Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Survey Area and the Design of the Electrical Resistivity Imaging
2.2. The Resistivity Survey and Depth Estimation for the Groundwater Table
3. Results
3.1. The Time-Lapse ERI Surveys
3.2. The Inverted Brooks-Corey Model
3.3. Estimation of Groundwater Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michot, D.; Benderitter, Y.; Dorigny, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 2003, 39, 1138. [Google Scholar] [CrossRef]
- Berthold, S.; Bentley, L.R.; Hayashi, M. Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies. Water Resour. Res. 2004, 40, W06505. [Google Scholar] [CrossRef] [Green Version]
- Rayner, S.F.; Bentley, L.R.; Allen, D.M. Constraining Aquifer Architecture with Electrical Resistivity Imaging in a Fractured Hydrogeological Setting. J. Environ. Eng. Geophys. 2007, 12, 323–335. [Google Scholar] [CrossRef]
- Frohlich, R.K.; Kelly, W.E. Estimates of specific yield with the geoelectric resistivity method in glacial aquifers. J. Hydrol. 1988, 97, 33–44. [Google Scholar] [CrossRef]
- Dietrich, S.; Carrera, J.; Weinzettel, P.; Sierra, L. Estimation of Specific Yield and its Variability by Electrical Resistivity Tomography. Water Resour. Res. 2018, 54, 8653–8673. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Chang, L.-C.; Hsu, S.-Y.; Tsai, J.-P.; Chen, W.-F. Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. J. Appl. Geophys. 2017, 144, 134–143. [Google Scholar] [CrossRef]
- Wang, S.-J.; Lee, C.-H.; Yeh, C.-F.; Choo, Y.; Tseng, H.-W. Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water 2021, 13, 1153. [Google Scholar] [CrossRef]
- Huang, W.-C.; Chiang, Y.; Wu, R.-Y.; Lee, J.-L.; Lin, S.-H. The impact of climate change on rainfall frequency in Taiwan. Terr. Atmos. Ocean. Sci. 2011, 23, 553. [Google Scholar] [CrossRef] [Green Version]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Pet. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Dachnov, V. Interpretazija resultatov geofiziceskichissledovanij razrezov skavzin. Izdat. Gostoptechizdat 1962, 2, 547. [Google Scholar]
- Zhou, B. Electrical Resistivity Tomography: A Subsurface-Imaging Technique, in Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics; IntechOpen: London, UK, 2018. [Google Scholar]
- Lippmann, E. Four-Point Light Hp Technical Data and Operating Instructions Ver. 3.37.; Lipmann Geophysikalische Messgeräte: Schaufling, Germany, 2005. [Google Scholar]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Tamssar, A.H. An Evaluation of the Suitability of Different Electrode Arrays for Geohydrological Studies in Karoo Rocks Using Electrical Resistivity Tomography; University of the Free State: Bloemfontein, South Africa, 2013. [Google Scholar]
- AGI. Instruction Manual for EarthImager 2D ver. 2.3.0.; Advanced Geosciences, Inc: Austin, TX, USA, 2006. [Google Scholar]
- Yang, X.; Lagmanson, M.B. Planning resistivity surveys using numerical simulations. In Proceedings of the 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, European Association of Geoscientists & Engineers, San Antonio, TX, USA, 6–10 April 2003. [Google Scholar]
- Yang, X.; LaBrecque, D.J. Stochastic inversion of 3D ERT data. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1998; Society of Exploration Geophysicists: Chicago, IL, USA, 1998. [Google Scholar]
- Sharma, S.; Verma, G. Inversion of Electrical Resistivity Data: A Review. World Acad. Sci. Eng. Technol. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2015, 9, 400–406. [Google Scholar]
- Novák, V.; Hlaváčiková, H. Soil-Water Retention Curve, in Applied Soil Hydrology; Springer International Publishing: Cham, Switzerland, 2019; pp. 77–96. [Google Scholar]
- Fredlund, D.G.; Sheng, D.; Zhao, J. Estimation of soil suction from the soil-water characteristic curve. Can. Geotech. J. 2011, 48, 186–198. [Google Scholar] [CrossRef]
- Krahn, J.; Fredlund, D. On total, matric and osmotic suction. Soil Sci. 1972, 114, 339–348. [Google Scholar] [CrossRef]
- Brooks, R.; Corey, A. Hydraulic Properties of Porous Media, in Hydrology Papers; Colorado State University: Ft. Collins, CO, USA, 1964. [Google Scholar]
