018, 21, 255–263. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. Agricultural Inputs. 2017. Available online: http://wdi.worldbank.org/table/3.2 (accessed on 19 October 2021).
- World Bank. World Development Indicators. Employment by Sector. 2017. Available online: http://wdi.worldbank.org/table/2.3 (accessed on 19 October 2021).
- Tumbo, S.; Kahimba, F.; Mbilinyi, B.; Rwehumbiza, F.; Mahoo, H.F.; Mbungu, W.; Enfors, E. Impact of Projected Climate Change on Agricultural Production in Semi-Arid Areas of Tanzania: A Case of Same District. Afr. Crop Sci. J. 2012, 20, 453–463. [Google Scholar]
- URT. Accelerating Pro-Poor Growth in the Context of Kilimo Kwanza; URT: Dar es Salaam, Tanzania, 2009; pp. 13–23. [Google Scholar]
- Näschen, K.; Diekkrüger, B.; Evers, M.; Höllermann, B.; Steinbach, S.; Thonfeld, F. The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios. Sustainability 2019, 11, 7083. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Bessah, E.; Raji, A.O.; Taiwo, O.J.; Agodzo, S.K.; Ololade, O.O.; Strapasson, A. Hydrological Responses to Climate and Land Use Changes: The Paradox of Regional and Local Climate Effect in the Pra River Basin of Ghana. J. Hydrol. Reg. Stud. 2020, 27, 100654. [Google Scholar] [CrossRef]
- Mbungu, W.B.; Kashaigili, J.J. Assessing the Hydrology of a Data-Scarce Tropical Watershed Using the Soil and Water Assessment Tool: Case of the Little Ruaha River Watershed in Iringa, Tanzania. Open J. Mod. Hydrol. 2017, 7, 65–89. [Google Scholar] [CrossRef] [Green Version]
- Santos, V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water 2018, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, W.-Z.; Zhang, X.-C.; Zheng, F.-L. Impacts of Land Use Change and Climate Variability on Hydrology in an Agricultural Catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of Land Use and Land Cover Change on Surface Runoff, Discharge and Low Flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Pinto, L.; de Mello, C.; Owens, P.; Darrell, N.; Curi, N. Role of Inceptisols in the Hydrology of Mountainous Catchments in Southeastern Brazil. J. Hydrol. Eng. 2015, 21, 05015017. [Google Scholar] [CrossRef]
- Bormann, H.; Elfert, S. Application of WaSiM-ETH Model to Northern German Lowland Catchments: Model Performance in Relation to Catchment Characteristics and Sensitivity to Land Use Change. Adv. Geosci. 2010, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating Three Hydrological Distributed Watershed Models: Mike-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Neupane, R.P.; Kumar, S. Estimating the Effects of Potential Climate and Land Use Changes on Hydrologic Processes of a Large Agriculture Dominated Watershed. J. Hydrol. 2015, 529, 418–429. [Google Scholar] [CrossRef]
- Zhang, J.; Ross, M. Hydrologic Modeling Impacts of Post-Mining Land Use Changes on Streamflow of Peace River, Florida. Chin. Geogr. Sci. 2015, 25, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Shivhare, N.; Dikshit, P.K.S.; Dwivedi, S.B. A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed. Engineering 2018, 4, 643–652. [Google Scholar] [CrossRef]
- Leavesley, G.H.; Litchy, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation-Runoff Modeling System: User’s Manual. In US Geological Survey Water Resources Investigative Report; U.S. Geological Survey, Water Resources Division: Reston, VA, USA, 1983. [Google Scholar] [CrossRef] [Green Version]
- Aboelnour, M.A.; Engel, B.A.; Frisbee, M.D.; Gitau, M.W.; Flanagan, D.C. Impacts of Watershed Physical Properties and Land Use on Baseflow at Regional Scales. J. Hydrol. Reg. Stud. 2021, 35, 100810. [Google Scholar] [CrossRef]
