The Effect of Precipitation on the Microbiological Quality of Bathing Water in Areas under Anthropogenic Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Sampling
2.3. Microbiological Analysis
2.4. Physical/Chemical Analysis
2.5. Data Analysis
3. Results
3.1. Descriptive Statistics
3.2. Bathing Water Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preißler, S. Evaluation of the quality of European coastal water by German tourists. Coast. Chang. S. Balt. Sea Reg. Coastline Rep. 2009, 12, 177–186. [Google Scholar]
- Dodds, R.; Holmes, M.R. Education and certification for beach management: Is there a difference between residents versus visitors? Ocean Coast. Manag. 2018, 160, 124–132. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive 2006/7/EC of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC; European Union: Brussels, Belgium, 2006. [Google Scholar]
- Official Gazette of the Republic of Croatia” Narodne Novine” 73/2008. Regulation on Sea Bathing Water Quality; The Government of The Republic of Croatia: Zagreb, Croatia, 2008. [Google Scholar]
- Al Aukidy, M.; Verlicchi, P. Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area. Sci. Total Environ. 2017, 607–608, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Penna, P.; Baldrighi, E.; Betti, M.; Bolognini, L.; Campanelli, A.; Capellacci, S.; Casabianca, S.; Ferrarin, C.; Giuliani, G.; Grilli, F.; et al. Water quality integrated system: A strategic approach to improve bathing water management. J. Environ. Manag. 2021, 295, 113099. [Google Scholar] [CrossRef] [PubMed]
- Wyer, M.D.; Kay, D.; Jackson, G.F.; Dawson, H.M.; Yeo, T.L. Indicator organism sources and coastal water quality: A catchment study on the island of Jersey. J. Appl. Bacteriol. 1995, 78, 290–296. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Recommendations on Scientific, Analytical and Epidemiological Developments Relevant to the Parameters for Bathing Water Quality in the Bathing Water Directive (2006/7/EC). 2018. Available online: https://circabc.europa.eu/d/d/workspace/SpacesStore/9e89152c-7cfe-4391-9bcf-c173519e8181/WHO%20Recommendations%20on%20EC%20BWD.pdf (accessed on 16 December 2021).
- Vander Tuig, K.; Hufnagel, C.; Carrier, A.; Christian, D.; Struck, S. The great sewer separation debate. Proc. Water Environ. Fed. Water Environ. Fed. 2009, 18, 254–271. [Google Scholar] [CrossRef]
- Jozić, S.; Vukić Lušić, D.; Ordulj, M.; Frlan, E.; Cenov, A.; Diković, S.; Kauzlarić, V.; Fiorido Ðurković, L.; Stilinović Totić, J.; Ivšinović, D.; et al. Performance characteristics of the temperature-modified ISO 9308-1 method for the enumeration of Escherichia coli in marine and inland bathing waters. Mar. Pollut. Bull. 2018, 135, 150–158. [Google Scholar] [CrossRef] [PubMed]
- ISO 7899-2. Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Botturi, A.; Gozde Ozbayram, E.; Tondera, K.; Gilbert, N.I.; Rouault, P.; Caradot, N.; Gutierrez, O.; Daneshgar, S.; Frison, N.; Akyol, C.; et al. Combined sewer overflows: A critical review on best practice and innovative solutions to mitigate impacts on envi-ronment and human health. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1585–1618. [Google Scholar] [CrossRef]
- Ferrarin, C.; Penna, P.; Penna, A.; Spada, V.; Ricci, F.; Bilić, J.; Krželj, M.; Ordulj, M.; Šikoronja, M.; Đuračić, I.; et al. Modelling the Quality of Bathing Waters in the Adriatic Sea. Water 2021, 13, 1525. [Google Scholar] [CrossRef]
- Vukić Lušić, D.; Kranjčević, L.; Maćešić, S.; Lušić, D.; Jozić, S.; Linšak, Ž.; Bilajac, L.; Grbčić, L.; Bilajac, N. Temporal variations analyses and predictive modeling of microbiological seawater quality. Water Res. 2017, 119, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Kwokal, Z.; Francisković-Bilinski, S.; Bilinski, H.; Branica, M. A comparison of anthropogenic mercury pollution in Kastela Bay (Croatia) with pristine estuaries in Ore (Sweden) and Krka (Croatia). Mar. Pollut. Bull. 2002, 44, 1152–1157. [Google Scholar] [CrossRef]
