A Comparison Study on Defluoridation Capabilities Using Syzygium cumini and Psidium guajava: Process Optimization, Isotherm, Kinetic, Reusability Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorbents Preparation
2.3. Adsorbents Characterization
2.4. Adsorption Tests
2.5. Response Surface Methodological Optimization
2.6. Equilibrium Model Fitting (Isotherms and Kinetics)
3. Results and Discussion
3.1. Characterization of the Biosorbents
3.2. Response Surface Analysis and Model Fitting
3.3. Pareto Chart Analysis
3.4. Effect of Main Operational Parameters
3.4.1. Effect of Solution pH
3.4.2. Effect of Adsorbent Dosage
3.4.3. Effect of Contact time and Kinetic Study
3.5. Isotherm Study
3.6. Possible Biosorption Mechanisms
3.7. Regeneration Study
3.8. Comparison of Adsorbent Performances with Other Reported Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chigondo, M.; Paumo, H.K.; Bhaumik, M.; Pillay, K.; Maity, A. Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water. J. Colloid Interface Sci. 2018, 532, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.H.; Gholami, S.; Karri, R.R.; Lima, E.C.; Mahvi, A.H.; Nazmara, S.; Fazlzadeh, M. Process modeling, characterization, optimization, and mechanisms of fluoride adsorption using magnetic agro-based adsorbent. J. Environ. Manag. 2021, 286, 112173. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, K.; Saraswat, P.K.; Khan, S. Improvement in fluoride remediation technology using GIS based mapping of fluoride contaminated groundwater and microbe assisted phytoremediation. Ecotoxicol. Environ. Saf. 2019, 168, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Yan, B.; Ji, X.; Liao, B.; Gong, R.; Pei, X.; Liu, G. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling. Ecotoxicol. Environ. Saf. 2019, 180, 366–373. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidlines for Drinking-Water Quality, Fourth Edition Incorporaing the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Alhassan, S.I.; Huang, L.; He, Y.; Yan, L.; Wu, B.; Wang, H. Fluoride removal from water using alumina and aluminum-based composites: A comprehensive review of progress. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2051–2208. [Google Scholar] [CrossRef]
- Onipe, T.; Edokpayi, J.N.; Odiyo, J.O. A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. J. Environ. Sci. Health A 2020, 55, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- Grzegorzek, M.; Majewska-Nowak, K.; Ahmed, A.E. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Sci. Total Environ. 2020, 722, 137681. [Google Scholar] [CrossRef]
- Khalid, S.H.; Andy, S.; Rafid, A.K.; Montserrat Ortoneda, P.; David, P. Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER)-Experimental, statistical, and economic approach. J. Environ. Manag. 2017, 197, 80–88. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Marathe, K.V.; Rathod, V.K. A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach. J. Water Process. Eng. 2016, 13, 153–167. [Google Scholar] [CrossRef]
- Borgohain, X.; Boruah, A.; Sarma, G.K.; Rashid, M.H. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. J. Mol. Liq. 2020, 305, 112799. [Google Scholar] [CrossRef]
