Spatio-Temporal Disparities of Mariculture Area Production Efficiency Considering Undesirable Output: A Case Study of China’s East Coast
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Mariculture
2.2. Research on Methods of Efficiency
2.3. Research on Efficiency Measurements of Mariculture
2.4. Literature Summary
3. Materials and Methods
3.1. The S-EBM Model with Consideration of Undesirable Outputs
3.2. GML Index
3.3. Theil Index
4. Data and Variables
4.1. Variable Selection
4.2. Study Area
4.3. Data Sources
5. Results
5.1. Statistic Analysis of MAPE
5.1.1. Temporal Disparity Analysis of MAPE
5.1.2. Spatial Disparity Analysis of MAPE
5.1.3. Inter-Provincial Evolution Type Analysis of MAPE
5.2. Dynamic Analysis of MAPE
5.2.1. The GML and Decomposition Indexes
5.2.2. Spatiotemporal Characteristics of the GML and Decomposition Indexes
5.3. Spatial Difference Decomposition of MAPE
6. Conclusions and Discussion
6.1. Main Conclusions and Policy Implications
6.2. Limitations and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COD | Chemical oxygen demand |
DEA | Data envelope analysis |
DMU | Decision-making unit |
EBM | Engel–Blackwell–Miniard |
GML | Global Malmquist–Luenberger |
GMLEC | Global Malmquist–Luenberger technical efficiency |
GMLTC | Global Malmquist–Luenberger technical progress |
LCA | Life cycle assessment |
MAPE | Mariculture area production efficiency |
N | Nitrogen |
P | Phosphorus |
SBM | Slacks-based measure |
S-EBM | Super-efficiency Engel–Blackwell–Miniard |
SFA | Stochastic frontier analysis |
TFP | Total factor productivity |
TTP | Tornqvists–Theil |
References
- Skallerud, K.; Armbrecht, J. A segmentation of residents’ attitudes towards mariculture development in Sweden. Aquaculture 2020, 521, 735040. [Google Scholar] [CrossRef]
- Yu, J.K.; Han, Q.C. Food security of mariculture in China: Evolution, future potential and policy. Mar. Pol. 2020, 115, 103892. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture (2020); FAO Fisheries and Aquaculture Department: Rome, Italy, 2020. [Google Scholar]
- Costello, C.; Cao, L.; Gelcich, S.; Cisneros-Mata, M.Á.; Free, C.M.; Froehlich, H.E.; Golden, C.D.; Ishimura, G.; Maier, J.; Macadam-Somer, I.; et al. The future of food from the sea. Nature 2020, 588, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.; Pauly, D. Mariculture: A global analysis of production trends since 1950. Mar. Pol. 2013, 39, 94–100. [Google Scholar] [CrossRef]
- Yu, J.K.; Yin, W.; Liu, D.H. Evolution of mariculture policies in China: Experience and challenge. Mar. Pol. 2020, 119. [Google Scholar] [CrossRef]
- Fisheries Administration of Ministry of Agriculture and Rural Affairs of the People’ s Republic of China (FAPRC). China Fisheries Yearbook. China Agricultural Press, Beijing, 2014–2019. Available online: https://www.cafs.ac.cn/info/1397/31337.htm (accessed on 23 November 2021).
- Ministry of Agriculture and Rural Affairs, Ministry of Ecology and Environment. Report on the state of the fishery eco-environment in China. 2018. Available online: https://www.cafs.ac.cn/kxyj/sjfw/yysthjzkgb.htm (accessed on 23 November 2021).