- Legesse, D.; Abiye, T.A.; Vallet-Coulomb, C.; Abate, H. Streamflow Sensitivity to Climate and Land Cover Changes: Meki River, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Wambura, F.J.; Dietrich, O.; Lischeid, G. Improving a Distributed Hydrological Model Using Evapotranspiration-Related Boundary Conditions as Additional Constraints in a Data-Scarce River Basin. Hydrol. Processes 2018, 32, 759–775. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing Impacts of Landuse and Landcover Changes on Hydrology for the Upper San Pedro Watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y. Long-Term Hydrological Impacts of Land Use/Land Cover Change from 1984 to 2010 in the Little River Watershed, Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the Hydrological Impacts of Land Use/Land Cover Changes in the Andassa Watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y.; Wang, Y.; Zhang, Y.; Xiang, J.; Xu, Y.; Wang, J. Individual and Combined Impacts of Future Land-Use and Climate Conditions on Extreme Hydrological Events in a Representative Basin of the Yangtze River Delta, China. Atmos. Res. 2020, 236, 104805. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an Improved SWAT Model to Simulate Hydrological Responses to Land Use Change: A Case Study of a Catchment in Tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Nobert, J.; Jeremiah, J. Hydrological Response of Watershed Systems to Land Use/Cover Change. A Case of Wami River Basin. Open Hydrol. J. 2012, 6, 78–87. [Google Scholar] [CrossRef]
- Wambura, F. Stream Flow Response to Skilled and Non-Linear Bias Corrected GCM Precipitation Change in the Wami River Sub-Basin, Tanzania. Br. J. Environ. Clim. Change 2014, 4, 389–408. [Google Scholar] [CrossRef]
- Natkhin, M.; Dietrich, O.; Schäfer, M.P.; Lischeid, G. The Effects of Climate and Changing Land Use on the Discharge Regime of a Small Catchment in Tanzania. Reg. Environ. Change 2015, 15, 1269–1280. [Google Scholar] [CrossRef]
- Aziz, N.; Minallah, N.; Junaid, A.; Gul, K. Performance analysis of artificial neural network based land cover classification. Int. J. Mar. Environ. Sci. 2017, 11, 422. [Google Scholar]
- IUCN. IUCN Eastern and Southern Africa Programme. In The Ruvu Basin: A Situation Analysis; IUCN—ESARO Publications Service Unit: Nairobi, Kenya, 2010. [Google Scholar]
- FIU-GLOWS, Water Atlas of the Wami/Ruvu Basin, Tanzania. 2014. Available online: http://dpanther.fiu.edu/sobek/FIGW000010/00001 (accessed on 20 September 2021).
- Kashaigili, J.J. Rapid Environmental Flow Assessment for the Ruvu River, A Consultancy Report submitted to iWASH, 2011. Available online: http://www.suaire.sua.ac.tz/bitstream/handle/123456789/1481/Kashaigili17.pdf (accessed on 18 November 2021).
- WRBWO. Wami/Ruvu Basin Annual Hydrological Report; WRB-Water Office: Morogoro, Tanzania, 2008.
- Ngondo, J.; Mango, J.; Liu, R.; Nobert, J.; Dubi, A.; Cheng, H. Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania. Sustainability 2021, 13, 4092. [Google Scholar] [CrossRef]
- JICA. The Study on Water Resources Management and Development in Wami/Ruvu Basin in the United Republic of Tanzania. 2013. Available online: https://www.jica.go.jp/tanzania/english/index.html (accessed on 17 August 2021).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model. Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to Assess Land Use Impact on Water Resources in an East African Watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- TAMU. 2021. Available online: https://swat.tamu.edu/ (accessed on 10 May 2021).
- ALOSW3D. Digital Elevation Model. 2021. Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (accessed on 10 May 2021).
