Multivariate Statistical Analysis of the Spatial Variability of Hydrochemical Evolution during Riverbank Infiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Analysis
2.3. Multivariate Statistical Analysis (MSA)
2.3.1. Factor Analysis (FA)
2.3.2. Cluster Analysis (CA)
3. Results and Discussion
3.1. Hydrodynamics of River Water and Groundwater
3.2. Distribution of δ2H and δ18O in River Water and Groundwater
3.3. Hydrochemical Indexes in River Water and Groundwater
3.3.1. Eh and DO
3.3.2. pH
3.3.3. NO3− and NH4+
3.3.4. Mn2+ and Fe2+
3.3.5. SO42−
3.3.6. Cl− and Na++K+
3.3.7. Ca2+, Mg2+, and HCO3−
3.4. Factor Analysis
3.5. Cluster Analysis
4. Hydrogeochemical of Each Geochemical Zones
4.1. The Zone Strongly Influenced by River Water (C1)
4.2. The Zone Moderately Influenced by River Water (C2)
4.3. The Zone Weakly Influenced by River Water (C3)
4.4. The Zone Strongly Influenced by Regional Groundwater (C4)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kareem, S.L.; Mohammed, A.A. Removal of Tetracycline from Wastewater Using Circulating Fluidized Bed. Iraqi J. Chem. Pet. Eng. 2020, 21, 29–37. [Google Scholar] [CrossRef]
- Kareem, S.L.; Jaber, W.S.; Al-Maliki, L.A.; Al-Husseiny, R.A.; Al-Mamoori, S.K.; Alansari, N. Water quality assessment and phosphorus effect using water quality indices: Euphrates River- Iraq as a case study. Groundw. Sustain. Dev. 2021, 14, 100630. [Google Scholar] [CrossRef]
- Greskowiak, J.; Prommer, H.; Massmann, G.; Nützmann, G. Modeling Seasonal Redox Dynamics and the Corresponding Fate of the Pharmaceutical Residue Phenazone During Artificial Recharge of Groundwater. Environ. Sci. Technol. 2006, 40, 6615–6621. [Google Scholar] [CrossRef] [PubMed]
- Hamann, E.; Stuyfzand, P.J.; Greskowiak, J.; Timmer, H.; Massmann, G. The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci. Total Environ. 2016, 545–546, 629–640. [Google Scholar] [CrossRef]
- Munz, M.; Oswald, S.E.; Schäfferling, R.; Lensing, H.-J. Temperature-dependent redox zonation, nitrate removal and attenuation of organic micropollutants during bank filtration. Water Res. 2019, 162, 225–235. [Google Scholar] [CrossRef]
- Postma, D.; Jakobsen, R. Redox zonation: Equilibrium constraints on the Fe (III)/SO4-reduction interface. Geochim. Cosmochim. Acta 1996, 60, 3169–3175. [Google Scholar] [CrossRef]
- Massmann, G.; Pekdeger, A.; Merz, C. Redox processes in the Oderbruch polder groundwater flow system in Germany. Appl. Geochem. 2004, 19, 863–886. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef]
- Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992, 28, 1657–1668. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.B.; Zheng, Y.; Rahman, M.W.; Rahman, M.M.; Ahmed, K.M. Redox zonation and oscillation in the hyporheic zone of the Ganges-Brahm-Meghna Delta: Implications for the fate of groundwater arsenic during discharge. Appl. Geochem. 2015, 63, 647–660. [Google Scholar] [CrossRef]
- Gandy, C.; Smith, J.; Jarvis, A. Attenuation of mining-derived pollutants in the hyporheic zone: A review. Sci. Total Environ. 2007, 373, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Lu, S.; Gao, R.; Su, D.; Yuan, W.; Dai, Z.; Papavasilopoulos, E.N. Groundwater flow path determination during riverbank fifiltration affected by groundwater exploitation: A case study of Liao River, Northeast China. Hydrol. Sci. J. 2017, 62, 2331–2347. [Google Scholar] [CrossRef]
- Kedziorek, M.A.M.; Geoffriau, S.; Bourg, A.C.M. Organic Matter and Modeling Redox Reactions during River Bank Filtration in an Alluvial Aquifer of the Lot River, France. Environ. Sci. Technol. 2008, 42, 2793–2798. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.J. Human Impacts on the Stream-Groundwater Exchange Zone. Environ. Manag. 2002, 29, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Gibert, J.; Fournier, F.; Mathieu, J. Ground Water/Surface Water Ecotone; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Su, X.; Chen, Y.; Lyu, H.; Shi, Y.; Wan, Y.; Zhang, Y. Response of redox zonation to recharge in a riverbank filtration system: A case study of the Second Songhua river, NE China. Water Policy 2020, 51, 1104–1119. [Google Scholar] [CrossRef]