- Araga, R.; Soni, S.; Sharma, C.S. Fluoride adsorption from aqueous solution using activated carbon obtained from KOH-treated jamun (Syzygium cumini) seed. J. Environ. Chem. Eng. 2017, 5, 5608–5616. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Kawakita, H.; Ohto, K.; Harada, H.; Alam, S. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions. J. Hazard. Mater. 2011, 192, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sengupta, S.; Manna, S.; Das, P. Chemically reduced tea waste biochar and its application in treatment of fluoride containing wastewater: Batch and optimization using response surface methodology. Process Saf. Environ. Prot. 2018, 116, 553–563. [Google Scholar] [CrossRef]
- Goswami, R.; Kumar, M. Removal of fluoride from aqueous solution using nanoscale rice husk biochar. Groundw. Sustain. Dev. 2018, 7, 446–451. [Google Scholar] [CrossRef]
- Mei, L.; Qiao, H.; Ke, F.; Peng, C.; Hou, R.; Wan, X.; Cai, H. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water. Appl. Surf. Sci. 2020, 509, 144685. [Google Scholar] [CrossRef]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S. Optimization of fluoride removal from aqueous solution using Jamun (Syzygium cumini) leaf ash. Process Saf. Environ. Prot. 2018, 115, 125–138. [Google Scholar] [CrossRef]
- Khound, N.J.; Bharali, R.K. Biosorption of fluoride from aqueous medium by Indian sandalwood (Santalum album) leaf powder. J. Environ. Chem. Eng. 2018, 6, 1726–1735. [Google Scholar] [CrossRef]
- Hegde, R.M.; Rego, R.M.; Potla, K.M.; Kurkuri, M.D.; Kigga, M. Bio-inspired materials for defluoridation of water: A review. Chemosphere 2020, 253, 126657. [Google Scholar] [CrossRef]
- Ramos-Vargas, S.; Alfaro-Cuevas-Villanueva, R.; Huirache-Acuña, R.; Cortés-Martínez, R. Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl. Sci. 2018, 8, 1807. [Google Scholar] [CrossRef] [Green Version]
- Adeniyi, A.G.; Ighalo, J.O. Biosorption of pollutants by plant leaves: An empirical review. J. Environ. Chem. Eng. 2019, 7, 103100. [Google Scholar] [CrossRef]
- Mahmood, T.; Saddique, M.T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A. Comparison of different methods for the point of zero charge determination of NiO. Ind. Eng. Chem. Res. 2011, 50, 10017–10023. [Google Scholar] [CrossRef]
- APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Work Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017. [Google Scholar]
- Birniwa, A.H.; Mahmud, H.N.; Abdullahi, S.S.; Habibu, S.; Jagaba, A.H.; Ibrahim, M.N.; Ahmad, A.; Alshammari, M.B.; Parveen, T.; Umar, K. Adsorption behavior of methylene blue cationic dye in aqueous solution using polypyrrole-polyethylenimine nano-adsorbent. Polymers 2022, 14, 3362. [Google Scholar] [CrossRef]
- Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Khataee, A.; Godini, H. Optimisation of the operational parameters during a biological nitrification process using response surface methodology. Can. J. Chem. Eng. 2014, 92, 13–22. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Mahvi, A.H.; Mahdavi, Y.; Balarak, D. Isothermic and kinetic modeling of fluoride removal from water by means of the natural biosorbents sorghum and canola. Fluoride 2015, 48, 37–44. [Google Scholar]
- El Naga, A.O.A.; El Saied, M.; Shaban, S.A.; El Kady, F.Y. Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J. Mol. Liq. 2019, 285, 9–19. [Google Scholar] [CrossRef]