- Florinsky, I.V.; Skrypitsyna, T.N.; Luschikova, O.S. Comparative Accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A Case Study on the Zaoksky Testing Ground, Central European Russia. Remote Sens. Lett. 2018, 9, 706–714. [Google Scholar] [CrossRef]
- Purinton, B.; Bookhagen, B. Validation of Digital Elevation Models (DEMs) and Comparison of Geomorphic Metrics on the Southern Central Andean Plateau. Earth Surf. Dynam. 2017, 5, 211–237. [Google Scholar] [CrossRef] [Green Version]
- Santillan, J.; Makinano-Santillan, M. Vertical Accuracy Assessment of 30-m Resolution Alos, Aster, AND SRTM Global DEMS over Northeastern Mindanao, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical Accuracy Evaluation of Freely Available Latest High-Resolution (30 m) Global Digital Elevation Models over Cameroon (Central Africa) with GPS/Leveling Ground Control Points. Int. J. Digit. Earth 2019, 12, 500–524. [Google Scholar] [CrossRef]
- FAO. Digital Soil Map of the World. 2021. Available online: http://www.fao.org/geonetwork/srv/en/metadata.show%3Fid=14116 (accessed on 11 September 2020).
- Dahal, P.; Shrestha, M.L.; Panthi, J.; Pradhananga, D. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environ. Res. 2020, 185, 109430. [Google Scholar] [CrossRef]
- Aredehey, G.; Mezgebu, A.; Girma, A. The effects of land use land cover change on hydrological flow in Giba catchment, Tigray, Ethiopia. Cogent Environ. Sci. 2020, 6, 1785780. [Google Scholar] [CrossRef]
- Wambura, F.J.; Dietrich, O.; Lischeid, G. Evaluation of Spatio-Temporal Patterns of Remotely Sensed Evapotranspiration to Infer Information about Hydrological Behaviour in a Data-Scarce Region. Water 2017, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- USGS. Global Geographacal Datasets. 2020. Available online: https://glovis.usgs.gov (accessed on 18 October 2020).
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Tilahun, A.; Bogale, T. Accuracy Assessment of Land Use Land Cover Classification Using Google Earth. Am. J. Environ. Prot. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Palmate, S.S.; Pandey, A.; Mishra, S.K. Modelling Spatiotemporal Land Dynamics for a Trans-Boundary River Basin Using Integrated Cellular Automata and Markov Chain Approach. Appl. Geogr. 2017, 82, 11–23. [Google Scholar] [CrossRef]
- de Oliveira Barros, K.; Alvares Soares Ribeiro, C.A.; Marcatti, G.E.; Lorenzon, A.S.; Martins de Castro, N.L.; Domingues, G.F.; Romário de Carvalho, J.; Rosa dos Santos, A. Markov Chains and Cellular Automata to Predict Environments Subject to Desertification. J. Environ. Manag. 2018, 225, 160–167. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular Automaton and Markov Model. Ecol. Modell. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Wambura, F.J.; Ndomba, P.M.; Kongo, V.; Tumbo, S.D. Uncertainty of Runoff Projections under Changing Climate in Wami River Sub-Basin. J. Hydrol. Reg. Stud. 2015, 4, 333–348. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Winchell, M.R.; Srinivasan, M.D.; Arnold, J.; Arc, S.W.A.T. Interface for SWAT 2005–Users’ Guide. Blackland Research Center, Texas Agricultural Experiment Station and Grassland, Soil and Water Research Laboratory; United States Department of Agriculture Agricultural Research Service: Temple, TX, USA, 2007. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation, version 2009. In Texas Water Resources Institute Technical Report No. 406; Texas A&M University: College Station, TX, USA, 2011; Volume 2009. [Google Scholar]
- Twisa, S.; Kazumba, S.; Kurian, M.; Buchroithner, M.F. Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania. Hydrology 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.D.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 2015, 58, 1763–1785. [Google Scholar]
- Twisa, S.; Buchroithner, M.F. Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania. Land 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input-Output File Documentation. Soil and Water Research Laboratory, Agricultural Research Service, Grassland, 808 East Black Land Road, Temple, Texas. 2011. Available online: https://swat.tamu.edu/media/19754/swat-io-2009.pdf (accessed on 14 November 2021).
