Spatial and Temporal Variation in Reference Evapotranspiration and Its Climatic Drivers in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Calculation of ET0
2.3.2. Climate Tendency Rate
2.3.3. Mann-Kendall Test
2.3.4. Cramer’s Test
2.3.5. Calculation for Contributing Rate
3. Results
3.1. Temporal Variation in ET0 and Climatic Variables
3.2. Spatial Variation of ET0 and Climatic Variables
3.3. Influence of Climatic Variables on ET0
4. Discussion
4.1. Changing Trend of ET0 Related to Altitude
4.2. Primary Climatic Factors Affecting ET0 Variation in Northeast China
4.3. Evaporation Paradox in Northeast China
5. Conclusions
- (1)
- The annual ET0 in Northeast China showed a nonsignificant increase during 1960–2017, and it changed abruptly in approximately 1993. Before that mutation point, ET0 showed a significant downward trend (p < 0.1), and afterward, the trend went insignificantly upward. During 1960–1993, the evaporation paradox appeared in Northeast China, mainly because the dramatic decrease in WS and SD played a great role in the decrease in ET0, and after 1993, the evaporation paradox disappeared.
- (2)
- The trends of ET0 in Northeast China during 1960–2017 showed obvious spatial heterogeneity. The changing trend of ET0 was significantly and positively related to altitude (p < 0.001). At low altitudes (<500 m), ET0 generally showed a downward trend, while at high altitudes (>500 m), it showed an upward trend.
- (3)
- The change in ET0 over Northeast China in three periods: 1960–1993, 1994–2017, and 1960–2017 were mainly affected by RH. At different altitudes, the main driving factors of ET0 were nonuniform. At low altitudes (<500 m), WS was the primary climatic factor affecting ET0 changes, while RH was the primary climatic factor at high altitudes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Xiang, K.Y.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Zhang, F.J.; Liu, Z.H.; Zhangzhong, L.L.; Yu, J.X.; Shi, K.L.; Yao, L. Spatiotemporal distribution characteristics of reference evapotranspiration in Shandong Province from 1980 to 2019. Water 2020, 12, 3495. [Google Scholar] [CrossRef]
- Han, J.Y.; Zhao, Y.; Wang, J.H.; Zhang, B.; Zhu, Y.N.; Jiang, S.; Wang, L.Z. Effects of different land use types on potential evapotranspiration in the Beijing-Tianjin-Hebei region, North China. J. Geogr. Sci. 2019, 29, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Yagbasan, O.; Demir, V.; Yazicigil, H. Trend analyses of meteorological variables and lake levels for two shallow lakes in central Turkey. Water 2020, 12, 414. [Google Scholar] [CrossRef] [Green Version]
- Soroush, F.; Fathian, F.; Khabisi, F.S.H.; Kahya, E. Trends in pan evaporation and climate variables in Iran. Theor. Appl. Clim. 2020, 142, 407–432. [Google Scholar] [CrossRef]
- Masanta, S.K.; Srinivas, V.V. Regionalization of evapotranspiration in India using fuzzy dynamic clustering approach. Part 2: Applications of regions. Int. J. Climatol. 2021, 41, E1371–E1395. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Ramirez, J.A.; Brown, T.C. Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary? Geophys. Res. Lett. 2004, 31, L13503. [Google Scholar] [CrossRef] [Green Version]
- Rayner, D.P. Wind run changes: The dominant factor affecting pan evaporation trends in Australia. J. Clim. 2007, 20, 3379–3394. [Google Scholar] [CrossRef]
- Mozny, M.; Trnka, M.; Vlach, V.; Vizina, A.; Potopova, V.; Zahradnicek, P.; Hajkova, L.; Staponites, L.; Zalud, Z. Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. J. Hydrol. 2020, 590, 125390. [Google Scholar] [CrossRef]
- Chapman, R.A.; Midgley, G.F.; Smart, K. Diverse trends in observed pan evaporation in AUTHORS: South Africa suggest multiple interacting drivers. S. Afr. J. Sci. 2021, 117, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.T.; Yang, D.W.; Ni, G.H. Does evaporation paradox exist in China? Hydrol. Earth Syst. Sci. 2009, 13, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Kang, T.T.; Li, Z.; Gao, Y.C. Spatiotemporal variations of reference evapotranspiration and its determining climatic factors in the Taihang mountains, China. Water 2021, 13, 22. [Google Scholar] [CrossRef]
