Sustainable Development of Coastal Areas: Port Expansion with Small Impacts on Estuarine Hydrodynamics and Sediment Transport Pattern
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Numerical Model
3.2. Numerical Grid and Initial and Boundary Conditions
3.3. Calibration and Validation
4. Results
4.1. Flow Velocity and Suspended Sediment Concentration at the Mouth
4.2. Comparative Hydrodynamics between Simulated Scenarios
4.3. Deposition of Suspended Sediment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanson, S.E.; Nicholls, R.J. Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea-Level Rise. Earth's Future 2020, 8, e2020EF001543. [Google Scholar] [CrossRef]
- Katsiaras, N.; Simboura, N.; Tsangaris, C.; Hazianestis, I.; Pavlidou, A.; Kapsimalis, V. Impacts dredged-material disposal on the costal soft-bottom marofauna, Saronikos Gulf Greece. Sci. Environ. 2015, 508, 320–330. [Google Scholar]
- Bolam, S.G.; Mcllwaine, P.; Garcia, C. Marine macrofauna traits responses to dredged material disposal. Mar. Pollut. Bull. 2021, 168, 112412. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.H.; da Silva, P.D.; Gonçalves, G.A.; Möller, O.O., Jr. Dispersion Plumes in Open Ocean Disposal Sites of Dredged Sediment. Water 2021, 13, 808. [Google Scholar] [CrossRef]
- Alden, R.W.; Young, R.J. Open ocean disposal of materials dredged from a highly industrialized estuary: An evaluation of potential lethal effects. Arch. Environm. Contam. Toxicol. 1982, 11, 567–576. [Google Scholar] [CrossRef]
- Torres, R.J.; Abessa, D.M.S.; Santos, F.C.; Maranho, L.A.; Davanso, M.B.; Nascimento, M.R.L.; Mozeto, A.A. Effects of dredging operations on sediment quality: Contaminant mobilization in dredged sediments from the Port of Santos, SP, Brazil. J. Soils Sediment 2009, 9, 420–432. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Moraes, B.C.; Möller, O.O.; Malcherek, A. Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. J. Geophys. Res. Space Phys. 2010, 115, 1–22. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska, A.E.; Banasik, K. Modeling suspended sediment concentration in the stormwater outflow from a small detention pond. J. Environ. Eng. 2017, 143, 1–11. [Google Scholar] [CrossRef]
- Santoro, P.; Fossati, M.; Tassi, P.; Huybrechts, N.; Bang, D.P.V.; Piedra-Cueva, J.C.I. A coupled wave-current-sediment transport model for an estuarine system: Application to the Río de la Plata and Montevideo Bay. Appl. Math. Model. 2017, 52, 107–130. [Google Scholar] [CrossRef]
- Tavora, J.; Fernandes, E.H.L.; Thomas, A.C.; Weatherbee, R.; Schettini, C.A.F. The influence of river discharge and wind on Patos Lagoon, Brazil, Suspended Particulate Matter. Int. J. Remote Sens. 2019, 40, 4506–4525. [Google Scholar] [CrossRef]
- Távora, J.; Fernandes, E.H.; Bitencourt, L.P.; Orozco, P.M.S. El Niño Southern Oscillation (ENSO) effects on the vari-ability of Patos Lagoon suspended particulate matter. Reg. Stud. Mar. Sci. 2020, 40, 101495. [Google Scholar]
- Shuklaa, V.K.; Konkaneb, V.D.; Nagendrac, T.; Agrawald, J.D. Dredged Material Dumping Site Selection Using Mathematical Models. Procedia Eng. 2015, 116, 809–817. [Google Scholar] [CrossRef]
- Kim, N.-H.; Pham, V.S.; Hwang, J.H.; Won, N.I.; Ha, H.K.; Im, J.; Kim, Y. Effects of seasonal variations on sediment-plume streaks from dredging operations. Mar. Pollut. Bull. 2018, 129, 26–34. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Chen, X.; Liang, D. Numerical Study of Remote Sensed Dredging Impacts on the Suspended Sediment Transport in China’s Largest Freshwater Lake. Water 2019, 11, 2449. [Google Scholar] [CrossRef] [Green Version]
- Sharaan, M.; Negm, A. Life Cycle Assessment od Dredged Materials Placement Strategies: Case Study, Damietta Port, Egypt. Procedia Eng. 2017, 181, 102–108. [Google Scholar] [CrossRef]
- Bahgat, M. Optimum use of dredged materials for sustainable shoreline management in Nile Delta. Water Sci. 2018, 32, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.C.; Almeida, M.D.S.S.D. Dredging and disposal of fine sediments in the state of Rio de Janeiro, Brazil. J. Hazard. Mater. 2001, 85, 15–38. [Google Scholar] [CrossRef]