- Ding, L.L.; Lei, L.; Wang, L.; Zhang, L.F.; Calin, A.C. A novel cooperative game network DEA model for marine circular economy performance evaluation of China. J. Clean. Prod. 2020, 253, 120071. [Google Scholar] [CrossRef]
- Ren, W.H.; Ji, J.Y.; Chen, L.; Zhang, Y. Evaluation of China’ s marine economic efficiency under environmental constraints: An empirical analysis of China’ s eleven coastal regions. J. Clean. Prod. 2018, 184, 806–814. [Google Scholar] [CrossRef]
- Xia, K.; Guo, J.K.; Han, Z.L.; Dong, M.R.; Xu, Y. Analysis of the scientific and technological innovation efficiency and regional differences of the land–sea coordination in China’ s coastal areas. Ocean Coast Manag. 2019, 172, 157–165. [Google Scholar] [CrossRef]
- Yin, K.D.; Xu, Y.; Li, X.M.; Jin, X. Sectoral relationship analysis on China’ s marine-land economy based on a novel grey periodic relational model. J. Clean. Prod. 2018, 197, 815–826. [Google Scholar] [CrossRef]
- Ren, W.H.; Ji, J.Y. How do environmental regulation and technological innovation affect the sustainable development of marine economy: New evidence from China’ s coastal provinces and cities. Mar. Pol. 2021, 128, 104468. [Google Scholar] [CrossRef]
- Pan, Z.; Tan, Y.M.; Gao, W.F.; Dong, S.L.; Fang, X.D.; Yan, J.L. A 120-year record of burial fluxes and source apportionment of sedimentary organic carbon in Alian Bay, China: Implication for the influence of mariculture activities, and regional environment changes. Aquaculture 2021, 535, 736421. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, J.H.; Lin, F.; Ren, J.S.; Zhao, Y.X.; Wu, W.G.; Liu, Y. Evaluating the growth potential of a typical bivalve-seaweed integrated mariculture system: A numerical study of Sungo Bay, China. Aquaculture 2021, 532, 736037. [Google Scholar] [CrossRef]
- Xu, Y.; Ji, J.Y.; Xu, Y.J. Spatial disequilibrium of mariculture areas utilization efficiency in China and causes. Resour. Sci. 2020, 42, 2158–2169. [Google Scholar] [CrossRef]
- Fukase, E.; Martin, W. Who will feed China in the 21st century? Income growth and food demand and supply in China. J. Agric. Econ. 2015, 67, 3–23. [Google Scholar] [CrossRef]
- Han, L.M.; Li, D.H. Blue food system: Guarantee of China’ s food security. Issues Agric. Econ. 2015, 36, 24–29+110. [Google Scholar]
- Li, D.; Nanseki, T.; Takeuchi, S. Measurement of agricultural production efficiency and the determinants in China based on a DEA approach: A case study of 99 farms from Hebei province. J. Fac. Agric. Kyushu Univ. 2012, 57, 235–244. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, L.; Lin, H.L. Analysis of total-factor cultivated land efficiency in China’ s agriculture. Agric. Econ. 2010, 56, 231–242. [Google Scholar]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model: A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Wang, S.H.; Lu, B.B.; Yin, K.D. Financial development, productivity, and high-quality development of the marine economy. Mar. Pol. 2021, 130, 104553. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, N. The role of the marine industry in China’ s national economy: An input–output analysis. Mar. Pol. 2019, 99, 42–49. [Google Scholar] [CrossRef]
- Wang, X.H. A study on ecological efficiency measurement and promoting countermeasures of marine utilization: A case of Zhejiang province. East China Econ. Manag. 2018, 32, 22–29. [Google Scholar]
- Ji, J.Y.; Guo, X.; Zhang, Y. The study of symbiotic relationships between the economic and the ecological system of China’ s mariculture industry: An empirical analysis of 10 coastal regions with Lokta–Volterra model. Reg. Stud. Mar. Sci. 2021, 48, 102051. [Google Scholar] [CrossRef]