- Hu, J.F.; Zhao, G.J.; Li, P.F.; Mu, X.M. Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China. Nat. Hazards 2022, 111, 1199–1217. [Google Scholar] [CrossRef]
- Xing, W.Q.; Wang, W.G.; Shao, Q.X.; Yu, Z.B.; Yang, T.; Fu, J.Y. Periodic fluctuation of reference evapotranspiration during the past five decades: Does Evaporation Paradox really exist in China? Sci. Rep. 2016, 6, 39503. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Xie, P.W.; Lai, C.G.; Chen, X.H.; Wu, X.S.; Zeng, Z.Y.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Jerin, J.N.; Islam, H.M.T.; Islam, A.R.M.T.; Shahid, S.; Hu, Z.; Badhan, M.A.; Chu, R.H.; Elbeltagi, A. Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theor. Appl. Clim. 2021, 144, 793–808. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Ismail, Z.B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
- Al-Hasani, A.A.J.; Shahid, S. Spatial distribution of the trends in potential evapotranspiration and its influencing climatic factors in Iraq. Theor. Appl. Clim. 2022, 150, 677–696. [Google Scholar] [CrossRef]
- Jhajharia, D.; Kumar, R.; Dabral, P.P.; Singh, V.P.; Choudhary, R.R.; Dinpashoh, Y. Reference evapotranspiration under changing climate over the Thar Desert in India. Meteorol. Appl. 2015, 22, 425–435. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.Y.; Yao, X.L.; Jiang, Q.; Yu, J.S.; Jiang, W.W. Variation in reference evapotranspiration over the Tibetan Plateau during 1961-2017: Spatiotemporal variations, future trends and links to other climatic factors. Water 2020, 12, 3178. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zou, X.Q.; Cao, L.G.; Yao, Y.L.; Fu, G.H. Spatiotemporal variations of potential evapotranspiration and aridity index in relation to influencing factors over Southwest China during 1960–2013. Theor. Appl. Clim. 2017, 133, 711–726. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liang, K.; Bai, P.; Feng, A.Q.; Liu, L.F.; Dong, G.T. The spatiotemporal variation of reference evapotranspiration and the contribution of its climatic factors in the Loess Plateau, China. Environ. Earth Sci. 2016, 75, 354. [Google Scholar] [CrossRef]
- Feng, J.; Yan, D.H.; Li, C.Z.; Yu, F.L.; Zhang, C. Assessing the impact of climatic factors on potential evapotranspiration in droughts in North China. Quat. Int. 2014, 336, 6–12. [Google Scholar] [CrossRef]
- Yang, X.; Lin, E.D.; Ma, S.M.; Ju, H.; Guo, L.P.; Xiong, W.; Li, Y.; Xu, Y.L. Adaptation of agriculture to warming in Northeast China. Clim. Chang. 2007, 84, 45–58. [Google Scholar] [CrossRef]
- Li, W.H.; Tan, G.R.; Li, T. Relationship between the interannual and intraseasonal temperature variability in Northeast China. Int. J. Climatol. 2021, 42, 352–366. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhu, K.; Lu, F.; Xiao, W.H. Spatial and temporal variation of reference evapotranspiration under climate change: A case study in the Sanjiang Plain, Northeast China. Hydrol. Res. 2018, 49, 251–265. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, G.X.; Xu, Y.J.; Wu, Y.F.; Gao, Z.T. Spatiotemporal changes of reference evapotranspiration in the highest-latitude region of China. Water 2017, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.Q.; Li, L.J.; Liu, Q. Temporal variation of reference evapotranspiration during 1961-2005 in the Taoer River basin of Northeast China. Agric. For. Meteorol. 2010, 150, 298–306. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.H.; Yang, D.W.; Yan, D.Y.; Dong, Y.Y.; Yang, Z.F.; Yang, M.; Zhang, P.; Hu, P. Spatial-temporal variations of reference evapotranspiration and its driving factors in cold regions, northeast China. Environ. Sci. Pollut. Res. 2022, 29, 36951–36966. [Google Scholar] [CrossRef]
- Song, X.Y.; Lu, F.; Xiao, W.H.; Zhu, K.; Zhou, Y.Y.; Xie, Z. Performance of 12 reference evapotranspiration estimation methods compared with the Penman-Monteith method and the potential influences in northeast China. Meteorol. Appl. 2019, 26, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.J.; Zhu, Z.C.; Jiang, H.; Sun, S.J. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Li, L.Y.; Ke, C.Q. Analysis of spatiotemporal snow cover variations in Northeast China based on moderate-resolution-imaging spectroradiometer data. J. Appl. Remote Sens. 2014, 8, 084695. [Google Scholar] [CrossRef]