- Grigalunas, T.; Opaluch, J.J.; Luo, M. The economic costs to fisheries from marine sediment disposal: Case study of Providence, RI, USA. Ecolog. Econ. 2001, 38, 47–58. [Google Scholar] [CrossRef]
- Fries, A.S.; Coimbra, J.P.; Nemazie, D.A.; Summers, R.M.; Azevedo, P.S.; Filoso, S.; Newton, M.; Gelli, G.; Oliveira, R.C.N.; Pessoa, M.A. Guanabara Bay ecosystem helath report card: Science, management and gov-ernance implications. Reg. Stud. Marice Sci. 2019, 25, 100474. [Google Scholar]
- Prumm, M.; Iglesias, G. Impacts of port development on estuarine morphodynamics: Ribadeo (Spain). Ocean Coast. Manag. 2016, 130, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Farhad Sakhaee, F.; Khalili, F. Sediment pattern & rate of bathymetric changes due to construction of breakwater extension at Nowshahr port. J. Ocean Eng. Sci. 2021, 6, 70–84. [Google Scholar]
- Silva, P.D.; Lisboa, P.V.; Fernandes, E.H. Changes on the fine sediment dynamics after the Port of Rio Grande expansion. Adv. Geosci. 2015, 39, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Kjerfve, B. Comparative Oceanography of coast lagoons. Estuar. Variab. 1986, 1, 63–81. [Google Scholar]
- Moller, O.O.; Castaing, P.; Salomon, J.-C.; Lazure, P. The Influence of Local and Non-Local Forcing Effects on the Subtidal Circulation of Patos Lagoon. Estuaries 2001, 24, 297–311. [Google Scholar] [CrossRef]
- Fernandes, E.H.L.; Dyer, K.R.; Moller, O.O. Spatial Gradients in the Flow of Southern Patos Lagoon. J. Coast. Res. 2005, 214, 759–769. [Google Scholar] [CrossRef]
- Calliari, L.J.; Winterwerp, J.C.; Fernandes, E.H.; Cuchiara, D.; Vinzon, S.B.; Sperle, M.; Holland, K.T. Fine grain sediment transport and deposition in the Patos Lagoon–Cassino beach sedimentary system. Cont. Shelf Res. 2009, 29, 515–529. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.; Monteiro, I.O.; Möller, O.O. Numerical modeling of the Patos Lagoon coastal plume, Brazil. Cont. Shelf Res. 2009, 29, 556–571. [Google Scholar] [CrossRef]
- Herz, R. Circulação das águas de Superfície da Lagoa dos Patos. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1977; 312p. [Google Scholar]
- Vaz, A.C.; Möller, O.O.; Almeida, T.L.D. Análise quantitativa da descarga dos rios afluentes da Lagoa dos Patos. Atlântica 2006, 28, 13–23. [Google Scholar]
- Moller, O.O.; Lorenzzentti, J.A.; Stech, J.; Mata, M.M. The Patos Lagoon summertime circulation and dynamics. Cont. Shelf Res. 1996, 16, 335–351. [Google Scholar] [CrossRef]
- Bortolin, E.C.; Távora, J.; Fernandes, E.H.L. Long-Term Variability on Suspended Particulate Matter Loads From the Tributaries of the World’s Largest Choked Lagoon. Front. Mar. Sci. 2022, 9, 836739. [Google Scholar] [CrossRef]
- Bitencourt, L.P.; Fernandes, E.H.; Silva, P.D.; Möller, O.O. Spatio-temporal variability of suspended sediment con-centrations in a shallow and turbid laggon. J. Mar. Syst. 2020, 212, 103454. [Google Scholar] [CrossRef]
- Hervouet, J.M. Hydrodynamics of Free Surface Flows: Modeling with the Finite Element Method; Wiley: Chichester, UK, 2007. [Google Scholar]
- Van Leussen, W. The variability of settling velocities of suspended fine-grained sediment in the Ems estuary. J. Sea Res. 1999, 41, 109–118. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Oliveira, H.A.; Fernandes, E.H.L.; Möller, O.O.; Collares, G.L. Processos Hidrológicos e Hidrodinâmicos da Lagoa Mirim. Rev. Bras. Recur. Hídricos 2015, 20, 34–45. [Google Scholar] [CrossRef]
- Walstra, L.; Van Rijn, L.; Blogg, H.; Van Ormondt, M. Evaluation of a Hydrodynamic Area Model Based on the Coast3d Data at Teignmouth 1999. In Proceedings of the Coastal Dynamics 2001 Conference, Lund D, Lund, Sweden, 11–15 June 2001; pp. D4.1–D4.4. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1494–1508. [Google Scholar] [CrossRef]
- Fu, B.; Horsburgh, J.S.; Jakeman, A.J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T.R.; Quinn, N.W.T.; Volk, M.; Hunt, R.J.; et al. Modeling Water Quality in Watersheds: From Here to the Next Generation. Water Resour. Res. 2020, 56, WR027721. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Luna, A.; Crosato, A.; Uijttewaal, W.S. Effects of vegetation on flow and sediment transport: Comparative analyses and validation of predicting models. Earth Surf. Proc. Landf. 2015, 40, 157–176. [Google Scholar] [CrossRef]
