Kinetics of Arab Light Crude Oil Degradation by Pseudomonas and Bacillus Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Enrichments
2.2. Analytical Methods
2.2.1. Crude Oil Characterization
2.2.2. Crude Oil Measurements
2.3. Experimental Degradation Assays
2.4. Optical Microscopy Photographs
2.5. Crude Oil Biodegradation Kinetics
3. Results and Discussion
3.1. Crude Oil Characterization
3.2. Sample Analysis: Extraction and Amplification
3.3. Crude Oil Degradation
3.4. Degradation Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AlkH | alkane hydroxylase |
BMM | basal minimum medium |
DCM | dichloromethane |
MSM | mineral salt medium |
MW | molecular weight |
sMMO | soluble monooxygenase |
TPH | total petroleum hydrocarbons |
S | substrate concentration (mg/L) |
So | initial substrate concentration (mg/L) |
r | degradation rate (mg/Ld) |
k | kinetic coefficient (d−1) |
t | time (d) |
References
- Atlas, R.M.; Hazen, T.C. Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history. Environ. Sci. Technol. 2011, 45, 6709–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Morikawa, M. Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds: Current state and variants. Appl. Microbiol. Biotechnol. 2010, 87, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Van Beilen, J.B.; Wubbolts, M.G.; Witholt, B. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 1994, 5, 161–174. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Funhoff, E.G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 2007, 74, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Paisse, S.; Duran, R.; Coulon, F.; Goñi-Urriza, M. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Appl. Microbiol. Biotechnol. 2011, 92, 835–844. [Google Scholar] [CrossRef]
- Viggor, S.; Jöesaar, M.; Vedler, E.; Kiiker, R.; Pärnpuu, L.; Heinaru, A. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water. Mar. Pollut. Bull. 2015, 101, 507–516. [Google Scholar] [CrossRef]
- Rehman, K.; Arslan, M.; Müller, J.A.; Saeed, M.; Imran, A.; Amin, I.; Mustafa, T.; Iqbal, S.; Afzal, M. Bioaugmentation-Enhanced Remediation of Crude Oil Polluted Water in Pilot-Scale Floating Treatment Wetlands. Water 2021, 13, 2882–2896. [Google Scholar] [CrossRef]
- Ladygina, N.; Dedyukhina, E.; Vainshtein, M. A review on microbial synthesis of hydrocarbons. Proc. Biochem. 2006, 41, 1001–1014. [Google Scholar] [CrossRef]
- Barathi, S.; Vasudevan, N. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 2001, 26, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Yang, R.; Liu, G.; Chen, T.; Zhang, W.; Zhang, G.; Chang, S. The complete genomic sequence of a novel cold-adapted bacterium, Planococcus maritimus Y42, isolated from crude oil-contaminated soil. Stand. Genom. Sci. 2018, 13, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Deng, J.; Niu, H.; Liang, J.; Arslan, M.; El-Din, M.G.; Wang, Q.; Guo, S.; Chen, C. Establishing and Optimizing a Bacterial Consortia for Effective Biodegradation of Petroleum Contaminants: Advancing Classical Microbiology via Experimental and Mathematical Approach. Water 2021, 13, 3311–3323. [Google Scholar] [CrossRef]
- Obayori, O.S.; Adebusoye, S.A.; Adewale, A.O.; Oyetibo, G.O.; Oluyemi, O.O.; Amokun, R.A.; Ilori, M.O. Differential degradation of crude oil (Bonny Light) by four Pseudomonas strains. J. Environ. Sci. 2009, 21, 243–248. [Google Scholar] [CrossRef]
- Chettri, B.; Mukherjee, A.; Langpoklakpam, J.S.; Chattopadhyay, D.; Singh, A.K. Kinetics of nutrient enhanced crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2 isolated from Guwahati refinery, India. Environ. Pollut. 2016, 216, 548–558. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, W.; Hayes, M.; Nydell, A.; Tarr, M.A.; Van Bael, S.A.; Papadopoulos, K. Degradation of Macondo 252 oil by endophytic Pseudomonas putida. J. Environ. Chem. Eng. 2018, 6, 643–648. [Google Scholar] [CrossRef]
- Kumari, B.; Singh, S.N.; Singh, D.P. Characterization of two biosurfactant producing strains in crude oil degradation. Proc. Biochem. 2012, 47, 2463–2471. [Google Scholar] [CrossRef]
- Sajna, K.V.; Sukumaran, R.K.; Gottumukkala, L.D.; Pandey, A. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour. Technol. 2015, 191, 133–139. [Google Scholar] [CrossRef]
- Silva, B.M.; Maranho, L.T. Petroleum-contaminated sites: Decision framework for selecting remediation technologies. J. Hazard. Mat. 2019, 378, 120722. [Google Scholar] [CrossRef]