- Salayo, N.D.; Perez, M.L.; Garces, L.R.; Pido, M.D. Mariculture development and livelihood diversification in the Philippines. Mar. Pol. 2012, 36, 867–881. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Q.; Shen, M. Provincial differences and dynamic changes in mariculture efficiency in China: Based on Super-SBM model and global Malmquist index. Biology 2020, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Polthanee, A.; Trelo-ges, V. Growth, yield and land use efficiency of corn and legumes grown under intercropping systems. Plant Prod. Sci. 2003, 6, 139–146. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.B.; Shi, X.P.; Zhao, L.D.; Zhang, J.G. Extending production-theoretical decomposition analysis to environmentally sensitive growth: Case study of Belt and Road Initiative countries. Technol. Forecast. Soc. Chang. 2020, 161, 120289. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, H. Cultivated land use efficiency and the regional characteristics of its influencing factors in China: By using a panel data of 281 prefectural cities and the stochastic frontier production function. Geogr. Res. 2014, 33, 1995–2004. [Google Scholar]
- Wang, S.H.; Yu, H.; Song, M.L. Assessing the efficiency of environmental regulations of large-scale enterprises based on extended fuzzy data envelopment analysis. Ind. Manag. Data Syst. 2018, 118, 463–479. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Yuan, T.; Shi, X.P.; Zhao, L.D. Heterogeneity in the relationship between carbon emission performance and urbanization: Evidence from China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1363–1380. [Google Scholar] [CrossRef]
- Ding, L.L.; Yang, Y.; Wang, L.; Calin, A.C. Cross Efficiency assessment of China’ s marine economy under environmental governance. Ocean Coast Manag. 2020, 193, 105245. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Jradi, S.; Ruggiero, J. Stochastic data envelopment analysis: A quantile regression approach to estimate the production frontier. Eur. J. Oper. Res. 2019, 278, 385–393. [Google Scholar] [CrossRef]
- Shabanzadeh-Khoshrody, M.; Azadi, H.; Khajooeipour, A.; Nabavi-Pelesaraei, A. Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. J. Clean. Prod. 2016, 135, 549–557. [Google Scholar] [CrossRef]
- Van Nguyen, Q.; Pascoe, S.; Coglan, L.; Nghiem, S. The sensitivity of efficiency scores to input and other choices in stochastic frontier analysis: An empirical investigation. J. Prod. Anal. 2021, 55, 31–40. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Li, X.; Xu, Q.; Ying, L.M.; Lai, C.H.; Li, A. Evaluation of soil and water conservation performance under promotion incentive based on stochastic frontier function model. Alex. Eng. J. 2022, 61, 855–862. [Google Scholar] [CrossRef]
- Wang, S.H.; Lei, L.; Xing, L. Urban circular economy performance evaluation: A novel fully fuzzy data envelopment analysis with large datasets. J. Clean. Prod. 2021, 324, 129214. [Google Scholar] [CrossRef]
- Han, H.B.; Zhang, X.Y. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2020, 246, 119002. [Google Scholar] [CrossRef]