- Burt, T.P.; Pinay, G.; Matheson, F.E.; Haycock, N.E.; Buttruini, A.; Clement, J.C.; Danielescu, S.; Dowrick, D.J.; Hefting, M.M.; Hillbrichtllkowaka, A.; et al. Water table flfluctuations in the riparian zone: Comparative results from a pan-European experiment. J. Hydrol. 2002, 265, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Massmann, G.; Nogeitzig, A.; Taute, T.; Pekdeger, A. Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environ. Earth Sci. 2007, 54, 53–65. [Google Scholar] [CrossRef]
- Kohfahl, C.; Massmann, G.; Pekdeger, A. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany. Appl. Hydrogeol. 2009, 17, 571–578. [Google Scholar] [CrossRef]
- Wang, P.; Yao, J.; Wang, G.; Hao, F.; Shrestha, S.; Xue, B.; Xie, G.; Peng, Y. Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Sci. Total Environ. 2019, 693, 133440. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, G.; Lei, K.; Li, Y. Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. J. Environ. Sci. 2011, 23, 1460–1471. [Google Scholar] [CrossRef]
- Liu, P.; Hoth, N.; Drebenstedt, C.; Sun, Y.; Xu, Z. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions—Using multivariate statistics and geochemical modeling approaches. Sci. Total Environ. 2017, 601–602, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ta, M.; Zhou, X.; Guo, J.; Wang, X.; Wang, Y.; Xu, Y. The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China. Water 2020, 12, 1194. [Google Scholar] [CrossRef]
- Sharma, G.; Lata, R.; Thakur, N.; Bajala, V.; Kuniyal, J.C.; Kumar, K. Application of multivariate statistical analysis and water quality index for quality characterization of Parbati River, Northwestern Himalaya, India. Discov. Water 2021, 1, 5. [Google Scholar] [CrossRef]
- Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [Google Scholar] [CrossRef]
- Gad, M.; Osta, M.E. Geochemical controlling mechanisms and quality of the groundwater resources in El Fayoum Depression, Egypt. Arab. J. Geosci. 2020, 13, 861. [Google Scholar] [CrossRef]
- Suk, H.; Lee, K.-K. Characterization of a Ground Water Hydrochemical System Through Multivariate Analysis: Clustering into Ground Water Zones. Groundwater 1999, 37, 358–366. [Google Scholar] [CrossRef]
- Choi, B.-Y.; Kim, H.-J.; Kim, K.; Kim, S.-H.; Jeong, H.-J.; Park, E.; Yun, S.-T. Evaluation of the processes affecting vertical water chemistry in an alluvial aquifer of Mankyeong Watershed, Korea, using multivariate statistical analyses. Environ. Earth Sci. 2007, 54, 335–345. [Google Scholar] [CrossRef]
- Zuo, R.; Xue, Z.; Wang, J.; Meng, L.; Zhao, X.; Pan, M.; Cai, W. Spatiotemporal variations of redox conditions and microbial responses in a typical river bank filtration system with high Fe2+ and Mn2+ contents. J. Hydrol. 2022, 609, 127777. [Google Scholar] [CrossRef]
- Su, X.; Zheng, Z.; Chen, Y.; Wan, Y.; Lyu, H.; Dong, W. Effects of carbon load on nitrate reduction during riverbank filtration: Field monitoring and batch experiment. Sci. Total. Environ. 2022, 845, 157198. [Google Scholar] [CrossRef]
- Chen, Y.; Su, X.; Wan, Y.; Lyu, H.; Dong, W.; Shi, Y.; Zhang, Y. Nitrogen biogeochemical reactions during bank filtration constrained by hydrogeochemical and isotopic evidence: A case study in a riverbank filtration site along the Second Songhua River, NE China. Appl. Geochem. 2022, 140, 105272. [Google Scholar] [CrossRef]
- Ren, W.; Su, X.; Zhang, X.; Chen, Y.; Shi, Y. Influence of hydraulic gradient and temperature on the migration of E. coli in saturated porous media during bank filtration: A case study at the Second Songhua River, Songyuan, Northeastern China. Environ. Geochem. Health 2020, 42, 1977–1990. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, A.; Mavridou, A.; Hadjichristodoulou, C.; Papastergiou, P.; Pappa, O.; Dovriki, E.; Rigas, I. Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health. Environ. Monit. Assess. 2010, 170, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Mal, U. Application of multivariate statistics in the analysis of groundwater geochemistry in and around the open cast coal mines of Barjora block, Bankura district, West Bengal, India. Environ. Earth Sci. 2019, 78, 72. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Sikdar, P.K.; Chakraborty, S. Genesis of arsenic in groundwater of North Bengal Plain using PCA: A case study of English Bazar Block, Malda District, West Bengal, India. Hydrol. Process. 2009, 22, 1796–1809. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Wayland, K.G.; Long, D.T.; Hyndman, D.W.; Pijanowski, B.C.; Woodhams, S.M.; Haack, S.K. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and r-mode factor analysis. J. Environ. Qual. 2003, 32, 180–190. [Google Scholar] [CrossRef]