- Ricard, S.; Anctil, F. Forcing the Penman-Montheith formulation with humidity, radiation, and wind speed taken from reanalyses, for hydrologic modeling. Water 2019, 11, 1214. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Zhang, D.; Liu, X.M.; Hong, H.Y. Assessing the effect of climate change on reference evapotranspiration in China. Stoch. Environ. Res. Risk. Assess 2013, 27, 1871–1881. [Google Scholar] [CrossRef]
- Han, J.Y.; Wang, J.H.; Zhao, Y.; Wang, Q.M.; Zhang, B.; Li, H.H.; Zhai, J.Q. Spatio-temporal variation of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agric. For. Meteorol. 2018, 256–257, 75–83. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.N.; Yang, J.; Wang, Y. Potential evapotranspiration and its attribution over the past 50 years in the arid region of Northwest China. Hydrol. Process. 2014, 28, 1025–1031. [Google Scholar] [CrossRef]
- Jiang, C.; Nie, Z.; Mu, X.; Wang, F.; Liu, W. Potential evapotranspiration change and its attribution in the Qinling Mountains and surrounding area, China, during 1960–2012. J. Water Clim. Chang. 2016, 7, 526–541. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.Y.; Chen, X.H.; Wang, Y.M.; Zhong, R.D.; Zhao, T.T.G.; Liu, Z.Y.; Tu, X.J. Spatio-temporal distribution of NDVI and its influencing factors in China. J. Hydrol. 2021, 603, 127129. [Google Scholar] [CrossRef]
- Zhang, S.H.; Liu, S.X.; Mo, X.G.; Shu, C.; Sun, Y.; Zhang, C. Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin. J. Geogr. Sci. 2011, 21, 609–620. [Google Scholar] [CrossRef]
- Liu, W.; Yang, L.S.; Zhu, M.; Adamowski, J.F.; Barzegar, R.; Wen, X.H.; Yin, Z.L. Effect of elevation on variation in reference evapotranspiration under climate change in Northwest China. Sustainability 2021, 13, 10151. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liu, Z.M.; Song, K.S.; Zhang, B.; Zhang, S.M.; Liu, D.W.; Ren, C.Y.; Yang, F. Land use changes in Northeast China driven by human activities and climatic variation. Chin. Geogr. Sci. 2009, 19, 225–330. [Google Scholar] [CrossRef]
- Xia, T.; Wu, W.B.; Zhou, Q.B.; Verburg, P.H.; Yu, Q.Y.; Yang, P.; Ye, L.M. Model-based analysis of spatio-temporal changes in land use in Northeast China. J. Geogr. Sci. 2015, 26, 171–187. [Google Scholar] [CrossRef]
- Chong, W.; Lyu, W.H.; Zhang, J.; Liang, J.; Yang, X.T.; Zhang, G.Y. Effects of air pollution on sunshine duration trends in typical Chinese cities. Atmosphere 2022, 13, 950. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, C.R.; Ju, H.; Garre, S. Impact of climate change on potential evapotranspiration under a historical and future climate scenario in the Huang-Huai-Hai Plain, China. Theor. Appl. Clim. 2018, 132, 387–401. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chen, J.; Pan, T. Analysis of changes in reference evapotranspiration, pan evaporation, and actual evapotranspiration and their influencing factors in the North China plain during 1998-2005. Earth Space Sci. 2019, 6, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.L.; Wang, Q. Spatiotemporal variations of reference evapotranspiration in recent five decades in the arid land of Northwestern China. Hydrol. Process 2014, 28, 6124–6134. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Q.; Yang, J.H.; Li, C.H. Response of potential evapotranspiration to warming and wetting in Northwest China. Atmosphere 2022, 13, 353. [Google Scholar] [CrossRef]
- Ning, T.T.; Feng, Q.; Li, R.L.; Yang, L.S. Interaction between wind speed and net radiation controls reference evapotranspiration variance in the inland river basin of Northwest China. Hydrol. Process 2022, 36, e14620. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.T.; Li, X.L.; Zhou, T.W.; Sun, S.K.; Wang, Y.B.; Luan, X.B.; Yu, X. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Sci. Total. Environ. 2017, 589, 165–172. [Google Scholar] [CrossRef]