- Meilani, V.; Lee, J.-I.; Kang, J.-K.; Lee, C.-G.; Jeong, S.; Park, S.-J. Application of aluminum-modified food waste biochar as adsorbent of fluoride in aqueous solutions and optimization of production using response surface methodology. Microporous Mesoporous Mater. 2021, 312, 110764. [Google Scholar] [CrossRef]
- Babu, A.N.; Reddy, D.S.; Kumar, G.S.; Ravindhranath, K.; Mohan, G.K. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. J. Environ. Manag. 2018, 218, 602–612. [Google Scholar] [CrossRef]
- Yu, X.; Tong, S.; Ge, M.; Zuo, J. Removal of fluoride from drinking water by cellulose@ hydroxyapatite nanocomposites. Carbohydr. Polym. 2013, 92, 269–275. [Google Scholar] [CrossRef]
- Mohan, S.; Sreelakshmi, G. Fixed bed column study for heavy metal removal using phosphate treated rice husk. J. Hazard. Mater. 2008, 153, 75–82. [Google Scholar] [CrossRef]
- Mohan, D.; Sharma, R.; Singh, V.K.; Steele, P.; Pittman, C.U., Jr. Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Ind. Eng. Chem. Res. 2012, 51, 900–914. [Google Scholar] [CrossRef]
- Cai, H.; Xu, L.; Chen, G.; Peng, C.; Ke, F.; Liu, Z.; Li, D.; Zhang, Z.; Wan, X. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Appl. Surf. Sci. 2016, 375, 74–84. [Google Scholar] [CrossRef]
- Brahman, K.D.; Kazi, T.G.; Baig, J.A.; Afridi, H.I.; Arain, S.S.; Saraj, S.; Arain, M.B.; Arain, S.A. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate. Chemosphere 2016, 150, 320–328. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Cazetta, A.L.; de Souza, P.S.; Spessato, L.; Silva, T.L.; Almeida, V.C. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf. 2018, 147, 64–71. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Budianta, W.; Rivera, K.K.P.; Arazo, R.O. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. J. Environ. Chem. Eng. 2017, 5, 1465–1474. [Google Scholar] [CrossRef]
- Roy, S.; Das, P.; Sengupta, S.; Manna, S. Calcium impregnated activated charcoal: Optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor. Process Saf. Environ. Prot. 2017, 109, 18–29. [Google Scholar] [CrossRef]
- Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J. Saudi Chem. Soc. 2015, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, E.; Mousazadeh, M.; Ahmadpari, H.; Kabdasli, I.; Jamali, H.A.; Graca, N.S.; Emamjomeh, M.M. Electrocoagulation-flotation treatment followed by sedimentation of carpet cleaning wastewater: Optimization of key operating parameters via RSM-CCD. Desalin. Water Treat. 2021, 227, 163–176. [Google Scholar] [CrossRef]
- Padhi, S.; Tokunaga, T. Surface complexation modeling of fluoride sorption onto calcite. J. Environ. Chem. Eng. 2015, 3, 1892–1900. [Google Scholar] [CrossRef]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef]
- Bibi, S.; Farooqi, A.; Yasmin, A.; Kamran, M.A.; Niazi, N.K. Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. Int. J. Phytoremediation 2017, 19, 1029–1036. [Google Scholar] [CrossRef]
- Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Amini, M.M. Adsorption of fluoride over a metal organic framework Uio-66 functionalized with amine groups and optimization with response surface methodology. J. Mol. Liq. 2016, 221, 279–286. [Google Scholar] [CrossRef]
