Synthesis, Characterization, and Application of Pt/PtO2-TiO2/SiO2 Materials on a Continuous Flow Packed Bed Microreactor for Enhanced Photocatalytic Activity under Sunlight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Preparation of the Photocatalysts
2.3. Characterization Techniques
2.4. Experimental Reaction Unit
3. Results and Discussion
3.1. Characterization
3.1.1. Crystal Phase and Surface Composition
3.1.2. UV–Vis Spectroscopic Studies
3.1.3. Microstructural Analysis
3.2. Photocatalytic Tests
3.2.1. Effect of Pt Content
3.2.2. Effect of Operational Parameters
3.3. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paumo, H.K.; Dalhatou, S.; Katata-Seru, L.M.; Kamdem, B.P.; Tijani, J.O.; Vishwanathan, V.; Kane, A.; Bahadur, I. TiO2 Assisted Photocatalysts for Degradation of Emerging Organic Pollutants in Water and Wastewater. J. Mol. Liq. 2021, 331, 115458. [Google Scholar] [CrossRef]
- Leyva, E.; Moctezuma, E.; Baines, K.M.; Noriega, S.; Zarazua, E. A Review on Chemical Advanced Oxidation Processes for Pharmaceuticals with Paracetamol as a Model Compound. Reaction Conditions, Intermediates and Total Mechanism. Curr. Org. Chem. 2017, 22, 2–17. [Google Scholar] [CrossRef]
- Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone Sci. Eng. 2006, 28, 353–414. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as Emerging Contaminants and Their Removal from Water. A Review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Freyria, F.S.; Geobaldo, F.; Bonelli, B. Nanomaterials for the Abatement of Pharmaceuticals and Personal Care Products from Wastewater. Appl. Sci. 2018, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Taoufik, N.; Boumya, W.; Achak, M.; Sillanpää, M.; Barka, N. Comparative Overview of Advanced Oxidation Processes and Biological Approaches for the Removal Pharmaceuticals. J. Environ. Manag. 2021, 288, 112404. [Google Scholar] [CrossRef]
- Bousiakou, L.G.; Mohsin, K.; Lianos, P.; Fatani, A.J.; Kalkani, E.; Karikas, G.A. Wastewater Treatment Technologies in the Degradation of Hormones and Pharmaceuticals with Focus on TiO2 Technologies. Pharmakeftiki 2013, 25, 37–48. [Google Scholar]
- Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B. Persistence of Pharmaceutical Compounds and Other Organic Wastewater Contaminants in a Conventional Drinking-Water-Treatment Plant. Sci. Total Environ. 2004, 329, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, J.H.F.; Lai, C.W.; Leo, B.F.; Juan, J.C.; Johan, M.R. Advanced photocatalytic degradation of acetaminophen using Cu2O/WO3/TiO2 ternary composite under solar irradiation. Catal. Commun. 2022, 163, 106396. [Google Scholar] [CrossRef]
- Montagner, C.C.; Sodré, F.F.; Acayaba, R.D.; Vidal, C.; Campestrini, I.; Locatelli, M.A.; Pescara, I.C.; Albuquerque, A.F.; Umbuzeiro, G.A.; Jardim, W.F. Ten Years-Snapshot of the Occurrence of Emerging Contaminants in Drinking, Surface and Ground Waters and Wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 2019, 30, 614–632. [Google Scholar] [CrossRef]
- Guerra, P.; Kim, M.; Shan, A.; Alaee, M.; Smyth, S.A. Occurrence and Fate of Antibiotic, Analgesic/Anti-Inflammatory, and Antifungal Compounds in Five Wastewater Treatment Processes. Sci. Total Environ. 2014, 473, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, L.E.; Ray, M.B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res. 2008, 42, 3480–3488. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced Oxidation Process-Mediated Removal of Pharmaceuticals from Water: A Review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Abdel Salam, M.; Mokhtar, M.; Albukhari, S.M.; Baamer, D.F.; Palmisano, L.; Jaremko, M.; Abukhadra, M.R. Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties. Polymers 2022, 14, 2329. [Google Scholar] [CrossRef] [PubMed]
