Spatial and Temporal Variations of Stable Isotopes in Precipitation in the Mountainous Region, North Hesse
Abstract
:1. Introduction
2. Study Area, Materials and Methods
2.1. Study Area
2.2. Climatic Conditions and Data Collection
2.3. Measurement Profile
2.4. Construction and Installation of the Rainwater Precipitation Collectors
2.5. Statistical Analysis
3. Results
3.1. Isotopic Distribution
3.2. Altitude Effect
3.3. Amount Effect
3.4. Temperature Effect
3.5. Surface Water
4. Discussion
4.1. Isotopic Distribution
4.2. Altitude Effect
4.3. Amount Effect
4.4. Temperature Effect
4.5. Limitations of the Study and Potential Improvements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of Long-Term Stable Isotopic Composition in German Precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A. Isotopic composition of precipitation in Portorož (Slovenia). Ruđer Bošković Inst. 2011, 54, 129–136. [Google Scholar] [CrossRef]
- Vystavna, Y.; Matiatos, I.; Wassenaar, L.I. Temperature and Precipitation Effects on the Isotopic Composition of Global Precipitation Reveal Long-Term Climate Dynamics. Sci. Rep. 2021, 11, 18503. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 1997; ISBN 978-1-56670-249-2. [Google Scholar]
- Qian, H.; Wu, J.; Zhou, Y.; Li, P. Stable Oxygen and Hydrogen Isotopes as Indicators of Lake Water Recharge and Evaporation in the Lakes of the Yinchuan Plain. Hydrol. Process. 2014, 28, 3554–3562. [Google Scholar] [CrossRef]
- Ma, H.; Yang, Q.; Yin, L.; Wang, X.; Zhang, J.; Li, C.; Dong, J. Paleoclimate Interpretation in Northern Ordos Basin: Evidence from Isotope Records of Groundwater. Quat. Int. 2018, 467, 204–209. [Google Scholar] [CrossRef]
- Adomako, D.; Maloszewski, P.; Stumpp, C.; Osae, S.; Akiti, T.T. Estimating Groundwater Recharge from Water Isotope (Δ2H, Δ18O) Depth Profiles in the Densu River Basin, Ghana. Hydrol. Sci. J. 2010, 55, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Bedaso, Z.; Wu, S.-Y. Linking Precipitation and Groundwater Isotopes in Ethiopia—Implications from Local Meteoric Water Lines and Isoscapes. J. Hydrol. 2021, 596, 126074. [Google Scholar] [CrossRef]
- Mahindawansha, A.; Orlowski, N.; Kraft, P.; Rothfuss, Y.; Racela, H.; Breuer, L. Quantification of Plant Water Uptake by Water Stable Isotopes in Rice Paddy Systems. Plant Soil 2018, 429, 281–302. [Google Scholar] [CrossRef]
- Mahindawansha, A.; Külls, C.; Kraft, P.; Breuer, L. Investigating Unproductive Water Losses from Irrigated Agricultural Crops in the Humid Tropics through Analyses of Stable Isotopes of Water. Hydrol. Earth Syst. Sci. 2020, 24, 3627–3642. [Google Scholar] [CrossRef]
- Kulkarni, T.; Gassmann, M.; Kulkarni, C.M.; Khed, V.; Buerkert, A. Deep Drilling for Groundwater in Bengaluru, India: A Case Study on the City’s Over-Exploited Hard-Rock Aquifer System. Sustainability 2021, 13, 12149. [Google Scholar] [CrossRef]
- Liu, Z.; Bowen, G.J.; Welker, J.M. Atmospheric Circulation Is Reflected in Precipitation Isotope Gradients over the Conterminous United States. J. Geophys. Res. Atmos. 2010, 115, D22120. [Google Scholar] [CrossRef] [Green Version]
- Vachon, R.W.; Welker, J.M.; White, J.W.C.; Vaughn, B.H. Monthly Precipitation Isoscapes (Δ18O) of the United States: Connections with Surface Temperatures, Moisture Source Conditions, and Air Mass Trajectories. J. Geophys. Res. Atmos. 2010, 115, D21126. [Google Scholar] [CrossRef]
- Welker, J.M. Isotopic (Δ18O) Characteristics of Weekly Precipitation Collected across the USA: An Initial Analysis with Application to Water Source Studies. Hydrol. Process. 2000, 14, 1449–1464. [Google Scholar] [CrossRef]
- Lykoudis, S.P.; Argiriou, A.A. Temporal Trends in the Stable Isotope Composition of Precipitation: A Comparison between the Eastern Mediterranean and Central Europe. Theor. Appl. Climatol. 2011, 105, 199–207. [Google Scholar] [CrossRef]
- Sturm, K.; Hoffmann, G.; Langmann, B.; Stichler, W. Simulation of Δ18O in Precipitation by the Regional Circulation Model REMOiso. Hydrol. Process. Int. J. 2005, 19, 3425–3444. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J. Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. Annu. Rev. Earth Planet. Sci. 2010, 38, 161–187. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Wassenaar, L.I.; Hobson, K.A. Global Application of Stable Hydrogen and Oxygen Isotopes to Wildlife Forensics. Oecologia 2005, 143, 337–348. [Google Scholar] [CrossRef]
