Start-Up Evaluation of a Full-Scale Wastewater Treatment Plant Consisting of a UASB Reactor Followed by Activated Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. The Start-Up of the Anaerobic–Aerobic System
2.2.1. UASB Start-Up
2.2.2. Activated Sludge Start-Up
2.3. Final Water Quality Verification
3. Results and Discussion
3.1. Start-Up of the Anaerobic–Aerobic System
- Brown: earthy odor indicates normal operation; no adjustment required.
- Light tan: odor indicates extremely young sludge; decreased sludge wasting.
- Dark brown: earthy odor indicates old sludge with high solid concentration; increased sludge wasting.
- Black: rotten-egg odor indicates septic conditions with a low dissolved oxygen concentration; increased aeration.
3.2. Final Water Quality Verification
3.3. Start-Up Strategies and Operation of UASB-AS Systems Treating Sewage
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassab, G.; Halalsheh, M.; Klapwijk, A.; Fayyad, M.; van Lier, J.B. Sequential Anaerobic-Aerobic Treatment for Domestic Wastewater—A Review. Bioresour. Technol. 2010, 101, 3299–3310. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D.G. A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Chernicharo, C.A.L.; Lier, J.B.; Noyola, A.; Ribeiro, T.B. Anaerobic Sewage Treatment: State of the Art, Constraints and Challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 649–679. [Google Scholar] [CrossRef]
- Cárdenas-Talero, J.L.; Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P. The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review. Sustainability 2022, 14, 5910. [Google Scholar] [CrossRef]
- Schellinkhout, A.; Collazos, C.J. Full-Scale Application of the UASB Technology for Sewage Treatment. Water Sci. Technol. 1992, 25, 159–166. [Google Scholar] [CrossRef]
- Seghezzo, L.; Zeeman, G.; Van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. A Review: The Anaerobic Treatment of Sewage in UASB and EGSB Reactors. Bioresour. Technol. 1998, 65, 175–190. [Google Scholar] [CrossRef]
- Chernicharo, C.A.; Lobato, L.C.; Neves, P.N. Anaerobic Reactors for Sewage Treatment: Design, Construction and Operation; IWA Publishing: London, UK, 2019. [Google Scholar]
- Boiocchi, R.; Zhang, Q.; Gao, M.; Liu, Y. Modeling and Optimization of an Upflow Anaerobic Sludge Blanket (UASB) System Treating Blackwaters. J. Environ. Chem. Eng. 2022, 10, 107614. [Google Scholar] [CrossRef]
- Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M. The Performance Enhancements of Upflow Anaerobic Sludge Blanket (UASB) Reactors for Domestic Sludge Treatment—A State-of-the-Art Review. Water Res. 2012, 46, 3434–3470. [Google Scholar] [CrossRef]
- Khan, A.A.; Gaur, R.Z.; Mehrotra, I.; Diamantis, V.; Lew, B.; Kazmi, A.A. Performance Assessment of Different STPs Based on UASB Followed by Aerobic Post Treatment Systems. J. Environ. Health Sci. Eng. 2014, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Gaur, R.Z.; Tyagi, V.K.; Khursheed, A.; Lew, B.; Mehrotra, I.; Kazmi, A.A. Sustainable Options of Post Treatment of UASB Effluent Treating Sewage: A Review. Resour. Conserv. Recycl. 2011, 55, 1232–1251. [Google Scholar] [CrossRef]