- Al-Soihi, A.S.; Alsulami, Q.A.; Mostafa, M.M.M. Amalgamated Titanium Oxide-Carbon Hollow Sphere/Nickel-Layered Double Hydroxide as an Efficient Photocatalyst for the Degradation of Methyl Orange. Catalysts 2022, 12, 1200. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Khezami, L.; Amrane, A.; Assadi, A.A.; Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; et al. A comparative study of ceramic nanoparticles synthesized for antibiotic removal: Catalysis characterization and photocatalytic performance modeling. Environ. Sci. Pollut. Res. 2021, 28, 13900–13912. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Shahbazi, R.; Payan, A.; Fattahi, M. Preparation, Evaluations and Operating Conditions Optimization of Nano TiO2 over Graphene Based Materials as the Photocatalyst for Degradation of Phenol. J. Photochem. Photobiol. A Chem. 2018, 364, 564–576. [Google Scholar] [CrossRef]
- Gusmão, C.A.; Palharim, P.H.; Ramos, B.; Teixeira, A.C.S.C. Enhancing the Visible-Light Photoactivity of Silica-Supported TiO2 for the Photocatalytic Treatment of Pharmaceuticals in Water. Environ. Sci. Pollut. Res. 2021, 42215–42230. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.S.; Leaw, W.L.; Mohamad, D.; Alias, S.H.; Nur, H. A Critical Review of Metal-Doped TiO2 and Its Structure–Physical Properties–Photocatalytic Activity Relationship in Hydrogen Production. Int. J. Hydrog. Energy 2020, 45, 28553–28565. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. The Advancements in Sol-Gel Method of Doped-TiO2 Photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Shukla, S.; Pandey, H.; Singh, P.; Tiwari, A.K.; Baranwal, V.; Pandey, A.C. Synergistic Impact of Photocatalyst and Dopants on Pharmaceutical-Polluted Waste Water Treatment: A Review. Environ. Pollut. Bioavailab. 2021, 33, 347–364. [Google Scholar] [CrossRef]
- Fang, M.; Tan, X.; Liu, Z.; Hu, B.; Wang, X. Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism. Research 2021, 2021, 794329. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Halder, N.; Misra, K.P.; Chattopadhyay, S.; Jain, S.K.; Bera, P.; Kumar, N.; Mukhopadhyay, A.K. Systematic Study on the Effect of Ag Doping in Shaping the Magnetic Properties of Sol-Gel Derived TiO2 Nanoparticles. Ceram. Int. 2020, 46, 27832–27848. [Google Scholar] [CrossRef]
- Mehrali-Afjani, M.; Nezamzadeh-Ejhieh, A.; Aghaei, H. A Brief Study on the Kinetic Aspect of the Photodegradation and Mineralization of BiOI-Ag3PO4 towards Sodium Diclofenac. Chem. Phys. Lett. 2020, 759, 137873. [Google Scholar] [CrossRef]
- Khan, M.R.; Chuan, T.W.; Yousuf, A.; Chowdhury, M.N.K.; Cheng, C.K. Schottky Barrier and Surface Plasmonic Resonance Phenomena towards the Photocatalytic Reaction: Study of Their Mechanisms to Enhance Photocatalytic Activity. Catal. Sci. Technol. 2015, 5, 2522–2531. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Bahadur, N.; Kong, L.; O’Dell, L.A.; Merenda, A.; Dumée, L.F. Engineering Schottky-like and Heterojunction and Heterojunction Materials for Enhanced Photocatalysis Performance—A review. Mater. Adv. 2022, 3, 2309–2323. [Google Scholar] [CrossRef]