- Van Genuchten, M.T. A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Niswonger, R.G.; Fogg, G.E. Influence of perched groundwater on base flow. Water Resour. Res. 2008, 44, W03405. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, Y.-S.; Chang, J.-C.; Yang, R.-J.; Tseng, T.-P. Estimating the specific yield in an unconfined aquifer using the gravimetric method: A case study in the Zhoushui River alluvial fan. J. Chin. Inst. Eng. 2021, 44, 820–830. [Google Scholar] [CrossRef]
Month | December 2016 | March 2017 | June 2017 | August 2017 | September 2017 | January 2018 | March 2018 |
---|---|---|---|---|---|---|---|
λ | 0.50 | 0.80 | 2.35 | 2.13 | 2.76 | 0.52 | 0.67 |
ha (m) | 4.83 | 5.13 | 8.22 | 7.79 | 8.57 | 5.42 | 5.16 |
θs | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 |
θr | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Survey Line | X-Corr (TM97) | Y-Corr (TM97) | Ground Level (m) | Groundwater Level (m) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
December 2016 | March 2017 | June 2017 | August 2017 | September 2017 | January 2018 | March 2018 | ||||
Min_01 | 219,425.6 | 2,634,326.9 | 148 | 135.1 | 135.4 | 138.5 | 138.2 | 138.9 | 135.7 | 135.5 |
Min_02 | 219,009.2 | 2,634,177.1 | 146.2 | 134.8 | 136.1 | 136.2 | 136.8 | 134.5 | 133.8 | 133.7 |
Min_03 | 218,467.3 | 2,634,382.7 | 143.5 | 130.0 | 133.1 | 132.4 | 133.4 | 134.6 | 129.0 | 130.1 |
Min_04 | 219,170.5 | 2,634,928.7 | 150 | 134.0 | 133.3 | 138.3 | 138.8 | 135.5 | ||
Min_05 | 218,182.1 | 2,634,650.5 | 142 | 128.9 | 127.7 | 127.8 | 130.8 | 134.2 | 125.6 | 129.8 |
Min_08 | 218,874.6 | 2,635,552.2 | 149 | 137.1 | 136.8 | 139.6 | 139.3 | 138.6 | ||
Min2_01 | 217,203.4 | 2,633,563.7 | 135 | 121.6 | 126.1 | 126.9 | 126.0 | 122.3 | 124.9 | |
Min2_02 | 216,878.5 | 2,633,495.5 | 131.2 | 117.0 | 119.1 | 120.3 | 118.9 | 118.3 | 119.6 | |
Min2_03 | 217,496.7 | 2,634,252.7 | 135 | 125.8 | 128.2 | 128.3 | 127.3 | |||
Min2_04 | 218,269.1 | 2,633,408.5 | 137 | 120.5 | 122.1 | 123.4 | 122.1 | |||
Min2_06 | 218,851.7 | 2,634,480.1 | 145.5 | 132.3 | 133.9 | 132.6 | 131.9 | |||
Min3_01 | 217,554.3 | 2,632,769.4 | 129 | 117.4 | 118.1 | 119.2 | 118.7 | 118.4 |
Survey Line | Theoretical Specific Yield | Specific Yield Capacity | Maximum | Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|
December 2016 | March 2017 | June 2017 | August 2017 | September 2017 | January 2018 | March 2018 | ||||
Min_01 | 0.21 | 0.06 | 0.09 | 0.12 | 0.14 | 0.12 | 0.06 | 0.08 | 0.14 | 0.09 |
Min_02 | 0.21 | 0.13 | 0.14 | 0.14 | 0.10 | 0.16 | 0.13 | 0.15 | 0.16 | 0.13 |
Min_03 | 0.17 | 0.11 | 0.08 | 0.08 | 0.12 | 0.12 | 0.09 | 0.07 | 0.12 | 0.10 |
Min_04 | 0.19 | 0.12 | 0.06 | 0.10 | 0.14 | 0.12 | 0.14 | 0.11 | ||
Min_05 | 0.20 | 0.10 | 0.15 | 0.11 | 0.12 | 0.07 | 0.13 | 0.12 | 0.15 | 0.11 |
Min_08 | 0.22 | 0.13 | 0.12 | 0.11 | 0.11 | 0.15 | 0.15 | 0.12 | ||
Min2_01 | 0.11 | 0.06 | 0.09 | 0.09 | 0.09 | 0.08 | 0.07 | 0.09 | 0.08 | |
Min2_02 | 0.12 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.08 | |
Min2_03 | 0.13 | 0.06 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | |||
Min2_04 | 0.14 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | |||
Min2_06 | 0.19 | 0.09 | 0.11 | 0.07 | 0.13 | 0.13 | 0.10 | |||
Min3_01 | 0.14 | 0.11 | 0.10 | 0.08 | 0.08 | 0.06 | 0.11 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, P.-Y.; Puntu, J.M.; Lin, D.-J.; Yao, H.-J.; Chang, L.-C.; Chen, K.-H.; Lu, W.-J.; Lai, T.-H.; Doyoro, Y.G. Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs. Water 2022, 14, 420. https://doi.org/10.3390/w14030420
Chang P-Y, Puntu JM, Lin D-J, Yao H-J, Chang L-C, Chen K-H, Lu W-J, Lai T-H, Doyoro YG. Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs. Water. 2022; 14(3):420. https://doi.org/10.3390/w14030420
Chicago/Turabian StyleChang, Ping-Yu, Jordi Mahardika Puntu, Ding-Jiun Lin, Hsin-Ju Yao, Liang-Cheng Chang, Kuan-Hung Chen, Wan-Jhong Lu, Tzu-Hua Lai, and Yonatan Garkebo Doyoro. 2022. "Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs" Water 14, no. 3: 420. https://doi.org/10.3390/w14030420
APA StyleChang, P. -Y., Puntu, J. M., Lin, D. -J., Yao, H. -J., Chang, L. -C., Chen, K. -H., Lu, W. -J., Lai, T. -H., & Doyoro, Y. G. (2022). Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs. Water, 14(3), 420. https://doi.org/10.3390/w14030420