- Zendehdel, M.; Shoshtari-Yeganeh, B.; Khanmohamadi, H.; Cruciani, G. Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology. Process Saf. Environ. Prot. 2017, 109, 172–191. [Google Scholar] [CrossRef]
- Saikia, P.; Bharali, R.K.; Baruah, H.K. Kinetic and thermodynamic studies for fluoride removal using a novel bio-adsorbent from possotia (Vitex negundo) leaf. J. Anal. Sci. Technol. 2017, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Raghav, S.; Kumar, D. Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. J. Chem. Eng. Data 2018, 63, 1682–1697. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Saikia, R.; Goswami, R.; Bordoloi, N.; Senapati, K.K.; Pant, K.K.; Kumar, M.; Kataki, R. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through response surface methodology. J. Environ. Chem. Eng. 2017, 5, 5528–5539. [Google Scholar] [CrossRef]
- Lee, J.-I.; Kang, J.-K.; Hong, S.-H.; Lee, C.-G.; Jeong, S.; Park, S.-J. Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism. Chemosphere 2021, 263, 128328. [Google Scholar] [CrossRef]
- Adak, M.K.; Mondal, B.; Dhak, P.; Sen, S.; Dhak, D. A comparative study on fluoride removal capacity from drinking water by adsorption using nano-sized alumina and zirconia modified alumina prepared by chemical route. Adv. Water Sci. Technol. 2017, 4, 01–10. [Google Scholar]
- Bharali, R.K.; Bhattacharyya, K.G. Biosorption of fluoride on Neem (Azadirachta indica) leaf powder. J. Environ. Chem. Eng. 2015, 3, 662–669. [Google Scholar] [CrossRef]
- Talat, M.; Mohan, S.; Dixit, V.; Singh, D.K.; Hasan, S.H.; Srivastava, O.N. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundw. Sustain. Dev. 2018, 7, 48–55. [Google Scholar] [CrossRef]
- Singh, K.; Lataye, D.H.; Wasewar, K.L. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. J. Fluor. Chem. 2017, 194, 23–32. [Google Scholar] [CrossRef]
- Mwangi, C.K.; Mwangi, I.W.; Wanjau, R.N.; Swaleh, S.; Ram, M.; Ngila, J. Remediation of fluoride laden water by complexation with triethylamine modified maize tassels. Environ. Nat. Resour. J. 2016, 6, 44–58. [Google Scholar] [CrossRef]
- Getachew, T.; Hussen, A.; Rao, V. Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. Int. J. Environ. Sci. Technol. 2015, 12, 1857–1866. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.; Majumder, C. Removal of fluoride from synthetic waste water by using “bio-adsorbents”. Int. J. Res. Eng. Technol. 2014, 3, 776–785. [Google Scholar]
- De, D.; Santosha, S.; Aniya, V.; Sreeramoju, A.; Satyavathi, B. Assessing the applicability of an agro-industrial waste to Engineered Bio-char as a dynamic adsorbent for Fluoride Sorption. J. Environ. Chem. Eng. 2018, 6, 2998–3009. [Google Scholar] [CrossRef]
- Mereta, S.T. Biosorption of fluoride ion from water using the seeds of the cabbage tree (Moringa stenopetala). Afr. J. Environ. Sci. Technol. 2017, 11, 1–10. [Google Scholar] [CrossRef]
Parameters | Unit | Range and Levels | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
Initial fluoride concentration | mg/L | 4 | 6 | 8 | 10 | 12 |
Initial pH | ---- | 3 | 5 | 7 | 9 | 11 |
Adsorbent dose | g/L | 2 | 4 | 6 | 8 | 10 |
Contact time | min | 20 | 40 | 60 | 80 | 100 |
Adsorbent | SSABET (m2 g−1) | SSALang (m2 g−1/) | V micro (cm3 (STP) g−1) | V total (cm3 g−1) | Average Pore Width (nm) |
---|---|---|---|---|---|
SC | 3.0771 | 15.475 | 0.2475 | 0.0017 | 5.9853 |