- Wambura, F.J. Sensitivity of the Evapotranspiration Deficit Index to Its Parameters and Different Temporal Scales. Hydrology 2021, 8, 26. [Google Scholar] [CrossRef]
- Huang, S.; Shah, H.; Naz, B.S.; Shrestha, N.; Mishra, V.; Daggupati, P.; Ghimire, U.; Vetter, T. Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins. Clim. Change 2020, 163, 1143–1164. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, D.; Shen, Y. Land Use Change and Its Driving Forces on the Tibetan Plateau During 1990–2000. Catena 2008, 72, 56–66. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land Use Change Mapping and Analysis Using Remote Sensing and GIS: A Case Study of Simly Watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Mendonça dos Santos, F.; Proença de Oliveira, R.; Augusto Di Lollo, J. Effects of Land Use Changes on Streamflow and Sediment Yield in Atibaia River Basin—SP, Brazil. Water 2020, 12, 1711. [Google Scholar] [CrossRef]
- Wang, F.; Ge, Q.; Yu, Q.; Wang, H.; Xu, X. Impacts of Land-Use and Land-Cover Changes on River Runoff in Yellow River Basin for Period of 1956–2012. Chin. Geogr. Sci. 2017, 27, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-K.; Schilling, K.E. Increasing Streamflow and Baseflow in Mississippi River since the 1940s: Effect of Land Use Change. J. Hydrol. 2006, 324, 412–422. [Google Scholar] [CrossRef]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of Large-Scale Changes in Land Cover on the Discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Kim, W.; Kanae, S.; Agata, Y.; Oki, T. Simulation of Potential Impacts of Land Use/Cover Changes on Surface Water Fluxes in the Chaophraya River Basin, Thailand. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Ngoye, E.; Machiwa, J.F. The Influence of Land-Use Patterns in the Ruvu River Watershed on Water Quality in the River System. Phys. Chem. Earth Parts A B C 2004, 29, 1161–1166. [Google Scholar] [CrossRef]
- Yanda, P.Z.; Munishi, P. Hydrologic and Land Use/Cover Change Analysis for the Ruvu River (Uluguru) and Sigi River (East Usambara) Watersheds. For WWF/CARE Dar es Salaam; Tanzania. 2007. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrologic+and+Land+Use%2FCover+Change+Analysis+for+the+Ruvu+River+%28Uluguru%29+and+Sigi+River+%28East+Usambara%29+Watersheds&btnG= (accessed on 19 August 2021).
- Msaghaa, J.J.; Melesse, A.M.; Ndomba, P.M. Modeling Sediment Dynamics: Effect of Land Use, Topography, and Land Management in the Wami-Ruvu Basin, Tanzania. In Nile River Basin:Ecohydrological Challenges, Climate Change and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 165–192. [Google Scholar]
- Mbungu, W.B. Impacts of Land Use and Land Cover Changes, and Climate Variability on Hydrology and Soil Erosion in the Upper Ruvu Watershed, Tanzania [Diss.]; Virginia Tech: Blacksburg, Virginia, 2017. [Google Scholar]
- Gao, P.; Puckett, J. A New Approach for Linking Event-Based Upland Sediment Sources to Downstream Suspended Sediment Transport. Earth Surf. Processes Landf. 2012, 37, 169–179. [Google Scholar] [CrossRef]