- Li, Q.F.; Hu, S.G.; Du, G.M.; Zhang, C.R.; Liu, Y.S. Cultivated land use benefits under state and collective agrarian property regimes in China. Sustainability 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.H.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic evolution of regional discrepancies in carbon emissions from agricultural land utilization: Evidence from Chinese provincial data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2020, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Sun, X.L.; Song, M.L. Environmental regulation, resource misallocation, and ecological efficiency. Emerg. Mark. Financ. Trade 2021, 57, 410–429. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Xu, M.; Fan, T. Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 2019, 19, 199–207. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhao, D.Q.; Chen, H.X. Government corruption, resource misallocation, and ecological efficiency. Energy Econ. 2020, 85, 104573. [Google Scholar] [CrossRef]
- Saber, Z.; Zelm, R.; Pirdashti, H.; Schipper, A.M.; Esmaeili, M.; Motevali, A.; Nabavi-Pelesaraei, A.; Huijbregts, M.A.J. Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustain. Prod. Consump. 2021, 27, 1021–1029. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Azadi, H.; Passel, S.V.; Saber, Z.; Hosseini-Fashami, F.; Mostashari-Rad, F.; Ghasemi-Mobtaker, H. Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment. Energy 2021, 223, 120117. [Google Scholar] [CrossRef]
- Singh, K. Farm specific economic efficiency of fish production in south tripura district: A stochastic frontrier approach. Indian J. Agric. Econ. 2008, 63, 598–613. [Google Scholar]
- Nielsen, R. Green and technical efficient growth in Danish fresh water aquaculture. Aquac. Econ. Manag. 2011, 15, 262–277. [Google Scholar] [CrossRef]
- Ji, J.Y.; Wang, P.P. Research on China’ s aquaculture efficiency evaluation and influencing factors with undesirable outputs. J. Ocean Univ. China 2015, 14, 569–574. [Google Scholar] [CrossRef]
- Wang, P.P.; Ji, J.Y. Research on China’ s mariculture efficiency evaluation and influencing factors with undesirable outputs: An empirical analysis of China’ s ten coastal regions. Aquac. Int. 2017, 25, 1521–1530. [Google Scholar] [CrossRef]
- Vassdal, T.; Holst, H.M.S. Technological progress and regress in Norwegian Salmon farming: A malmquist index approach. Mar. Resour. Econ. 2011, 26, 329–341. [Google Scholar] [CrossRef]
- Ji, J.Y.; Sun, Q.W.; Ren, W.H.; Wang, P.P. The Spatial spillover effect of technical efficiency and its influencing factors for China’ s mariculture: Based on the partial differential decomposition of a spatial durbin model in the coastal provinces. Iran. J. Fish. Sci. 2020, 19, 921–933. [Google Scholar]
- Zhao, L.; Zhang, Y.S.; Wu, D. Marine economic efficiency and spatio-temporal characteristics of inter-province based on undesirable output in China. Sci. Geogr. 2016, 36, 32–41. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA-a third pole of technology efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficientunits in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Spatial-temporal distribution characteristics and driving mechanism of green total factor productivity in China’ s logistics industry. Pol. J. Environ. Stud. 2021, 30, 201–213. [Google Scholar] [CrossRef]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.W.; Yang, R.L.; Wu, D.D.; Zhou, Z.X. Green productivity growth and competition analysis of road transportation at the provincial level employing Global Malmquist-Luenberger Index approach. J. Clean. Prod. 2021, 279, 123677. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.J. Regional difference decomposition and influence factors of China’ s carbon dioxide emissions. J. Quant. Tech. 2012, 29, 36–49+148. [Google Scholar]
- Fan, S.G.; Zhang, X.B.; Sherman, R. Structural change and economic growth in China. China Econ. Q. 2002, 4, 181–198. [Google Scholar] [CrossRef]