PG | 3.1977 | 16.756 | 0.2752 | 0.0035 | 11.672 |
Std | Run | Independent Variables | F− Removal %—SC | F− Removal %—PG | |||||
---|---|---|---|---|---|---|---|---|---|
Initial Concentration (mg/L) | pH | Adsorbent Dosage (g/L) | Contact Time (min) | Experimental | Predicted | Experimental | Predicted | ||
21 | 1 | 8 | 7 | 2 | 60 | 7.59 | 8.92 | 36.51 | 38.98 |
27 | 2 | 8 | 7 | 6 | 60 | 54.56 | 55.37 | 77.44 | 71.83 |
23 | 3 | 8 | 7 | 6 | 20 | 37.65 | 37.76 | 34.51 | 36.33 |
11 | 4 | 6 | 9 | 4 | 80 | 24.30 | 27.99 | 48.72 | 46.67 |
20 | 5 | 8 | 11 | 6 | 60 | 30.54 | 27.23 | 19.53 | 18.58 |
19 | 6 | 8 | 3 | 6 | 60 | 36.15 | 37.89 | 53.82 | 55.73 |
6 | 7 | 10 | 5 | 8 | 40 | 58.75 | 56.09 | 51.61 | 50.48 |
8 | 8 | 10 | 9 | 8 | 40 | 54.25 | 56.33 | 52.97 | 55.22 |
24 | 9 | 8 | 7 | 6 | 100 | 49.36 | 47.68 | 67.58 | 66.72 |
9 | 10 | 6 | 5 | 4 | 80 | 40.43 | 38.89 | 88.61 | 88.57 |
3 | 11 | 6 | 9 | 4 | 40 | 19.32 | 17.29 | 38.77 | 37.83 |
13 | 12 | 6 | 5 | 8 | 80 | 69.34 | 69.07 | 89.45 | 86.03 |
26 | 13 | 8 | 7 | 6 | 60 | 56.47 | 55.37 | 68.64 | 71.83 |
2 | 14 | 10 | 5 | 4 | 40 | 33.38 | 30.81 | 31.52 | 26.08 |
29 | 15 | 8 | 7 | 6 | 60 | 55.55 | 55.37 | 71.98 | 71.83 |
25 | 16 | 8 | 7 | 6 | 60 | 50.57 | 55.37 | 74.33 | 71.83 |
4 | 17 | 10 | 9 | 4 | 40 | 44.46 | 45.76 | 13.48 | 13.72 |
16 | 18 | 10 | 9 | 8 | 80 | 49.28 | 48.45 | 67.58 | 62.56 |
15 | 19 | 6 | 9 | 8 | 80 | 40.34 | 43.45 | 53.59 | 61.24 |
10 | 20 | 10 | 5 | 4 | 80 | 38.54 | 37.71 | 52.9 | 52.15 |
17 | 21 | 4 | 7 | 6 | 60 | 64.66 | 61.36 | 90.23 | 88.93 |
1 | 22 | 6 | 5 | 4 | 40 | 19.23 | 21.09 | 63.67 | 65.51 |
18 | 23 | 12 | 7 | 6 | 60 | 74.34 | 76.07 | 48.56 | 50.82 |
12 | 24 | 10 | 9 | 4 | 80 | 46.53 | 45.56 | 24.34 | 25.56 |
14 | 25 | 10 | 5 | 8 | 80 | 52.73 | 55.31 | 68.87 | 72.03 |
5 | 26 | 6 | 5 | 8 | 40 | 57.43 | 58.95 | 66.49 | 67.48 |
30 | 27 | 8 | 7 | 6 | 60 | 59.53 | 55.37 | 69.35 | 71.83 |
28 | 28 | 8 | 7 | 6 | 60 | 55.53 | 55.37 | 69.25 | 71.83 |
22 | 29 | 8 | 7 | 10 | 60 | 52.57 | 49.67 | 79.45 | 77.94 |
7 | 30 | 6 | 9 | 8 | 40 | 38.58 | 40.43 | 59.34 | 56.91 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 6699.77 | 14 | 478.56 | 47.56 | <0.0001 |
A-concentration | 324.94 | 1 | 324.94 | 32.29 | <0.0001 |
B-pH | 170.61 | 1 | 170.61 | 16.96 | 0.0009 |
C-dosage | 2490.23 | 1 | 2490.23 | 247.48 | <0.0001 |
D-time | 147.56 | 1 | 147.56 | 14.66 | 0.0016 |
A.B | 351.66 | 1 | 351.66 | 34.95 | <0.0001 |
A.C | 158.19 | 1 | 158.19 | 15.72 | 0.0012 |
A.D | 118.86 | 1 | 118.86 | 11.81 | 0.0037 |
B.C | 216.31 | 1 | 216.31 | 21.50 | 0.0003 |
B.D | 50.45 | 1 | 50.45 | 5.01 | 0.0407 |
C.D | 59.02 | 1 | 59.02 | 5.87 | 0.0286 |
A2 | 305.39 | 1 | 305.39 | 30.35 | <0.0001 |
B2 | 891.77 | 1 | 891.77 | 88.62 | <0.0001 |
C2 | 1165.37 | 1 | 1165.37 | 115.81 | <0.0001 |
D2 | 274.23 | 1 | 274.23 | 27.25 | 0.0001 |
Residual | 150.94 | 15 | 10.06 | ||
Lack of Fit | 108.67 | 10 | 10.87 | 1.29 | 0.4126 |
Pure Error | 42.27 | 5 | 8.45 | ||
Cor Total | 6850.71 | 29 | |||
Other statistical parameters | |||||
R2 = 0.98 | Adj.R2 = 0.96 | Prd.R2 = 0.90 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 11,780.23 | 14 | 841.45 | 51.87 | <0.0001 |
A-concentration | 2179.51 | 1 | 2179.51 | 134.36 | <0.0001 |
B-pH | 2070.37 | 1 | 2070.37 | 127.63 | <0.0001 |
C-dose | 2277.02 | 1 | 2277.02 | 140.37 | <0.0001 |