- Ndomba, P.; Mtalo, F.; Killingtveit, A. SWAT Model Application in a Data Scarce Tropical Complex Catchment in Tanzania. Phys. Chem. Earth Parts A B C 2008, 33, 626–632. [Google Scholar] [CrossRef]
- Mulungu, D.M.M.; Munishi, S.E. Simiyu River Catchment Parameterization Using SWAT Model. Phys. Chem. Earth Parts A B C 2007, 32, 1032–1039. [Google Scholar] [CrossRef]
- Birhanu, Z.; Zemadim, B. Hydrological Modeling of the Kihansi River Catchment in South Central, Tanzania Using SWAT Model. Water Resour. Environ. Eng. 2009, 1, 001–010. [Google Scholar]
- Lopa, D.; Mwanyoka, I.; Jambiya, G.; Massoud, T.; Harrison, P.; Ellis-Jones, M.; Blomley, T.; Leimona, B.; van Noordwijk, M.; Burgess, N.D. Towards Operational Payments for Water Ecosystem Services in Tanzania: A Case Study from the Uluguru Mountains. Oryx 2012, 46, 34–44. [Google Scholar] [CrossRef] [Green Version]
- URT. The Kilimo Kwanza Resolution; URT: Dar es Salaam, Tanzania, 2009. [Google Scholar]
- Seeteram, N.A.; Hyera, P.T.; Kaaya, L.T.; Lalika, M.C.S.; Anderson, E.P. Conserving Rivers and Their Biodiversity in Tanzania. Water 2019, 11, 2612. [Google Scholar] [CrossRef] [Green Version]
SN/Value | Soil Codes | Soil Definition |
---|---|---|
1 | Af3-1-2a-407 | Sandy clay loam |
2 | Af33-1-2a-414 | Sandy loam |
3 | Af38-1-2a-420 | Sandy loam |
4 | Af40-2b-422 | Sandy clay loam |
5 | Af43-1-2b-426 | Sandy loam |
6 | Ao65-1-2a-428 | Sandy loam |
7 | Ao67-2bc-430 | Sandy clay loam |
8 | Ao68-1-2a-432 | Sandy loam |
9 | Bc14-2bc-440 | Loam |
10 | Bc18-c-446 | Loam |
11 | Bk25-2a-467 | Loam |
12 | Bk28-2b-471 | Loam |
13 | Fo77-2b-539 | Sandy clay loam |
14 | Je51-2-3a-688 | Clay loam |
15 | Lf75-1-2a-760 | Sandy clay loam |
16 | Lf78-1-2a-763 | Sandy loam |
17 | Ne40-1-2a-833 | Sandy clay loam |
18 | Qc30-1a-877 | Sandy loam |
19 | Qf31-1ab-909 | Sandy loam |
20 | Qf35-1b-914 | Sandy loam |
21 | Vp49-3a-966 | Clay |
22 | Vp50-3a-968 | Clay |
23 | We8-1-2a-980 | Sandy clay loam |
Date | Satellite | Sensor | Path/Row | Date | Satellite | Sensor | Path/Row |
---|---|---|---|---|---|---|---|
30 July 1990 | Landsat 5 | TM | 168/64 | 1 July 2010 | Landsat 5 | TM | 166/64 |
1 August 1990 | Landsat 5 | TM | 167/64 | 6 July 2010 | Landsat 5 | TM | 167/65 |
4 August 1990 | Landsat 5 | TM | 166/64 | 27 June 2010 | Landsat 5 | TM | 166/65 |
5 August 1990 | Landsat 5 | TM | 168/65 | 29 June 2010 | Landsat 5 | TM | 167/64 |
7 August 1990 | Landsat 5 | TM | 167/65 | 15 July 2010 | Landsat 5 | TM | 168/64 |
8 August 1990 | Landsat 5 | TM | 166/65 | 20 July 2010 | Landsat 5 | TM | 168/65 |
26 July 2000 | Landsat 7 | ETM+ | 168/65 | 16 August 2018 | Landsat 8 | OLI | 168/64 |
19 July 2000 | Landsat 7 | ETM+ | 168/64 | 17 August 2018 | Landsat 8 | OLI | 167/64 |
15 June 2000 | Landsat 7 | ETM+ | 167/64 | 19 August 2018 | Landsat 8 | OLI | 166/64 |
21 June 2000 | Landsat 7 | ETM+ | 166/64 | 20 August 2018 | Landsat 8 | OLI | 168/65 |