- Li, P.; Guo, J.; Ji, X.; Xiong, Y.; Lai, Q.; Yao, S.; Zhu, Y.; Zhang, Y.; Xiao, P. Construction of Direct Z-Scheme Photocatalyst by the Interfacial Interaction of WO3 and SiC to Enhance the Redox Activity of Electrons and Holes. Chemosphere 2021, 282, 130866. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Zhu, X.; Hong, B.; Wang, W.; Qi, Z.; Xie, W.; Ding, J.; Bao, J.; Sun, S.; et al. Effect of Surface Modification with H2S and NH3 on TiO2 for Adsorption and Photocatalytic Degradation of Gaseous Toluene. Appl. Catal. B Environ. 2015, 170, 215–224. [Google Scholar] [CrossRef]
- Parayil, S.K.; Kibombo, H.S.; Wu, C.M.; Peng, R.; Kindle, T.; Mishra, S.; Ahrenkiel, S.P.; Baltrusaitis, J.; Dimitrijevic, N.M.; Rajh, T.; et al. Synthesis-Dependent Oxidation State of Platinum on TiO2 and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. J. Phys. Chem. C 2013, 117, 16850–16862. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Vaiano, V.; Sannino, D.; Ciambelli, P. Cyclohexane Photocatalytic Oxidation on Pt/TiO2 Catalysts. Catal. Today 2013, 209, 164–169. [Google Scholar] [CrossRef]
- Ren, X.N.; Hu, Z.Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; Van Tendeloo, G.; et al. Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO2 for Highly Enhanced Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2017, 9, 29687–29698. [Google Scholar] [CrossRef]
- Sundar, K.P.; Kanmani, S. Chemical Engineering Research and Design Progression of Photocatalytic Reactors and It’s Comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Van Gerven, T.; Mul, G.; Moulijn, J.; Stankiewicz, A. A Review of Intensification of Photocatalytic Processes. Chem. Eng. Process. Process Intensif. 2007, 46, 781–789. [Google Scholar] [CrossRef]
- Rincón, G.J.; La Motta, E.J. A Fluidized-Bed Reactor for the Photocatalytic Mineralization of Phenol on TiO2-Coated Silica Gel. Heliyon 2019, 5, e01966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Hu, N.; Liu, H.; Qian, C.; Lv, C.; Wang, S. Controlled Synthesis of Pt-Loaded Yolk-Shell TiO2@SiO2 Nanoreactors as Effective Photocatalysts for Hydrogen Generation. Front. Mater. Sci. 2022, 16, 220591. [Google Scholar] [CrossRef]
- Ramos, B.; Carneiro, J.G.; De, M.; Nagamati, L.I.; Teixeira, A.C.S.C. Development of Intensified Flat-Plate Packed-Bed Solar Reactors for Heterogeneous Photocatalysis. Environ. Sci. Pollut. Res. 2021, 28, 24023–24033. [Google Scholar] [CrossRef] [PubMed]
- Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart J. 2008, 42, 357–361. [Google Scholar]
- Gusmão, C.D.A.; Almeida, L.; Ramos, B.; Gomes, A.; Geraldo, J.; Pacheco, A.; Carlos, A.; Costa, S. Optimization of TiO2/SiO2 Photocatalysts in a LED-Irradiated Gas-Solid Photoreactor for Air Treatment. Chem. Eng. Res. Des. 2022, 185, 223–238. [Google Scholar] [CrossRef]
- Bensouici, F.; Souier, T.; Dakhel, A.A.; Iratni, A.; Tala-Ighil, R.; Bououdina, M. Synthesis, Characterization and Photocatalytic Behavior of Ag Doped TiO2 Thin Film. Superlattices Microstruct. 2015, 85, 255–265. [Google Scholar] [CrossRef]
- Diniz, L.A.; Matsumoto, D.; Carlos, A.; Costa, S. Photocatalytic Degradation of N-Hexane in a Circulating Fl Uidized Bed: An Investigation Based on the Freeboard Entrainment Model. Catal. Today 2021, 361, 109–116. [Google Scholar] [CrossRef]
- Kibombo, H.S.; Wu, C.M.; Peng, R.; Baltrusaitis, J.; Koodali, R.T. Investigation of the Role of Platinum Oxide for the Degradation of Phenol under Simulated Solar Irradiation. Appl. Catal. B Environ. 2013, 136–137, 248–259. [Google Scholar] [CrossRef]