- Sun, C.J.; Zheng, Z.J.; Chen, W.; Wang, Y.Y. Spatial and temporal variations of potential evapotranspiration in the Loess Plateau of China during 1960–2017. Sustainability 2020, 12, 354. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.L.; Wu, L.F.; Zhang, F.C.; Xiang, Y.Z.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Wild, M.; Liang, S.L. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J. Geophys. Res. 2010, 115, D20113. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, R.S.; Song, Y.X.; Han, C.T.; Liu, J.F.; Liu, Z.W. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. J. Hydrol. 2019, 568, 147–159. [Google Scholar] [CrossRef]
- Li, Z.Q.; Song, L.L.; Ma, H.; Xiao, J.J.; Wang, K.; Chen, L. Observed surface wind speed declining induced by urbanization in East China. Clim. Dynam. 2017, 50, 735–749. [Google Scholar] [CrossRef]
- Liu, X.M.; Luo, Y.Z.; Zhang, D.; Zhang, M.H.; Liu, C.M. Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett. 2011, 38, L13404. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Wang, G.J.; Sun, S.L.; Fiifi Tawia Hagan, D.; Chen, T.; Dolman, H.; Liu, Y. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J. Hydrol. 2021, 595, 126037. [Google Scholar] [CrossRef]
- Fu, G.B.; Yu, J.J.; Zhang, Y.C.; Hu, S.S.; Ouyang, R.L.; Liu, W.B. Temporal variation of wind speed in China for 1961–2007. Theor. Appl. Clim. 2010, 104, 313–324. [Google Scholar] [CrossRef]
- Luo, Y.F.; Lu, D.R.; Zhou, X.J.; Li, W.L.; He, Q. Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res. Atmos. 2001, 106, 14501–14514. [Google Scholar]
- Dong, Q.; Wang, W.G.; Shao, Q.X.; Xing, W.Q.; Ding, Y.M.; Fu, J.Y. The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections. Int. J. Climatol. 2019, 40, 235–254. [Google Scholar] [CrossRef]
- Zheng, H.X.; Liu, X.M.; Liu, C.M.; Dai, X.Q.; Zhu, R.R. Assessing contributions to panevaporation trends in Haihe River Basin, China. J. Geophys. Res. 2009, 114, D24105. [Google Scholar] [CrossRef]
ET0 | WS | RH | SD | T | ||
---|---|---|---|---|---|---|
1960–1993 | trend | −6.71 * | −0.15 *** | −0.21 | −50.62 *** | 0.24 ** |
Z | −1.67 | −4.55 | −1.05 | −3.21 | 2.03 | |
1994–2017 | trend | 4.39 | 0.04 | −0.59 | −32.58 | 1.57 *** |
Z | 0.60 | 0.05 | −1.44 | −1.09 | 5.01 | |
1960–2017 | trend | 1.45 | −0.11 *** | −0.47 *** | −24.72 *** | 0.75 *** |
Z | 0.48 | −6.88 | −3.94 | −3.58 | 7.47 |
WS | RH | SD | T | ||||||
---|---|---|---|---|---|---|---|---|---|
SRC | RCR (%) | SRC | RCR (%) | SRC | RCR (%) | SRC | RCR (%) | ||
1960–1993 | <500 m | 0.551 | 30.8 | −0.407 | 22.7 | 0.292 | 16.3 | 0.541 | 30.2 |
>500 m | 0.233 | 16.5 | −0.494 | 34.9 | 0.397 | 28.0 | 0.293 | 20.6 | |
Whole | 0.363 | 22.5 | −0.448 | 27.8 | 0.392 | 24.3 | 0.409 | 25.4 | |
1994–2017 | <500 m | 0.480 | 29.5 | −0.357 | 21.9 | 0.469 | 28.8 | 0.322 | 19.8 |
>500 m | 0.202 | 16.9 | −0.625 | 52.3 | 0.365 | 30.5 | 0.003 | 0.3 | |
Whole | 0.231 | 19.5 | −0.508 | 42.9 | 0.437 | 36.9 | 0.008 | 0.7 | |
1960–2017 | <500 m | 0.568 | 29.3 | −0.473 | 24.4 | 0.438 | 22.6 | 0.461 | 23.8 |
>500 m | 0.092 | 7.1 | −0.589 | 45.8 | 0.366 | 28.4 | 0.240 | 18.6 | |
Whole | 0.199 | 13.6 | −0.542 | 37.1 | 0.478 | 32.7 | 0.242 | 16.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, C.; Liu, X.; Li, C.; Cai, L.; Dong, M. Spatial and Temporal Variation in Reference Evapotranspiration and Its Climatic Drivers in Northeast China. Water 2022, 14, 3911. https://doi.org/10.3390/w14233911
Liu X, Liu C, Liu X, Li C, Cai L, Dong M. Spatial and Temporal Variation in Reference Evapotranspiration and Its Climatic Drivers in Northeast China. Water. 2022; 14(23):3911. https://doi.org/10.3390/w14233911
Chicago/Turabian StyleLiu, Xiaoshuang, Chenxi Liu, Xiaoyu Liu, Cheng Li, Linshan Cai, and Manyu Dong. 2022. "Spatial and Temporal Variation in Reference Evapotranspiration and Its Climatic Drivers in Northeast China" Water 14, no. 23: 3911. https://doi.org/10.3390/w14233911
APA StyleLiu, X., Liu, C., Liu, X., Li, C., Cai, L., & Dong, M. (2022). Spatial and Temporal Variation in Reference Evapotranspiration and Its Climatic Drivers in Northeast China. Water, 14(23), 3911. https://doi.org/10.3390/w14233911