30 June 2000 | Landsat 7 | ETM+ | 166/65 | 1 September 2018 | Landsat 8 | OLI | 167/65 |
7 July 2000 | Landsat 7 | ETM+ | 167/65 | 2 September 2018 | Landsat 8 | OLI | 166/65 |
SN | Land-Cover Type | Description | Sample Area Recognition |
---|---|---|---|
1 | Agriculture | Crop fields and fallow lands | Light green colour |
2 | Bare soil | Exposed soil and barren lands | Brown colour |
3 | Built-up areas | Housing, industries, transportation, and mixed urban | Purple/silver colour |
4 | Bushland | Land mainly comprised plants and open bush | Moderate green colour |
5 | Forest | Tree crown cover, woodland, and thickets | Dark green colour |
6 | Grassland | Mainly composed of grass | Brown/Light green colour |
7 | Water | Rivers, open water, lakes, ponds, and water reservoirs | Blue colour |
8 | Wetland | Stagnant water bodies, swamps, and marshes | Light blue colour |
Station-Outlet Number | Station-Outlet Name | Data Variable | Latitude | Longitude | Elevation (m) |
---|---|---|---|---|---|
IG2 | Wami River, Mandera | Flow | −6.2464 | 38.3874 | 75.0 |
1H8 | Ruvu River, Morogoro Road Bridge | Flow | −6.6929 | 38.7081 | 229 |
Statistical Equation | Value | Rating Performance |
---|---|---|
>0.65 | Very good | |
0.54 to 0.65 | Adequate | |
>0.50 | Satisfactory | |
0.00 < RSR < 0.50 | Very good | |
0.50 < RSR < 0.60 | Good | |
0.60 < RSR < 0.70 | Satisfactory | |
RSR > 0.70 | Unsatisfactory | |
>0.50 | Satisfactory | |
<±20% | Good | |
±20% to ±40% | Satisfactory | |
>±40% | Unsatisfactory |
LULC Types | 1990 ha % | 2000 ha % | 2010 ha % | 2018 ha % | ||||
---|---|---|---|---|---|---|---|---|
Agriculture | 705,415 | 10.6 | 772,034 | 11.5 | 990,486 | 14.8 | 1,482,554 | 22.2 |
Bare Soil | 25,179 | 0.4 | 8083 | 0.1 | 25,179 | 0.4 | 135,736 | 2.0 |
Bushland | 1,116,020 | 16.7 | 575,409 | 8.6 | 617,091 | 9.2 | 1,665,843 | 24.9 |
Forest | 3,885,749 | 58.1 | 3,236,114 | 48.4 | 2,980,920 | 44.6 | 2,857,658 | 42.7 |
Grassland | 908,883 | 13.6 | 2,029,882 | 30.4 | 2,002,217 | 30.0 | 464,219 | 6.9 |
Built-up Areas | 7226 | 0.1 | 34,371 | 0.5 | 48,499 | 0.7 | 60,560 | 0.9 |
Water | 19,435 | 0.3 | 17,527 | 0.3 | 13,634 | 0.2 | 13,220 | 0.2 |
Wetland | 17,114 | 0.3 | 11,601 | 0.2 | 6995 | 0.1 | 5231 | 0.1 |
Total | 6,685,021 | 100 | 6,685,021 | 100 | 6,685,021 | 100 | 6,685,021 | 100 |
LULC Type | 1990–2000 ha % | 2000–2010 ha % | 2010–2018 ha % | 1990–2018 ha % | ||||
---|---|---|---|---|---|---|---|---|
Agriculture | 66,619 | 1.0 | 218,452 | 3.3 | 492,068 | 7.4 | 777,139 | +11.6 |
Bare Soil | −17,096 | −0.3 | 17,096 | 0.3 | 110,557 | 1.7 | 110,557 | +1.7 |
Bushland | −540,611 | −8.1 | 41,682 | 0.6 | 1,048,752 | 15.7 | 549,823 | +8.2 |
Forest | −649,635 | −9.7 | −255,194 | −3.8 | −123,262 | −1.8 | −1,028,091 | −15.4 |
Grassland | 1,120,999 | 16.8 | −27,665 | −0.4 | −1,537,998 | −23.0 | −444,664 | −6.7 |
Built-up Areas | 27,145 | 0.4 | 14,128 | 0.2 | 12,061 | 0.2 | 53,334 | +0.8 |
Water | −1908 | 0.0 | −3893 | −0.1 | −414 | 0.0 | −6215 | −0.1 |