- Sjostrom, D.J.; Welker, J.M. The Influence of Air Mass Source on the Seasonal Isotopic Composition of Precipitation, Eastern USA. J. Geochem. Explor. 2009, 102, 103–112. [Google Scholar] [CrossRef]
- Terzer-Wassmuth, S.; Wassenaar, L.; Welker, J.; Araguás, L. Improved High-Resolution Global and Regionalized Isoscapes of δ18O, δ2H, and d-Excess in Precipitation. Hydrol. Process. 2020, 35, e14254. [Google Scholar] [CrossRef]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water 2020, 12, 1797. [Google Scholar] [CrossRef]
- Fischer, B.M.C.; (Ilja) van Meerveld, H.J.; Seibert, J. Spatial Variability in the Isotopic Composition of Rainfall in a Small Headwater Catchment and Its Effect on Hydrograph Separation. J. Hydrol. 2017, 547, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and Oxygen-18 Isotope Composition of Precipitation and Atmospheric Moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Darling, W.G.; Talbot, J.C. The O and H Stable Isotope Composition of Freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth Syst. Sci. 2003, 7, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Relation Between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate. Science 1992, 258, 981–985. [Google Scholar] [CrossRef]
- Hager, B.; Foelsche, U. Stable Isotope Composition of Precipitation in Austria. Austrian J. Earth Sci. 2015, 108, 2–14. [Google Scholar] [CrossRef]
- Harvey, F.E.; Welker, J.M. Stable Isotopic Composition of Precipitation in the Semi-Arid North-Central Portion of the US Great Plains. J. Hydrol. 2000, 238, 90–109. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global Isoscapes for δ18O and δ2H in Precipitation: Improved Prediction Using Regionalized Climatic Regression Models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable Isotopic Variations in West China: A Consideration of Moisture Sources. J. Geophys. Res. Atmos. 2007, 112, D10112. [Google Scholar] [CrossRef]
- Datta, P.S.; Tyagi, S.K.; Chandrasekharan, H. Factors Controlling Stable Isotope Composition of Rainfall in New Delhi, India. J. Hydrol. 1991, 128, 223–236. [Google Scholar] [CrossRef]
- Dutton, A.; Wilkinson, B.H.; Welker, J.M.; Bowen, G.J.; Lohmann, K.C. Spatial Distribution and Seasonal Variation in 18O/16O of Modern Precipitation and River Water across the Conterminous USA. Hydrol. Process. 2005, 19, 4121–4146. [Google Scholar] [CrossRef] [Green Version]
- Schürch, M.; Kozel, R.; Schotterer, U.; Tripet, J.-P. Observation of Isotopes in the Water Cycle—The Swiss National Network (NISOT). Environ. Geol. 2003, 45, 1–11. [Google Scholar] [CrossRef]
- Tappa, D.J.; Kohn, M.J.; McNamara, J.P.; Benner, S.G.; Flores, A.N. Isotopic Composition of Precipitation in a Topographically Steep, Seasonally Snow-Dominated Watershed and Implications of Variations from the Global Meteoric Water Line. Hydrol. Process. 2016, 30, 4582–4592. [Google Scholar] [CrossRef]
- Yang, Q.; Mu, H.; Guo, J.; Bao, X.; Martín, J.D. Temperature and Rainfall Amount Effects on Hydrogen and Oxygen Stable Isotope in Precipitation. Quat. Int. 2019, 519, 25–31. [Google Scholar] [CrossRef]
- Peng, H.; Mayer, B.; Norman, A.-L.; Krouse, H.R. Modelling of Hydrogen and Oxygen Isotope Compositions for Local Precipitation. Tellus B Chem. Phys. Meteorol. 2005, 57, 273–282. [Google Scholar] [CrossRef]
- Lyon, I.C.; Saxton, J.M.; Turner, G.; Hinton, R. Isotopic Fractionation in Secondary Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1994, 8, 837–843. [Google Scholar] [CrossRef]
- Bershaw, J. Controls on Deuterium Excess across Asia. Geosciences 2018, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. ISBN 978-1-118-66402-5. [Google Scholar]
- Mahindawansha, A.; Breuer, L.; Chamorro, A.; Kraft, P. High-Frequency Water Isotopic Analysis Using an Automatic Water Sampling System in Rice-Based Cropping Systems. Water 2018, 10, 1327. [Google Scholar] [CrossRef]
- GNIP-IAEA. International Atomic Energy Agency (IAEA) WISER—GNIP. Available online: https://nucleus.iaea.org/wiser/gnip.php?ll_latlon=&ur_latlon=&country=&wmo_region=&date_start=1953&date_end=2017&iso_o18=on&iso_h2=on&action=Search (accessed on 16 August 2017).