- Varjani, S.J.; Upasani, V.N. A new look on factor affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 2017, 120, 71–83. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 2014, 27, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M.; Bragg, J.R. Bioremediation of marine oil spills: When and when not—The Exxon Valdez experience. Microb. Biotechnol. 2009, 2, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanjani, M.K.; Yamini, Y.; Shariati, S. Analysis of n-alkanes in water samples by means of headspace solvent microextraction and gas chromatography. J. Hazad. Mat. 2006, B136, 714–720. [Google Scholar] [CrossRef]
- Ozyurek, S.B.; Bilkay, I.S. Comparison of petroleum biodegradation efciencies of three diferent bacterial consortia determined in petroleum-contaminated waste mud pit. SN Appl. Sci. 2020, 2, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Sharma, R.; Singh, K.; Sharma, A. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann. Microbiol. 2013, 63, 417–431. [Google Scholar] [CrossRef]
- Bajagain, R.; Park, Y.; Jeong, S.W. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. Sci. Total Environ. 2018, 626, 1236–1242. [Google Scholar] [CrossRef]
- Bajagain, R.; Gautam, P.; Jeong, S.W. Biodegradation and post-oxidation of fuel-weathered field soil. Sci. Total Environ. 2020, 734, 139452. [Google Scholar] [CrossRef]
- Xia, M.; Fu, D.; Chakraborty, R.; Singh, R.P.; Terry, N. Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresour. Technol. 2019, 282, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Varjani, S.J.; Upasani, V.N. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour. Technol. 2016, 221, 510–516. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, J.-D.; Ma, F.; Shi, R.-J.; Han, S.-Q.; Zhang, J.; Zhang, Y. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery. Bioresour. Technol. 2016, 207, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef]
- Cerqueira, V.S.; Hollenbach, E.B.; Maboni, F.; Vainstein, M.; Camargo, F.; Do-Carmo, R.P.M.; Bento, F.M. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour. Technol. 2011, 102, 11003–11010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.B.; Chi, C.Q.; Nie, Y.; Tang, Y.Q.; Tan, Y.; Wu, G.; Wu, X.L. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour. Technol. 2011, 102, 7755–7761. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, V.; Mandal, A.B.; Gnanamani, A. Microbial biosurfactant mediated removal and/or solubilization of crude oil contamination from soil and aqueous phase: An approach with Bacillus licheniformis MTCC 5514. Int. Biodeterior. Biodegrad. 2014, 94, 24–30. [Google Scholar] [CrossRef]
- Beskoski, V.P.; Gojgic-Cvijovic, G.; Milic, J.; Ilic, M.; Miletic, S.; Solevic, T.; Vrvic, M.M. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)–a field experiment. Chemosphere 2011, 83, 34–40. [Google Scholar] [CrossRef]
- Hajieghrari, M.; Hejazi, P. Enhanced biodegradation of n-Hexadecane in solid-phase of soil by employing immobilized Pseudomonas Aeruginosa on size-optimized coconut fibers. J. Hazard. Mat. 2020, 389, 122134. [Google Scholar] [CrossRef]
- Sharma, S.; Pandey, L.M. Biodegradation kinetics of binary mixture of hexadecane and phenanthrene by the bacterial microconsortium. Bioresour. Technol. 2022, 358, 127408. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Y.Y.; Wang, C.; Ma, Z.; Liu, X.; Li, S. Biodegradation of n-alkanes in crude oil by three identified bacterial strains. Fuel 2020, 275, 117897. [Google Scholar] [CrossRef]
- Boufadel, M.C.; Geng, X.; Short, J. Bioremediation of the Exxon Valdez oil in Prince William Sound beaches. Mar. Poll. Bull. 2016, 113, 156–164. [Google Scholar] [CrossRef]
- Geng, X.; An, C.; Lee, K.; Boufadel, M.C. Modeling oil biodegradation and bioremediation within beaches. Curr. Op. Chem. Eng. 2022, 35, 100751. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.; Santos, A.; Vega, M.A. Kinetics of Arab Light Crude Oil Degradation by Pseudomonas and Bacillus Strains. Water 2022, 14, 3802. https://doi.org/10.3390/w14233802
Costa C, Santos A, Vega MA. Kinetics of Arab Light Crude Oil Degradation by Pseudomonas and Bacillus Strains. Water. 2022; 14(23):3802. https://doi.org/10.3390/w14233802
Chicago/Turabian StyleCosta, Carlos, Anais Santos, and Milena A. Vega. 2022. "Kinetics of Arab Light Crude Oil Degradation by Pseudomonas and Bacillus Strains" Water 14, no. 23: 3802. https://doi.org/10.3390/w14233802
APA StyleCosta, C., Santos, A., & Vega, M. A. (2022). Kinetics of Arab Light Crude Oil Degradation by Pseudomonas and Bacillus Strains. Water, 14(23), 3802. https://doi.org/10.3390/w14233802