- Ji, J.Y.; Li, Y.F. Research on green technology progress measurement and influencing factors in marine aquaculture industry in China. J. Ocean Univ. (Soc. Sci.) 2019, 4, 45–50. [Google Scholar]
- Tu, Z.G. The coordination of industrial growth with environment and resource. Econ. Res. J. 2008, 4, 93–105. [Google Scholar]
- Sun, K.; Ji, J.W.; Li, L.D.; Zhang, C.; Liu, J.F.; Fu, M. Marine fishery economic efficiency and its spatiotemporal differences based on undesirable outputs in China. Resour. Sci. 2017, 39, 2040–2051. [Google Scholar]
- Sun, Y.N.; Ji, J.Y. Measurement and analysis of technological progress bias in China’ s mariculture industry. J. World Aquacult. Soc. 2021, 1–17. [Google Scholar] [CrossRef]
- Gai, Z.X.; Sun, P.; Zhang, J.Q. Cultivated land utilization efficiency and its difference with consideration of environmental constraints in major grain producing area. Econ. Geogr. 2017, 37, 163–171. [Google Scholar]
- Liu, J.; Lu, J.; Liu, N. Space-time evolution, influencing factors and forming mechanisms of tourism industry’ s efficiency in China’ s coastal area of based on DEA-Malmquist model. Resour. Sci. 2015, 37, 2381–2393. [Google Scholar]
- Pang, J.X.; Li, H.J.; Lu, C.P.; Lu, C.Y.; Chen, X.P. Regional differences and dynamic evolution of carbon emission intensity of agriculture production in China. Int. J. Environ. Res. Public Health 2020, 17, 7541. [Google Scholar] [CrossRef]
Field | Content | Example | Year | Contribution |
---|---|---|---|---|
Mariculture | Development | Salayo et al. [26] | 2012 | Assessed the biophysical and socio-economic background of mariculture. |
Policy | Yu et al. [6] | 2020 | Analyzed the evolution of China’s mariculture policy, and divided it into three stages. | |
Efficiency | Yu et al. [27] | 2020 | Measured the mariculture efficiency scores and their changes in nine coastal provinces of China. | |
Methods of efficiency | SFA | Shabanzadeh-Khoshrody et al. [37] | 2016 | Analyzed the effects of the Baft dam construction on the efficiency and productivity of downstream agricultural land. |
Van Nguyen et al. [38] | 2021 | Examined the sensitivity of technical and scale efficiency estimates in stochastic frontier analysis. | ||
Wang et al. [39] | 2022 | Evaluated the performance of soil and water conservation. | ||
DEA | Wang et al. [40] | 2021 | Evaluated the urban circular economy. | |
Wang et al. [47] | 2020 | Calculated the ecological efficiency of China considering the undesirable output. | ||
Saber et al. [48] | 2021 | Calculated the eco-efficiency for each of four impact categories. | ||
Nabavi-Pelesaraei et al. [49] | 2021 | Measured the environmental efficiency of different systems. | ||
Efficiency measurement of mariculture | SFA | Singh et al. [50] | 2008 | Studied the economic efficiency of aquaculture in southern Tripura. |
DEA | Nielsen et al. [51] | 2011 | Analyzed the impact of the new environmental water purification system on the efficiency of freshwater aquaculture in Denmark. | |
Ji et al. [52] | 2015 | Measured the efficiency of aquaculture. | ||
Wang et al. [53] | 2017 | Measured mariculture industry in China. | ||
Vassdal et al. [54] | 2011 | Measured the TFP of the marine salmon produced in Norway. |
Statistics | Desirable Output | Undesirable Output | Input | ||
---|---|---|---|---|---|
Mariculture Production Value (100 Million CNY) | Equivalent Pollutants (Tons) | Mariculture Area (Hectare) | Capital Deposit of Mariculture (100 Million CNY) | Mariculture Labor (10 Thousand People) | |
Maximum | 6719.58 | 34,387.98 | 942 05 | 1228.59 | 225,139.00 |
Minimum | 23.82 | 37.89 | 813.00 | 5.32 | 621.00 |