- Diercke Diercke Weltatlas—Kartenansicht—Nord- Und Mittelhessen—Physische Karte—978-3-14-100389-5-8-1-1. Available online: https://diercke.westermann.de/content/nord-und-mittelhessen-physische-karte-978-3-14-100389-5-8-1-1 (accessed on 24 January 2022).
- Sodemann, H.; Zubler, E. Seasonal and Inter-Annual Variability of the Moisture Sources for Alpine Precipitation during 1995–2002. Int. J. Climatol. 2010, 30, 947–961. [Google Scholar] [CrossRef]
- Putman, A.L.; Fiorella, R.P.; Bowen, G.J.; Cai, Z. A Global Perspective on Local Meteoric Water Lines: Meta-Analytic Insight Into Fundamental Controls and Practical Constraints. Water Resour. Res. 2019, 55, 6896–6910. [Google Scholar] [CrossRef]
- World Climate Guide Germany Climate: Average Weather, Temperature, Precipitation, When to Go. Available online: https://www.climatestotravel.com/climate/germany (accessed on 13 May 2022).
- Bürger, M. Bodennahe Windverhältnisse und windrelevante Reliefstrukturen. Leibnitz-Inst. Länderkunde Natl. Bundesrepub. Dtschl. Spektrum Akad. Verl. 2003, 3, 52–55. [Google Scholar]
- IAEA/GNIP International Atomic Energy Agency. IAEA/GNIP Precipitation Sampling Guide 2014. Available online: http://www-naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf (accessed on 12 August 2022).
- Newman, B.; Tanweer, A.; Kurttas, T. IAEA Standard Operating Procedure for the Liquid-Water Stable Isotope Analyser, Laser Proced, IAEA Water Resour; Programme: Vienna, Austria, 2009; Available online: https://pdfs.semanticscholar.org/fd69/a298097808245ccc66d7d00506daa3ce4b54.pdf (accessed on 25 August 2017).
- Craig, H.; Gordon, L.I. Stable Isotopes in Oceanographic Studies and Paleotemperatures; V. Lischi e Figli: Pisa, Italy, 1965; pp. 9–130. [Google Scholar]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium Excess in Precipitation of Alpine Regions—Moisture Recycling. Isotopes Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef]
- Xia, Z.; Winnick, M.J. The Competing Effects of Terrestrial Evapotranspiration and Raindrop Re-Evaporation on the Deuterium Excess of Continental Precipitation. Earth Planet. Sci. Lett. 2021, 572, 117120. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583. [Google Scholar] [CrossRef]
- Gat, J.R.; Airey, P.L. Stable Water Isotopes in the Atmosphere/Biosphere/Lithosphere Interface: Scaling-up from the Local to Continental Scale, under Humid and Dry Conditions. Glob. Planet. Chang. 2006, 51, 25–33. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Yang, S. Decadal Anomalies of Winter Precipitation over Southern China in Association with El Niño and La Niña. J. Meteorol. Res. 2014, 28, 91–110. [Google Scholar] [CrossRef]
- Peng, H.; Mayer, B.; Harris, S.; Krouse, H.R. The Influence of Below-Cloud Secondary Effects on the Stable Isotope Composition of Hydrogen and Oxygen in Precipitation at Calgary, Alberta, Canada. Tellus B Chem. Phys. Meteorol. 2007, 59, 698–704. [Google Scholar] [CrossRef]
- Xi, X. A Review of Water Isotopes in Atmospheric General Circulation Models: Recent Advances and Future Prospects. Int. J. Atmos. Sci. 2014, 2014, 1–16. [Google Scholar] [CrossRef]
- Aravena, R.; Suzuki, O.; Peña, H.; Pollastri, A.; Fuenzalida, H.; Grilli, A. Isotopic Composition and Origin of the Precipitation in Northern Chile. Appl. Geochem. 1999, 14, 411–422. [Google Scholar] [CrossRef]