Wetland | −5513 | −0.1 | −4606 | −0.1 | −1764 | 0.0 | −11,883 | −0.2 |
LULC Types | 2018 ha % | 2036 ha % | 2018–2036 ha % | |||
---|---|---|---|---|---|---|
Agriculture | 1,482,554 | 22.2 | 2,071,244 | 31.0 | +588,690 | 8.8 |
Bare Soil | 135,736 | 2.0 | 122,170 | 1.8 | −13,566 | −0.2 |
Bushland | 1,665,843 | 24.9 | 1,814,294 | 27.1 | +148,451 | 2.2 |
Forest | 2,857,658 | 42.7 | 2,229,228 | 33.3 | −628,430 | −9.4 |
Grassland | 464,219 | 6.9 | 343,206 | 5.1 | −121,013 | −1.8 |
Built-up Areas | 60,560 | 0.9 | 92,674 | 1.4 | +79,454 | 0.5 |
Water | 13,220 | 0.2 | 8348 | 0.1 | −4872 | −0.1 |
Wetland | 5231 | 0.1 | 3857 | 0.1 | +148,451 | 2.2 |
Total | 6,685,021 | 100.0 | 6,685,021 | 100.0 | −1374 | 0.0 |
Hydrological Component | Wami Sub-Basin | Ruvu Sub-Basin | ||
---|---|---|---|---|
1990 | 2018 | 1990 | 2018 | |
WYLD (mm) | 169.38 | 166.27 | 173.59 | 170.54 |
Surface runoff (mm) | 67.61 | 70.84 | 73.63 | 77.74 |
Groundwater flow (mm) | 89.45 | 87.76 | 102.83 | 99.92 |
Rank | Parameter | Parameter Description | Min Value | Max Value | SWAT Fitted Value |
---|---|---|---|---|---|
1 | R_CN2.mgt | SCS runoff curve number | −0.3 | 0.3 | −0.210000 |
2 | SURLAG.bsn | Surface runoff lag time | 5.54 | 14 | 8.501000 |
3 | SOL.AWC.sol | Available water capacity of the soil layer | −0.8 | 0.8 | 0.550000 |
4 | V_ALPHA-BF.gw | Baseflow alpha-factor | 0 | 1.011 | 0.252750 |
5 | V_GW-DELAY.gw | Groundwater delay | 0 | 600 | 150.0000 |
6 | GWQMN.gw | Threshold depth of water in the shallows Aquifer required for return flow to occur | 0 | 2000 | 1700.000 |
7 | ESCO.hru | Soil evaporation compensation factor | 0 | 1 | 0.711777 |
Performance Periods | WRB Outlets | Average Monthly Flow (m3/s) | SWAT Evaluation Statistics | |||
---|---|---|---|---|---|---|
Observed | Simulated | NSE | RSR | PBIAS | ||
Calibration (Janaury 1993–December 2008) | FLOW_OUT_13 | 65.09 | 66.50 | 0.85 | 0.39 | 1.90 |
Validation (Janaury 2009–December 2018) | FLOW_OUT_13 | 70.84 | 71.26 | 0.83 | 0.37 | 1.70 |
Calibration (Janaury 1993–December 2008) | FLOW_OUT_24 | 109.96 | 110.72 | 0.68 | 0.49 | 1.40 |
Validation (Janaury 2009–December 2018) | FLOW_OUT_24 | 101.54 | 103.92 | 0.65 | 0.46 | 1.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngondo, J.; Mango, J.; Nobert, J.; Dubi, A.; Li, X.; Cheng, H. Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future. Water 2022, 14, 184. https://doi.org/10.3390/w14020184
Ngondo J, Mango J, Nobert J, Dubi A, Li X, Cheng H. Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future. Water. 2022; 14(2):184. https://doi.org/10.3390/w14020184
Chicago/Turabian StyleNgondo, Jamila, Joseph Mango, Joel Nobert, Alfonse Dubi, Xiang Li, and Heqin Cheng. 2022. "Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future" Water 14, no. 2: 184. https://doi.org/10.3390/w14020184
APA StyleNgondo, J., Mango, J., Nobert, J., Dubi, A., Li, X., & Cheng, H. (2022). Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future. Water, 14(2), 184. https://doi.org/10.3390/w14020184