Mean | 1886.96 | 4877.85 | 208,518.81 | 243.55 | 88,599.88 |
Median | 1297.42 | 2073.36 | 134,103.00 | 128.05 | 61,106.00 |
Standard deviation | 1671.88 | 6785.38 | 234,478.53 | 301.28 | 66,168.46 |
Province | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Liaoning | 0.706 | 0.788 | 0.801 | 0.642 | 0.849 | 0.536 | 0.615 | 0.523 | 0.47 | 0.424 | 0.387 | 0.542 |
Hebei | 0.566 | 0.588 | 0.794 | 0.634 | 0.638 | 0.579 | 0.619 | 0.609 | 0.588 | 0.522 | 0.53 | 0.773 |
Tianjin | 1.081 | 1.212 | 1.134 | 0.925 | 1.055 | 1.2 | 1.157 | 1.166 | 1.2 | 1.136 | 1.123 | 1.1 |
Shandong | 0.867 | 1.017 | 1.044 | 1.118 | 1.097 | 0.921 | 1.006 | 0.924 | 0.806 | 0.823 | 0.707 | 1.02 |
Jiangsu | 1.224 | 1.229 | 1.127 | 1.328 | 1.278 | 1.315 | 1.26 | 1.29 | 1.319 | 1.295 | 1.313 | 1.243 |
Zhejiang | 0.71 | 0.751 | 0.882 | 0.927 | 1.052 | 1.032 | 1.034 | 1.045 | 0.913 | 1.119 | 1.058 | 1.076 |
Fujian | 1.023 | 0.888 | 0.89 | 0.853 | 0.923 | 0.88 | 0.843 | 0.856 | 0.88 | 1.051 | 1.009 | 1.008 |
Guangdong | 1.136 | 1.131 | 1.086 | 1.084 | 1.092 | 1.02 | 1.013 | 1.014 | 1.015 | 1.072 | 1.072 | 1.082 |
Guangxi | 1.09 | 1.083 | 1.077 | 0.557 | 0.71 | 0.502 | 0.861 | 0.85 | 1.053 | 1.001 | 1.036 | 1.043 |
Hainan | 1.072 | 1.088 | 1.103 | 1.136 | 1.131 | 1.146 | 1.162 | 1.18 | 1.203 | 1.104 | 1.138 | 1.129 |
Average | 0.947 | 0.977 | 0.994 | 0.920 | 0.982 | 0.913 | 0.957 | 0.945 | 0.944 | 0.954 | 0.937 | 1.001 |
Province | GML | GMLEC | GMLTC |
---|---|---|---|
Liaoning | 0.985 | 0.974 | 1.011 |
Hebei | 1.053 | 1.020 | 1.032 |
Tianjin | 1.065 | 1.019 | 1.045 |
Shandong | 1.023 | 1.002 | 1.021 |
Jiangsu | 1.005 | 1.003 | 1.002 |
Zhejiang | 1.072 | 1.050 | 1.021 |
Fujian | 1.015 | 1.000 | 1.015 |
Guangdong | 1.022 | 0.999 | 1.023 |
Guangxi | 1.113 | 1.100 | 1.012 |
Hainan | 1.032 | 1.005 | 1.027 |
Year | Intra-Region (%) | Sum of Intra-Region (%) | Inter-Region (%) | ||
---|---|---|---|---|---|
Circum-Bohai Sea Region | Yangtze River Delta Region | Pearl River Delta Region | |||
2008 | 37.24% | 28.73% | 0.40% | 66.37% | 33.63% |
2009 | 56.09% | 27.79% | 0.28% | 84.17% | 15.83% |
2010 | 36.45% | 42.36% | 3.24% | 82.05% | 17.95% |
2011 | 30.83% | 19.05% | 37.79% | 87.67% | 12.33% |
2012 | 40.11% | 15.45% | 30.61% | 86.17% | 13.83% |
2013 | 41.16% | 10.33% | 33.10% | 84.60% | 15.40% |
2014 | 55.82% | 17.38% | 9.37% | 82.56% | 17.44% |
2015 | 52.97% | 14.54% | 8.81% | 76.32% | 23.68% |
2016 | 51.67% | 14.74% | 2.37% | 68.78% | 31.22% |
2017 | 49.95% | 3.22% | 0.63% | 53.79% | 46.21% |
2018 | 45.17% | 4.89% | 0.52% | 50.59% | 49.41% |
2019 | 51.19% | 11.74% | 1.15% | 64.08% | 35.92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Liu, L.; Xu, Y.; Zhang, N. Spatio-Temporal Disparities of Mariculture Area Production Efficiency Considering Undesirable Output: A Case Study of China’s East Coast. Water 2022, 14, 324. https://doi.org/10.3390/w14030324
Ji J, Liu L, Xu Y, Zhang N. Spatio-Temporal Disparities of Mariculture Area Production Efficiency Considering Undesirable Output: A Case Study of China’s East Coast. Water. 2022; 14(3):324. https://doi.org/10.3390/w14030324
Chicago/Turabian StyleJi, Jianyue, Luping Liu, Yao Xu, and Ningning Zhang. 2022. "Spatio-Temporal Disparities of Mariculture Area Production Efficiency Considering Undesirable Output: A Case Study of China’s East Coast" Water 14, no. 3: 324. https://doi.org/10.3390/w14030324
APA StyleJi, J., Liu, L., Xu, Y., & Zhang, N. (2022). Spatio-Temporal Disparities of Mariculture Area Production Efficiency Considering Undesirable Output: A Case Study of China’s East Coast. Water, 14(3), 324. https://doi.org/10.3390/w14030324