- Neary, V.S.; Constantinescu, S.G.; Bennett, S.J.; Diplas, P. Effects of Vegetation on Turbulence, Sediment Transport, and Stream Morphology. Am. Soc. Civ. Eng. 2012, 138, 9. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.; Möller, O.O. Straining and advection contributions to the mixing process of the Patos Lagoon coastal plume, Brazil. J. Geofhys. Res. 2010, 115, C06019. [Google Scholar] [CrossRef] [Green Version]
- Franzen, M.O.; Fernandes, E.H.L.; Siegle, E. Impacts of coastal structures on hydro-morphodynamic patterns and guidelines towards sustainable coastal development: A case studies review. Reg. Stud. Mar. Sci. 2021, 44, 101800. [Google Scholar] [CrossRef]
- Krone, R.B. Flume Studies of the Transport of Sediment in Estuarine Processes; Tech. Rep. Hydraulic Engineering Lab., University of California: Berkeley, CA, USA, 1962. [Google Scholar]
- Fontoura, J.A.S.; Calliari, L.J. Diagnóstico do Estudo da Dinâmica Sedimentar e do Comportamento da Linha de Costa no Local de Implantação das Obras do Dique Seco e nas Margens de seu Entorno; Segundo Relatório; Laboratório de Engenharia Costeira/Laboratório de Oceanografia Geológica: Rio Grande, RS, Brasil, 2007; 23p. [Google Scholar]
- Marroig, P.; Vinzon, S. Fluid mud transport from Patos Lagoon to Rio Grande Port, RS, Brazil. In Proceedings of the INTERCOH2015—13th International Conference on Cohesive Sediment Transport Processes, Leuven, Belgium, 7–11 September 2015. [Google Scholar]
- Mehta, A.J.; Samsami, F.; Khare, Y.P. Fluid Mud Properties in Nautical Depth Estimation. J. Waterw. Port Coast. Ocean. Eng. 2014, 140, 210–222. [Google Scholar] [CrossRef]
- Mcanally, W.H.; Friedrichs, C.; Hamilton, D. Management of Fluid Mud in Estuaries, Bays, and Lakes. I: Present State of Understanding on Character and Behavior. J. Hydraul. Eng. 2007, 133, 23–38. [Google Scholar] [CrossRef]
- Wurpts, R. 15 Years Experience with Fluid Mud: Definition of the Nautical Bottom with Rheological Parameters. Terra e Aqua 2005, 99, 22–32. [Google Scholar]
Parameter | Value |
---|---|
Time step | 90 s |
Coriolis coefficient | −7.70735 × 10−5 |
Horizontal turbulence model | Smagorinski |
Vertical turbulence model | Mixing length |
Mixing length scale | 10 m |
Tidal flats | Yes |
Law of bottom friction | Nikuradse |
Coefficient of wind influence | 5 × 10−6 N·m−1·s−1 |
Parameter | Value |
---|---|
Suspended sediment class | Fine silt |
Mean diameter of the sediment | 1 × 10−5 m |
Critical shear stress for erosion | 1.5 N·m−2 |
Critical shear stress for deposition | 0.01 N·m−2 |
Cohesive sediment | Yes |
Density of the sediment | 2650 kg·m−3 |
Flocculation formula | Van Leussen |
Sediment settling velocity | 0.00001 m·s−1 |
Qualification | Excellent | Good | Reasonable/Fair | Poor | Bad |
---|---|---|---|---|---|
RMAE | <0.2 | 0.2–0.4 | 0.4–0.7 | 0.7–1.0 | >1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, P.D.; Fernandes, E.H.; Gonçalves, G.A. Sustainable Development of Coastal Areas: Port Expansion with Small Impacts on Estuarine Hydrodynamics and Sediment Transport Pattern. Water 2022, 14, 3300. https://doi.org/10.3390/w14203300
da Silva PD, Fernandes EH, Gonçalves GA. Sustainable Development of Coastal Areas: Port Expansion with Small Impacts on Estuarine Hydrodynamics and Sediment Transport Pattern. Water. 2022; 14(20):3300. https://doi.org/10.3390/w14203300
Chicago/Turabian Styleda Silva, Pablo Dias, Elisa Helena Fernandes, and Glauber Acunha Gonçalves. 2022. "Sustainable Development of Coastal Areas: Port Expansion with Small Impacts on Estuarine Hydrodynamics and Sediment Transport Pattern" Water 14, no. 20: 3300. https://doi.org/10.3390/w14203300
APA Styleda Silva, P. D., Fernandes, E. H., & Gonçalves, G. A. (2022). Sustainable Development of Coastal Areas: Port Expansion with Small Impacts on Estuarine Hydrodynamics and Sediment Transport Pattern. Water, 14(20), 3300. https://doi.org/10.3390/w14203300