D-time | 1385.48 | 1 | 1385.48 | 85.41 | <0.0001 |
AB | 234.63 | 1 | 234.63 | 14.46 | 0.0017 |
AC | 502.77 | 1 | 502.77 | 30.99 | <0.0001 |
AD | 9.02 | 1 | 9.02 | 0.56 | 0.4675 |
BC | 292.84 | 1 | 292.84 | 18.05 | 0.0007 |
BD | 202.14 | 1 | 202.14 | 12.46 | 0.0030 |
CD | 20.36 | 1 | 20.36 | 1.26 | 0.2802 |
A2 | 6.56 | 1 | 6.56 | 0.40 | 0.5344 |
B2 | 2061.33 | 1 | 2061.33 | 127.07 | <0.0001 |
C2 | 306.50 | 1 | 306.50 | 18.89 | 0.0006 |
D2 | 706.88 | 1 | 706.88 | 43.58 | <0.0001 |
Residual | 243.32 | 15 | 16.22 | ||
Lack of Fit | 182.60 | 10 | 18.26 | 1.50 | 0.3415 |
Pure Error | 60.73 | 5 | 12.15 | ||
Cor Total | 12,023.56 | 29 | |||
Other statistical parameters | |||||
R2 = 0.98 | Adj.R2 = 0.96 | Pred.R2 = 0.91 |
Adsorbents | Optimal Condition | Fluoride Removal (%) | Error | Standard Deviation | ||||
---|---|---|---|---|---|---|---|---|
Initial Fluoride Concentration (mg/L) | pH | Adsorbent Dose (g/L) | Contact Time (min) | Experimental Responses | Model Predicted | |||
SC | 6 | 5 | 8 | 75.6 | 72.50 | 69.18 | 3.23 | ±1.48 |
PG | 6 | 5.1 | 6.69 | 90.23 | 88.30 | 90.23 | 1.93 | ±0.67 |
Model | Parameters | Adsorbents | |
---|---|---|---|
SC | PG | ||
Pseudo-first order | R2 K1 (min−1) Qe (mg/g) | 0.988 0.1 × 10−3 1.10 | 0.984 0.1 × 10−3 1.41 |
Pseudo-second order | R2 K2 (g/mg·h) Qe (mg/g) | 0.991 0.1 × 10−1 1.15 | 0.992 0.8 × 10−2 1.62 |
Langmuir model | R2 Qm (mg/g) KL (L/mg) | 0.997 1.14 0.46 | 0.991 1.50 0.70 |
Freundlich model | R2 1/n KF (mg/g (L/mg)1/n) | 0.954 0.420 0.654 | 0.860 0.368 0.806 |
Adsorbents | Qe (mg/g) | References |
---|---|---|
Sandal wood leaf | 5.88 | [19] |
Bael shell | 2.45 | [54] |
Triethylamine modified Maize tassels | 0.19 | [55] |
Coffee husk | 0.29 | [56] |
Banana peel | 0.31 | [56] |
Sweet lemon peel | 0.74 | [57] |
Inactivated jamun seed | 0.8 | [13] |
Pongammia pinnata seeds | 1.12 | [58] |
Moringa stenopetala | 1.32 | [59] |
Psidium guajava | 1.50 | Present study |
Syzygium cumini | 1.14 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qazi, M.; Jamali, H.A.; Darvishi Cheshmeh Soltani, R.; Nasr, M.; Kamyab Rudsari, A.; Ghanbari, R. A Comparison Study on Defluoridation Capabilities Using Syzygium cumini and Psidium guajava: Process Optimization, Isotherm, Kinetic, Reusability Studies. Water 2022, 14, 3939. https://doi.org/10.3390/w14233939
Qazi M, Jamali HA, Darvishi Cheshmeh Soltani R, Nasr M, Kamyab Rudsari A, Ghanbari R. A Comparison Study on Defluoridation Capabilities Using Syzygium cumini and Psidium guajava: Process Optimization, Isotherm, Kinetic, Reusability Studies. Water. 2022; 14(23):3939. https://doi.org/10.3390/w14233939
Chicago/Turabian StyleQazi, Malihe, Hamze Ali Jamali, Reza Darvishi Cheshmeh Soltani, Mahmoud Nasr, Adel Kamyab Rudsari, and Reza Ghanbari. 2022. "A Comparison Study on Defluoridation Capabilities Using Syzygium cumini and Psidium guajava: Process Optimization, Isotherm, Kinetic, Reusability Studies" Water 14, no. 23: 3939. https://doi.org/10.3390/w14233939
APA StyleQazi, M., Jamali, H. A., Darvishi Cheshmeh Soltani, R., Nasr, M., Kamyab Rudsari, A., & Ghanbari, R. (2022). A Comparison Study on Defluoridation Capabilities Using Syzygium cumini and Psidium guajava: Process Optimization, Isotherm, Kinetic, Reusability Studies. Water, 14(23), 3939. https://doi.org/10.3390/w14233939