- Valizadeh, A.; Aleshkevych, P.; Najafpour, M.M. Role of Pt and PtO2 in the Oxygen-Evolution Reaction in the Presence of Iron under Alkaline Conditions. Inorg. Chem. 2022, 61, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Nezamzadeh-Ejhieh, A.; Bahrami, M. Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol. Desalin. Water Treat. 2015, 55, 1096–1104. [Google Scholar] [CrossRef]
- Hasse Palharim, P.; Lara Diego dos Reis Fusari, B.; Ramos, B.; Otubo, L.; Carlos Silva Costa Teixeira, A. Effect of HCl and HNO3 on the Synthesis of Pure and Silver-Based WO3 for Improved Photocatalytic Activity under Sunlight. J. Photochem. Photobiol. A Chem. 2021, 422, 113550. [Google Scholar] [CrossRef]
- Post, P.; Wurlitzer, L.; Maus-Friedrichs, W.; Weber, A.P. Characterization and Applications of Nanoparticles Modified In-Flight with Silica or Silica-Organic Coatings. Nanomaterials 2018, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Shen, J.; Xie, Y.; Qiu, C.; Zhang, Z.; Long, J.; Lin, H.; Wang, X. Metallic Pt and PtO2 Dual-Cocatalyst-Loaded Binary Composite 2 RGO-CN. ACS Sustain. Chem. Eng. 2021, 9, 6380–6389. [Google Scholar] [CrossRef]
- Serpone, N. Is the Band Gap of Pristine TiO2 Narrowed by Anion-and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Li, R.; Wang, Y.; Wang, Y.; Fan, C. PtO/Pt4+-BiOCl with Enhanced Photocatalytic Activity: Insight into the Defect-Filled Mechanism. Chem. Eng. J. 2020, 395, 123954. [Google Scholar] [CrossRef]
- Li, Q.; Li, F.T. Recent Advances in Surface and Interface Design of Photocatalysts for the Degradation of Volatile Organic Compounds. Adv. Colloid Interface Sci. 2020, 284, 102275. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- García-Muñoz, P.; Zussblatt, N.P.; Chmelka, B.F.; de la Peña O’Shea, V.A.; Fresno, F. Production of Hydrogen from Gas-Phase Ethanol Dehydrogenation over Iron-Grafted Mesoporous Pt/TiO2 Photocatalysts. Chem. Eng. J. 2022, 450, 138450. [Google Scholar] [CrossRef]
- Pu, S.; Hou, Y.; Chen, H.; Deng, D.; Yang, Z.; Xue, S.; Zhu, R.; Diao, Z.; Chu, W. An Efficient Photocatalyst for Fast Reduction of Cr(VI) by Ultra-Trace Silver Enhanced Titania in Aqueous Solution. Catalysts 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Levenspiel, O. The Chemical Reactor Omnibook; Lulu Press: Morrisville, NC, USA, 2013. [Google Scholar]
- Ohtani, B. Photocatalysis by Inorganic Solid Materials: Revisiting Its Definition, Concepts, and Experimental Procedures, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 63, ISBN 9780123859044. [Google Scholar]
- Valente, J.P.S.; Padilha, P.M.; Florentino, A.O. Studies on the Adsorption and Kinetics of Photodegradation of a Model Compound for Heterogeneous Photocatalysis onto TiO2. Chemosphere 2006, 64, 1128–1133. [Google Scholar] [CrossRef]
- Yang, Y.; Sugino, O.; Ohno, T. Band gap of β-PtO2 from first-principles. AIP Adv. 2012, 2, 022172. [Google Scholar] [CrossRef]
- Yang, H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 2021, 142, 111406. [Google Scholar] [CrossRef]
- Le, T.H.; Bui, T.T.; Bui, H.V.; Dao, V.D.; Ngoc, L.L.T. TiO2 Inverse Opals Modified by Ag Nanoparticles: A Synergic effect of Enhanced Visible-Light Absorption and Efficient Charge Separation for Visible-Light Photocatalysis. Catalysts 2021, 11, 761. [Google Scholar] [CrossRef]