- Steinhorst, R.K.; Williams, R.E. Discrimination of Groundwater Sources Using Cluster Analysis, MANOVA, Canonical Analysis and Discriminant Analysis. Water Resour. Res. 1985, 21, 1149–1156. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology, 2nd ed.; Wiley: New York, NY, USA, 1986; p. 646. [Google Scholar]
- Adar, E.; Rosenthal, E.; Issar, A.; Batelaan, O. Quantitative assessment of the flow pattern in the southern Arava Valley (Israel) by environmental tracers and a mixing cell model. J. Hydrol. 1992, 136, 333–352. [Google Scholar] [CrossRef]
- Schot, P.; van der Wal, J. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. J. Hydrol. 1992, 134, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Spanos, T.; Ene, A.; Xatzixristou, C. Assessmeny of groundwater quality and hydrogeological profile of kavala area, Northern Greece. Rom. J. Phys. 2015, 60, 1139–1150. [Google Scholar]
- Liu, C.-W.; Lin, K.-H.; Kuo, Y.-M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Guo, X.; Zuo, R.; Wang, J.; Meng, L.; Teng, Y.; Shi, R.; Gao, X.; Ding, F. Hydrogeochemical Evolution of Interaction Between Surface Water and Groundwater Affected by Exploitation. Groundwater 2019, 57, 430–442. [Google Scholar] [CrossRef]
- Dash, R.R.; Bhanu Prakash, E.V.P.; Kumar, P.; Mehrotra, I.; Sandhu, C.; Grischek, T. River bank filtration in Haridwar, India: Removal of turbidity, organics and bacteria. Hydrogeol. J. 2010, 18, 973–983. [Google Scholar] [CrossRef]
- Champ, D.R.; Gulens, J.; Jackson, R.E. Oxidation–reduction sequences in ground water flow systems. Can. J. Earth Sci. 1979, 16, 12–23. [Google Scholar] [CrossRef]
- Kedziorek, M.A.; Bourg, A.C. Electron trapping capacity of dissolved oxygen and nitrate to evaluate Mn and Fe reductive dissolution in alluvial aquifers during riverbank filtration. J. Hydrol. 2009, 365, 74–78. [Google Scholar] [CrossRef]
- Gad, M.; Dahab, K.; Ibrahim, H. Impact of iron concentration as a result of groundwater exploitation on the Nubian sandstone aquifer in El Kharga Oasis, western desert, Egypt. NRIAG J. Astron. Geophys. 2016, 5, 216–237. [Google Scholar] [CrossRef]
Variable | Components b | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
Ca2+ | 0.94 | 0.24 | −0.06 | 0.10 |
NH4+ | 0.91 | 0.06 | −0.28 | −0.21 |
HCO3− | 0.91 | 0.37 | 0.07 | 0.17 |
Mg2+ | 0.88 | 0.33 | −0.10 | 0.21 |
EC | 0.80 | 0.51 | −0.03 | 0.30 |
TDS | 0.80 | 0.51 | −0.03 | 0.30 |
δ2H | 0.18 | 0.96 | 0.02 | 0.21 |
Cl- | 0.40 | 0.91 | 0.00 | 0.00 |
δ18O | 0.28 | 0.85 | −0.11 | 0.36 |
NA++K+ | 0.55 | 0.82 | −0.02 | 0.11 |
Eh | 0.00 | 0.05 | 0.98 | 0.13 |
NO3− | −0.05 | −0.34 | 0.91 | −0.12 |
DO | −0.44 | 0.01 | 0.87 | −0.06 |
HS− | −0.46 | −0.10 | −0.72 | −0.30 |
DOC | 0.62 | 0.40 | 0.65 | 0.08 |
T | −0.31 | −0.02 | 0.64 | −0.30 |
SO42− | 0.00 | 0.01 | −0.16 | 0.91 |
pH | −0.10 | −0.33 | −0.23 | −0.75 |
Fe2+ | 0.57 | 0.45 | −0.03 | 0.67 |
Mn2+ | 0.61 | 0.46 | −0.07 | 0.61 |
Variance/% | 33.75 | 23.77 | 20.43 | 14.65 |
Cumulative/% | 33.75 | 57.52 | 77.95 | 92.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, Y.; Chen, Y.; Che, Q.; Shi, Y.; Zhang, Y. Multivariate Statistical Analysis of the Spatial Variability of Hydrochemical Evolution during Riverbank Infiltration. Water 2022, 14, 3800. https://doi.org/10.3390/w14233800
Bo Y, Chen Y, Che Q, Shi Y, Zhang Y. Multivariate Statistical Analysis of the Spatial Variability of Hydrochemical Evolution during Riverbank Infiltration. Water. 2022; 14(23):3800. https://doi.org/10.3390/w14233800
Chicago/Turabian StyleBo, Yingjie, Yaoxuan Chen, Qiaohui Che, Yakun Shi, and Yiwu Zhang. 2022. "Multivariate Statistical Analysis of the Spatial Variability of Hydrochemical Evolution during Riverbank Infiltration" Water 14, no. 23: 3800. https://doi.org/10.3390/w14233800
APA StyleBo, Y., Chen, Y., Che, Q., Shi, Y., & Zhang, Y. (2022). Multivariate Statistical Analysis of the Spatial Variability of Hydrochemical Evolution during Riverbank Infiltration. Water, 14(23), 3800. https://doi.org/10.3390/w14233800