- Pfahl, S.; Sodemann, H. What Controls Deuterium Excess in Global Precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Darling, W.G. Hydrological Factors in the Interpretation of Stable Isotopic Proxy Data Present and Past: A European Perspective. Quat. Sci. Rev. 2004, 23, 743–770. [Google Scholar] [CrossRef]
- Gonfiantini, R. On the Isotopic Composition of Precipitation in Tropical Stations (*). Acta Amaz. 1985, 15, 121–140. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.; Caldwell, E. Fundamentals of Isotope Geochemistry. In Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 51–86. ISBN 978-0-08-092915-6. [Google Scholar]
- Akers, P.D.; Welker, J.M.; Brook, G.A. Reassessing the Role of Temperature in Precipitation Oxygen Isotopes across the Eastern and Central United States through Weekly Precipitation-Day Data. Water Resour. Res. 2017, 53, 7644–7661. [Google Scholar] [CrossRef]
- Longinelli, A.; Selmo, E. Isotopic Composition of Precipitation in Italy: A First Overall Map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Bowen, G.J.; Wilkinson, B. Spatial Distribution of Δ18O in Meteoric Precipitation. Geology 2002, 30, 315–318. [Google Scholar] [CrossRef]
- Kern, Z.; Kohán, B.; Leuenberger, M. Precipitation Isoscape of High Reliefs: Interpolation Scheme Designed and Tested for Monthly Resolved Precipitation Oxygen Isotope Records of an Alpine Domain. Atmos. Chem. Phys. 2014, 14, 1897–1907. [Google Scholar] [CrossRef] [Green Version]
- Mix, H.T.; Reilly, S.P.; Martin, A.; Cornwell, G. Evaluating the Roles of Rainout and Post-Condensation Processes in a Landfalling Atmospheric River with Stable Isotopes in Precipitation and Water Vapor. Atmosphere 2019, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, P.K.; Alduchov, O.A.; Froehlich, K.O.; Araguas-Araguas, L.J.; Sturchio, N.C.; Kurita, N. Stable Isotopes in Global Precipitation: A Unified Interpretation Based on Atmospheric Moisture Residence Time. Geophys. Res. Lett. 2012, 39, L11705. [Google Scholar] [CrossRef]
- Freyberg, J.; Studer, B.; Kirchner, J.W. A Lab in the Field: High-Frequency Analysis of Water Quality and Stable Isotopes in Stream Water and Precipitation. Hydrol. Earth Syst. Sci. 2017, 21, 1721–1739. [Google Scholar] [CrossRef]
- Hemmerle, H.; van Geldern, R.; Juhlke, T.R.; Huneau, F.; Garel, E.; Santoni, S.; Barth, J.A.C. Altitude Isotope Effects in Mediterranean High-Relief Terrains: A Correction Method to Utilize Stream Water Data. Hydrol. Sci. J. 2021, 66, 1409–1418. [Google Scholar] [CrossRef]
- Xu, Q.; Hoke, G.D.; Liu-Zeng, J.; Ding, L.; Wang, W.; Yang, Y. Stable Isotopes of Surface Water across the Longmenshan Margin of the Eastern Tibetan Plateau. Geochem. Geophys. Geosyst. 2014, 15, 3416–3429. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Roche, M.; Olivry, J.; Fontes, J.; Zuppic, G. The Altitude Effect on the Isotopic Composition of Tropical Rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Vystavna, Y.; Matiatos, I.; Wassenaar, L.I. 60-Year Trends of Δ18O in Global Precipitation Reveal Large Scale Hydroclimatic Variations. Glob. Planet. Chang. 2020, 195, 103335. [Google Scholar] [CrossRef]
- Diadin, D.; Vystavna, Y. Long-Term Meteorological Data and Isotopic Composition in Precipitation, Surface Water and Groundwater Revealed Hydrologic Sensitivity to Climate Change in East Ukraine. Isotopes Environ. Health Stud. 2020, 56, 136–148. [Google Scholar] [CrossRef]