- Mazhar, M.A.; Khan, N.A.; Khan, A.H.; Ahmed, S.; Siddiqui, A.A.; Husain, A.; Tirth, V.; Islam, S.; Shukla, N.K.; Changani, F.; et al. Upgrading Combined Anaerobic-Aerobic UASB-FPU to UASB-DHS System: Cost Comparison and Performance Perspective for Developing Countries. J. Clean. Prod. 2021, 284, 124723. [Google Scholar] [CrossRef]
- Mai, D.T.; Kunacheva, C.; Stuckey, D.C. A Review of Posttreatment Technologies for Anaerobic Effluents for Discharge and Recycling of Wastewater. Crit. Rev. Environ. Sci. Technol. 2018, 48, 167–209. [Google Scholar] [CrossRef]
- Von Sperling, M.; Freire, V.H.; de Lemos Chernicharo, C.A. Performance evaluation of a USB—Activated sludge system treating municipal wastewater. Water Sci. Technol. 2001, 43, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.C.; Von Sperling, M. Performance Evaluation of UASB Reactor Systems with and without Post-Treatment. Water Sci. Technol. 2009, 59, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Chernicharo, C.A.L. Post-Treatment Options for the Anaerobic Treatment of Domestic Wastewater. Rev. Environ. Sci. Biotechnol. 2006, 5, 73–92. [Google Scholar] [CrossRef]
- Polito Braga, C.M.; Von Sperling, M.; Braga, A.R.; Pena, R.T. Control strategies for a combined anaerobic (UASB)—Aerobic (activated sludge) wastewater treatment system. Environ. Technol. 2005, 26, 1393–1402. [Google Scholar] [CrossRef]
- Cao, Y.S.; Ang, C.M. Coupled UASB-activated sludge process for COD and nitrogen removals in municipal sewage treatment in warm climate. Water Sci. Technol. 2009, 60, 2829–2839. [Google Scholar] [CrossRef]
- La Motta, E.J.; Silva, E.; Bustillos, A.; Padrón, H.; Luque, J. Combined Anaerobic/Aerobic Secondary Municipal Wastewater Treatment: Pilot-Plant Demonstration of the UASB/Aerobic Solids Contact System. J. Environ. Eng. 2007, 133, 397–403. [Google Scholar] [CrossRef]
- De Sousa, J.T.; Foresti, E. Domestic sewage treatment in an upflow anaerobic sludge blanket- Sequencing batch reactor system. Water Sci. Technol. 1996, 33, 73–84. [Google Scholar]
- Moawad, A.; Mahmoud, U.F.; El-Khateeb, M.A.; El-Molla, E. Coupling of sequencing batch reactor and UASB reactor for domestic wastewater treatment. Desalination 2009, 242, 325–335. [Google Scholar] [CrossRef]
- Saliba, P.D.; von Sperling, M. Performance Evaluation of a Large Sewage Treatment Plant in Brazil, Consisting of an up Fl Ow Anaerobic Sludge Blanket Reactor Followed by Activated Sludge Pollyane Diniz Saliba and Marcos von Sperling. Water Sci. Technol. 2017, 76, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Passing, F.H.; Vilela, L.C.H.; Ferreira, O.P. ETE—Piracicamirim—Nova concepção de sistema de tratamento de esgotos sanitários–partida, operação e monitoramento de desempenho. In Anais: 20º Congresso Brasileiro de Engenharia Sanitária e Ambiental, Rio de Janeiro, Maio/99; GESAD: Rio de Janeiro, Brazil, 1999. (In Portuguese) [Google Scholar]
- Mungray, A.K.; Patel, K. Coliforms removal in two UASB + ASP based systems. Int. Biodeterior. Biodegrad. 2011, 65, 23–28. [Google Scholar] [CrossRef]