- Fónagy, O.; Szabó-Bárdos, E.; Horváth, O. 1, 4-Benzoquinone and 1, 4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. J. Photochem. Photobiol. A Chem. 2021, 407, 113057. [Google Scholar] [CrossRef]
- Schneider, J.T.; Firak, D.S.; Ribeiro, R.R.; Peralta-Zamora, P. Use of scavenger agents in heterogeneous photocatalysis: Truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 2020, 27, 15723–15733. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, M.; Falaras, P.; Likodimos, V.; O’Shea, K.; Armah, A.; Dunlop, P.S.; AnthonyByrne, A.; Dionysiou, D. Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. J. Mol. Catal. A Chem. 2016, 425, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O−) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Nunes, B.N.; Alsalka, Y.; Hakki, A.; Curti, M.; Patrocinio, A.O.T.; Bahnemann, D.W. Application of EPR Spectroscopy in TiO2 and Nb2O5 Photocatalysis. Catalysts 2021, 11, 1514. [Google Scholar] [CrossRef]
- Dvoranová, D.; Barbieriková, Z.; Brezová, V. Radical Intermediates in Photoinduced Reactions on TiO2 (An EPR Spin Trapping Study). Molecules 2014, 19, 17279–17304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, J.; Schneider, J.; Sieland, F.; Zhou, L.; Xia, S.; Bahnemann, D.W. New Insights into the Surface Plasmon Resonance (SPR) Driven Photocatalytic H2 Production of Au-TiO2. RSC Adv. 2018, 8, 25881–25887. [Google Scholar] [CrossRef]
Sample | Effective Pt Content (wt%) | TiO2 Crystallite Size (nm) | PtO2 Crystalline Size (nm) | Band Gap Energy (eV) |
---|---|---|---|---|
TiO2/SiO2 | 0.00 | 6.1 | − | 3.20 |
0.1%Pt-TiO2/SiO2 | 0.15 | 4.8 | 2.3 | 3.21 |
0.25%Pt-TiO2/SiO2 | 0.35 | 4.9 | 1.3 | 3.20 |
0.5%Pt-TiO2/SiO2 | 0.60 | 5.4 | 1.3 | 3.22 |
1%Pt-TiO2/SiO2 | 1.10 | 5.7 | 1.2 | 3.19 |
C0 (mg L−1) | k’ (L g−1 h−1) | – rACT,0 (µmol g−1 h−1) | kp (µmol g−1 h−1) | K (L mol−1) |
---|---|---|---|---|
0.731 | 6.41 × 103 | |||
1 | 1.00 × 10−2 | 0.067 | ||
10 | 3.01 × 10−3 | 0.199 | ||
25 | 2.36 × 10−3 | 0.390 | ||
50 | 1.49 × 10−3 | 0.492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusmão, C.d.A.; Borges, L.T.; Palharim, P.H.; Otubo, L.; Rodrigues, O.; Gouvea, D.; Ramos, B.; Teixeira, A.C.S.C. Synthesis, Characterization, and Application of Pt/PtO2-TiO2/SiO2 Materials on a Continuous Flow Packed Bed Microreactor for Enhanced Photocatalytic Activity under Sunlight. Water 2022, 14, 3864. https://doi.org/10.3390/w14233864
Gusmão CdA, Borges LT, Palharim PH, Otubo L, Rodrigues O, Gouvea D, Ramos B, Teixeira ACSC. Synthesis, Characterization, and Application of Pt/PtO2-TiO2/SiO2 Materials on a Continuous Flow Packed Bed Microreactor for Enhanced Photocatalytic Activity under Sunlight. Water. 2022; 14(23):3864. https://doi.org/10.3390/w14233864
Chicago/Turabian StyleGusmão, Carolina de Araújo, Laura Teixeira Borges, Priscila Hasse Palharim, Larissa Otubo, Orlando Rodrigues, Douglas Gouvea, Bruno Ramos, and Antonio Carlos Silva Costa Teixeira. 2022. "Synthesis, Characterization, and Application of Pt/PtO2-TiO2/SiO2 Materials on a Continuous Flow Packed Bed Microreactor for Enhanced Photocatalytic Activity under Sunlight" Water 14, no. 23: 3864. https://doi.org/10.3390/w14233864
APA StyleGusmão, C. d. A., Borges, L. T., Palharim, P. H., Otubo, L., Rodrigues, O., Gouvea, D., Ramos, B., & Teixeira, A. C. S. C. (2022). Synthesis, Characterization, and Application of Pt/PtO2-TiO2/SiO2 Materials on a Continuous Flow Packed Bed Microreactor for Enhanced Photocatalytic Activity under Sunlight. Water, 14(23), 3864. https://doi.org/10.3390/w14233864