- Jacob, H.; Sonntag, C. An 8-Year Record of the Seasonal Variation of 2H and 18O in Atmospheric Water Vapour and Precipitation at Heidelberg, Germany. Tellus B 1991, 43, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Kong, Y.; Froehlich, K.; Huang, T.; Yuan, L.; Li, Z.; Wang, F. Processes Affecting Isotopes in Precipitation of an Arid Region. Tellus B Chem. Phys. Meteorol. 2011, 63, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable Isotope Composition of Precipitation over Southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Sturm, C.; Zhang, Q.; Noone, D. An Introduction to Stable Water Isotopes in Climate Models: Benefits of Forward Proxy Modelling for Paleoclimatology. Clim. Past 2010, 6, 115–129. [Google Scholar] [CrossRef]
- Bowen, G.J. Spatial Analysis of the Intra-Annual Variation of Precipitation Isotope Ratios and Its Climatological Corollaries. J. Geophys. Res. Atmos. 2008, 113, D05113. [Google Scholar] [CrossRef]
- Stowe, M.-J.; Harris, C.; Hedding, D.; Eckardt, F.; Nel, W. Hydrogen and Oxygen Isotope Composition of Precipitation and Stream Water on Sub-Antarctic Marion Island. Antarct. Sci. 2018, 30, 83–92. [Google Scholar] [CrossRef]
- Munksgaard, N.C.; Zwart, C.; Kurita, N.; Bass, A.; Nott, J.; Bird, M.I. Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014. PLoS ONE 2015, 10, e0119728. [Google Scholar] [CrossRef] [PubMed]
Region | Station Number | Station Name | Elevation (m a.s.l.) |
---|---|---|---|
Kassel | 1 | Zierenberg | 379 |
2 | Habichtswald | 555 | |
3 | Harleshausen-P | 323 | |
4 | Harleshausen-FH | 201 | |
5 | Kassel | 132 | |
6 | Heiligenrode | 213 | |
Hessisch Lichtenau/Meissner | 7 | Helsa | 435 |
8 | Grossalmerode | 485 | |
9 | Laudenbach | 345 | |
10 | Meissner Auslauf | 573 | |
11 | Meissner curve | 669 | |
12 | Meissner-Top | 722 | |
Eschwege area | 13 | Abterode | 272 |
14 | Eschwege | 185 | |
15 | Niederdünzebach | 153 |
Region | δ18O (mean ± SD) | δ2H (mean ± SD) | δ18O (max) | δ2H (max) | δ18O (min) | δ2H (min) |
---|---|---|---|---|---|---|
Rain | ||||||
Eschwege | −7.19 ± 2.52 | −46.81 ± 20.71 | −1.54 | −7.23 | −13.08 | −94.69 |
HL/Meissner | −7.84 ± 2.08 | −49.04 ± 17.60 | −3.38 | −11.48 | −12.75 | −89.4 |
Kassel | −7.42 ± 2.24 | −47.83 ± 18.36 | −2.13 | −9.59 | −13.34 | −96.55 |
Snow | ||||||
Eschwege | −16.39 ± 1.28 | −119.01 ± 11.10 | −14.55 | −103.25 | −17.46 | −129.16 |
HL/Meissner | −15.09 ± 2.24 | −107.75 ± 18.92 | −12.42 | −84.55 | −19.02 | −137.89 |
Kassel | −12.74 ± 1.66 | −88.87 ± 13.90 | −10.56 | −71.07 | −15.12 | −109.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahindawansha, A.; Jost, M.; Gassmann, M. Spatial and Temporal Variations of Stable Isotopes in Precipitation in the Mountainous Region, North Hesse. Water 2022, 14, 3910. https://doi.org/10.3390/w14233910
Mahindawansha A, Jost M, Gassmann M. Spatial and Temporal Variations of Stable Isotopes in Precipitation in the Mountainous Region, North Hesse. Water. 2022; 14(23):3910. https://doi.org/10.3390/w14233910
Chicago/Turabian StyleMahindawansha, Amani, Marius Jost, and Matthias Gassmann. 2022. "Spatial and Temporal Variations of Stable Isotopes in Precipitation in the Mountainous Region, North Hesse" Water 14, no. 23: 3910. https://doi.org/10.3390/w14233910
APA StyleMahindawansha, A., Jost, M., & Gassmann, M. (2022). Spatial and Temporal Variations of Stable Isotopes in Precipitation in the Mountainous Region, North Hesse. Water, 14(23), 3910. https://doi.org/10.3390/w14233910