- Pontes, P.P.; Chernicharo, C.A.D.L. Efeito Do Retorno de Lodo Aeróbio Sobre as Características Da Biomassa Presente Em Reatores UASB Tratando Esgoto Sanitário. Eng. Sanit. e Ambient. 2009, 14, 223–234. [Google Scholar] [CrossRef]
- Polito-Braga, C.M.; von Sperling, M.; Braga, A.R.; Pena, R.T. Real time control of a combined UASB-activated sludge wastewater treatment configuration. Water Sci. Technol. 2002, 45, 279–287. [Google Scholar] [CrossRef]
- Von Sperling, M.; Oliveira, S.C. Comparative Performance of Full-Scale Anaerobic and Aerobic Wastewater Treatment Process in Brazil. Water Sci. Technol. 2009, 59, 15–22. [Google Scholar] [CrossRef]
- Tawfik, A.; El-Gohary, F.; Ohashi, A.; Harada, H. Optimization of the Performance of an Integrated Anaerobic-Aerobic System for Domestic Wastewater Treatment. Water Sci. Technol. 2008, 58, 185–194. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2009. [Google Scholar]
- Barbosa, R.A.; Sant’Anna, G.L., Jr. Treatment of Raw Domestic Sewage in an UASB Reactor. Water Res. 1989, 23, 1483–1490. [Google Scholar] [CrossRef]
- Hussain, A.; Dubey, S.K. Specific Methanogenic Activity Test for Anaerobic Degradation of Influents. Appl. Water Sci. 2017, 7, 535–542. [Google Scholar] [CrossRef]
- Haskoning. Manual for UASB Reactors for Domestic Wastewater under Tropical Conditions; DECOM Manual; Working paper: Cali, Colombia, 1989. [Google Scholar]
- IHE. Anaerobic Lab Work. Lecture Notes, AWWT-08; Institute for Hydraulics and the Environment: Delft, The Netherlands, 1994. [Google Scholar]
- Metcalf & Eddy, Inc.; Tchobanoglous, G.; Stensel, H.; Tsuchihashi, R.; Burton, F. Wastewater Engineering:Treatment and Resource Recovery, 5th ed.; McGraw Hill: New York, NY, USA, 2014. [Google Scholar]
- von Sperling, M. Wastewater Characteristics, Treatment and Disposal; IWA publishing: London, UK, 2015; Volume 6. [Google Scholar]
- von Sperling, M. Biological Wastewater Treatment Series: Wastewater Characteristics Treatment and Disposal; IWA publishing: London, UK, 2007; Volume 1. [Google Scholar]
- di Bella, G.; Durante, F.; Torregrossa, M.; Viviani, G. Start-up with or without Inoculum? Analysis of an SMBR Pilot Plant. Desalination 2010, 260, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Han, D.; Yang, C.J.; Zhang, T.Y.; Yu, H.Q. Probing Operational Conditions of Mixing and Oxygen Deficiency Using HSV Color Space. J. Environ. Manag. 2019, 232, 985–992. [Google Scholar] [CrossRef]
- Sicard, C.; Glen, C.; Aubie, B.; Wallace, D.; Jahanshahi-Anbuhi, S.; Pennings, K.; Daigger, G.T.; Pelton, R.; Brennan, J.D.; Filipe, C.D.M. Tools for Water Quality Monitoring and Mapping Using Paper-Based Sensors and Cell Phones. Water Res. 2015, 70, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Adrianus van Haandel, J. van der L. Anaerobic Sewage Treatment:Optimization of Processes and Physical Design of Anaerobic and Complementary Processes; IWA publishing: London, UK, 2019. [Google Scholar]
- Van Lier, J.B.; Vashi, A.; Van Der Lubbe, J.; Heffernan, B. Anaerobic Sewage Treatment Using UASB Reactors: Engineering and Operational Aspects. Environ. Anaerob. Technol. Appl. New Dev. 2010, 59–89. [Google Scholar] [CrossRef] [Green Version]
- Augusto, C.; Chernicharo, D.L. Biological Wastewater Treatment Systems: Anaerobic Reactors; IWA publishing: London, UK, 2007; Volume 4. [Google Scholar]
- Cencic, O.; Rechberger, H. Material Flow Analysis with Software STAN. In Proceedings of the EnviroInfo 2008: Environmental Informatics and Industrial Ecology, Lüneburg, Germany, 10–12 September 2008; pp. 440–447. [Google Scholar]
- Cecconet, D.; Mainardis, M.; Callegari, A.; Capodaglio, A.G. Chemosphere Psychrophilic Treatment of Municipal Wastewater with a Combined UASB / ASD System, and Perspectives for Improving Urban WWTP Sustainability. Chemosphere 2022, 297, 134228. [Google Scholar] [CrossRef] [PubMed]
Unit | Parameter | STP Design |
---|---|---|
UASB | HRT (h) | 6 h |
Vup (m/h) | 0.7 m/h | |
Aeration tank | HRT (h) | 6 h |
MLSS (g/m3) | 3500 g/m3 | |
F/M (kg DBO5/kg MLVSS ∗ d) | 0.4 | |
Sludge age (d) | 6 d | |
SVI | (50–100) mL/g | |
Secondary settler | HLR | 17.6 m3/m2-d |
SLR | 6 kg/m2 ∗ h |
Parameters | Frequency | Method | Raw Wastewater | UASB Effluent |
---|---|---|---|---|
Flow | Continuously | Flowmeter | x | |
Chemical oxygen demand (COD) | Daily | SM 5220 D | x | x |
Biochemical oxygen demand (BOD5) | 2 x weekly | SM 5210 | x | x |
Total suspended solids (TSS) | Daily | SM 2540 D | x | x |
Oil and grease | Monthly | SM 5520 D | x | x |
Settleable solids | Daily | SM 2540 | x | x |
Temperature | Daily | SM 2550 B | x | x |
pH | Daily | SM 4500 | x | x |
Organic loading rate (based on flow, COD, and reactor volume) | 2 x weekly | Calculated | x |
Time (Days) | UASB Flow (m3/d) | Bypass Flow (m3/d) | |
---|---|---|---|
Phase 1: Start-Up | 0–22 | 6653 | 1123 (15%) |
22–89 | 5443 | 2332 (30%) | |
89–120 | 6220 | 1555 (20%) | |
Phase 2: Steady State | 120–309 | 6653 | 1123 (15%) |
Aeration Tank Variables | Frequency | Method |
---|---|---|
Mixed liquor suspended solids (MLSS) | 2 x weekly | SM 2540 D |
Mixed liquor volatile suspended solids (MLVSS) | 2 x weekly | SM 2540 E |
Food/microorganism ratio (F/M) (based on flow, BOD5, and reactor volume) | 2 x weekly | Calculated |
COD | Daily | SM 5220 D |
BOD5 | 2 x weekly | SM 5210 |
TSS | 2 x weekly | SM 2540 D |
Oil and grease | Monthly | SM 5520 D |
Volumetric organic loading (VOL) (based on flow, BOD5, and reactor volume) | 2 x weekly | Calculated |
Dissolved oxygen | Every hour | Hach, 9,020,000 |
Sludge volumetric index (SVI) | 2 x weekly | Sperling (2007) |
Sludge color | Continuously | Visual observation |
Sludge age | 2 x weekly | Calculated |
Parameter | n | Raw Wastewater | UASB | Aeration Tank | |||
---|---|---|---|---|---|---|---|
Mean +/− SD | CI | Mean +/− SD Start-Up | Mean +/− SD Steady State | Mean +/− SD Start-Up | Mean +/− SD Steady State | ||
COD [mg/L] | 46 | 694 +/− 143 | 661–734 | 405 +/− 84 | 245 +/− 63 | 127 +/− 31 | 76+7-22 |
BOD5 [mg/L] | 28 | 400 +/− 99 | 361–464 | 174 +/− 63 | 154 +/− 55 | 56 +/− 18 | 45 +/− 17 |
TSS [mg/L] | 48 | 303 +/− 69 | 252–348 | 69 +/− 18 | 45+/19 | 34 +/− 16 | 13 +/− 9 |
Country | Scale | Flow (m3/d) | HRT (h) | Concentration Mean (mg/L), Removal Efficiency % in Parentheses | Reference | |||
---|---|---|---|---|---|---|---|---|
UASB | AT | BOD | COD | TSS | ||||
India (Vadodara) | full | 43,000 | 7.2 | 6 | 13 (78) | 35 (75) | 21 (82) | [24] |
India (Surat) | full | 100,000 | 8.5 | 3 | 18 (86) | 77 (81) | 45 (65) | [24] |
Brazil (Piracicaba) | full | 10,800 | 4.6 | 4.8 | 47 (80) | 174 (65) | - | [23] |
Brazil (Betin) | full | 44,410 | 8.1 | 6.1 | 12 (94) | 37 (91) | 19 (92) | [22] |
Colombia (Tunja) * | full | 7776 | 10 | 7.6 | 22 (95) | 98 (86) | 20 (90) | This study |
Parameter | Unit | Influent | Effluent |
---|---|---|---|
Acidity | mg CaCO3/L | <10 | <10 |
COD | mg/L | 683 | 98.3 |
BOD5 | mg/L | 410 | 22 |
TSS | mg/L | 198 | 20 |
Settleable solids | ml/L | 2.8–7.0 | <0.1 |
Ammonia nitrogen | mg N/L | 47 | 43.6 |
Nitrate | mg N/L | <0.05 | <0.05 |
Nitrite | mg N/L | 0.169 | 0.123 |
Kjeldahl nitrogen | mg N/L | 62.3 | 51 |
Aluminum | mg AL/L | 1.19 | < 0.5 |
BTEX | μg/L | <40 | < 40 |
Cadmium | mg Cd/L | <0.01 | < 0.01 |
Cyanide | mg CN/L | <0.01 | < 0.1 |
Copper | mg Cu/L | 0.038 | < 0.02 |
Real color | 426 nm 525 nm 620 nm | 7.8 3.9 3.4 | 3.1 2.1 1.1 |
Volatile phenolic compounds | μg/L | <10 | <10 |
Chlorides | mg Cl/L | 20 | 55 |
Total hardness | mg CaCO3/L | 148 | 59.4 |
Calcic hardness | mg CaCO3/L | 54 | 21.8 |
Total chromium | mg Cr/L | <0.02 | <0.02 |
Total phosphorous | mg P/L | 7.97 | 5.27 |
Orthophosphates | mg P/L | 5.33 | 3.09 |
Hydrocarbons | mg Hydrocarbons/L | 3.92 | <1.0 |
Aromatic hydrocarbons | μg/L | < 5.0 | <5.0 |
Mercury | mg Hg/L | < 0.001 | <0.001 |
Nickel | mg Ni/L | < 0.05 | <0.05 |
Total iron | mg Fe/L | 1.98 | 0.349 |
Total silver | mg Ag/L | < 0.02 | <0.02 |
Lead | mg Pb/L | < 0.1 | <0.1 |
Anionic surfactants | mg SAAM/L | 2.06 | 3.66 |
Sulfate | mg SO4−2/L | 67.9 | 87.3 |
Sulfur | mg S−2/L | 3.15 | <1.0 |
Zinc | mg Zn/L | 0.23 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Gómez, J.; Pérez-Vidal, A.; Vargas-Nuncira, D.; Usaquén-Perilla, O.; Jiménez-Daza, X.; Rodríguez, C. Start-Up Evaluation of a Full-Scale Wastewater Treatment Plant Consisting of a UASB Reactor Followed by Activated Sludge. Water 2022, 14, 4034. https://doi.org/10.3390/w14244034
Díaz-Gómez J, Pérez-Vidal A, Vargas-Nuncira D, Usaquén-Perilla O, Jiménez-Daza X, Rodríguez C. Start-Up Evaluation of a Full-Scale Wastewater Treatment Plant Consisting of a UASB Reactor Followed by Activated Sludge. Water. 2022; 14(24):4034. https://doi.org/10.3390/w14244034
Chicago/Turabian StyleDíaz-Gómez, Jaime, Andrea Pérez-Vidal, David Vargas-Nuncira, Olga Usaquén-Perilla, Ximena Jiménez-Daza, and Claudia Rodríguez. 2022. "Start-Up Evaluation of a Full-Scale Wastewater Treatment Plant Consisting of a UASB Reactor Followed by Activated Sludge" Water 14, no. 24: 4034. https://doi.org/10.3390/w14244034
APA StyleDíaz-Gómez, J., Pérez-Vidal, A., Vargas-Nuncira, D., Usaquén-Perilla, O., Jiménez-Daza, X., & Rodríguez, C. (2022). Start-Up Evaluation of a Full-Scale Wastewater Treatment Plant Consisting of a UASB Reactor Followed by Activated Sludge. Water, 14(24), 4034. https://doi.org/10.3390/w14244034