- Sampson, R.W.; Swiatnicki, S.A.; McDermott, C.M.; Kleinheinz, G.T. The Effects of rainfall on Escherichia coli and total coliform levels at 15 Lake Superior recreational beaches. Water Resour. Manag. 2006, 20, 151–159. [Google Scholar] [CrossRef]
- Park, K.; Jo, M.R.; Kim, Y.K.; Lee, H.J.; Kwon, J.Y.; Son, K.T.; Lee, T.S. Evaluation of the effects of the inland pollution sources after rainfall events on the bacteriological water quality in Narodo area, Korea. Korean J. Fish. Aquat. Sci. 2012, 45, 414–422. [Google Scholar] [CrossRef]
- Ackerman, D.; Weisberg, S.B. Relationship between rainfall and beach bacterial concentrations on Santa Monica bay beaches. J. Water Health 2003, 1, 85–89. [Google Scholar] [CrossRef]
- Kleinheinz, G.T.; McDermott, C.M.; Hughes, S.; Brown, A. Effects of rainfall on E. coli concentrations at Door County, Wisconsin beaches. Int. J. Microbiol. 2009, 2009, 876050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, J.; Fan, J.; Gao, D.; Ju, H. Effects of rainfall on microbial water quality on Qingdao No. 1 Bathing Beach, China. Mar. Pollut. Bull. 2013, 66, 185–190. [Google Scholar] [CrossRef]
- Economy, L.M.; Wiegner, T.N.; Strauch, A.M.; Awaya, J.D.; Gerken, T. Rainfall and streamflow effects on estuarine Staphylococcus aureus and fecal indicator bacteria concentrations. J. Environ. Qual. 2019, 48, 1711–1721. [Google Scholar] [CrossRef]
- Džal, D.; Kosović, I.N.; Mastelić, T.; Ivanković, D.; Puljak, T.; Jozić, S. Modelling bathing water quality using official monitoring data. Water 2021, 13, 3005. [Google Scholar] [CrossRef]
- Leecaster, M.K.; Weisberg, S.B. Effect of sampling frequency on shoreline microbiology assessments. Mar. Pollut. Bull. 2001, 42, 1150–1154. [Google Scholar] [CrossRef]
- Fujioka, R.S.; Hashimoto, H.H.; Siwak, E.B.; Young, R.H. Effect of sunlight on survival of indicator bacteria in seawater. Appl. Environ. Microbiol. 1981, 41, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Davies-Colley, R.J.; Bell, R.G.; Donnison, A.M. Sunlight inactivation of enterococci and fecal coliforms in sewage effluent diluted in Seawater. Appl. Environ. Microbiol. 1994, 60, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Sinton, L.W.; Davies-Colley, R.J.; Bell, R.G. Inactivation of enterococci and faecal coliforms from sewage and meatworks effluentsin seawater chambers. Appl. Environ. Microbiol. 1994, 60, 2040–2048. [Google Scholar] [CrossRef] [PubMed]
- Jozić, S.; Morović, M.; Šolić, M.; Krstulović, N.; Ordulj, M. Effect of solar radiation, temperature and salinity on the survival of two different strains of Escherichia coli. Fresenius Environ. Bull. 2014, 23, 1852–1859. [Google Scholar]
Station | Parameters | ||||
---|---|---|---|---|---|
Water Temperature (°C) | Salinity | pH | Intestinal Enterococci (CFU/100 mL) | E. coli (CFU/100 mL) | |
P1 | 23.7 (20.9–25.4) | 37.8 (37.3–38.2) | 8.03 (7.99–8.07) | 0 (0.0–1.0) | 1 (0.0–4.0) |
P2 | 23.9 (21.0–25.7) | 37.1 (35.8–37.5) | 8.13 (8.03–8.22) | 36 (8.0–76.0) | 46 (30.0–105.5) |
P3 | 23.4 (21.0–25.4) | 36.3 (34.6–37.1) | 8.10 (8.01–8.14) | 3 (1.0–14.2) | 7 (3.0–15.0) |
P4 | 24.1 (21.4–25.6) | 37.2 (36.2–37.5) | 8.12 (8.01–8.14) | 6 (2.0–16.0) | 16 (7.5–41.2) |
P5 | 24.1 (21.6–25.9) | 36.7 (34.5–37.2) | 8.15 (8.11–8.19) | 18 (7.0–42.5) | 36 (17.0–120.0) |
P6 | 23.8 (21.7–25.8) | 35.8 (33.9–37.1) | 8.09 (8.05–8.12) | 13 (2.0–37.5) | 25 (10.0–56.2) |
P7 | 23.5 (21.5–25.2) | 37.5 (36.9–37.9) | 8.10 (8.02–8.14) | 1 (0.0–4.8) | 2 (1.0–7.5) |
P8 | 23.6 (21.0–25.4) | 37.6 (36.6–37.9) | 8.10 (8.07–8.15) | 1 (0.0–1-0) | 1 (1.0–2-8) |
P9 | 23.8 (20.9–25.7) | 37.5 (36.8–37.8) | 8.11 (8.06–8.14) | 1 (0.0–6.5) | 4 (2.0–9.8) |
P10 | 23.7 (20.9–25.6) | 37.6 (37.0–38.0) | 8.11 (8.06–8.15) | 1 (0.0–2.0) | 2 (1.0–4.0) |
P11 | 23.5 (21.2–25.4) | 37.5 (36.8–36.9) | 8.12 (8.07–8.16) | 1 (0.0–1.0) | 2 (0.5.5.0) |
Parameters | E. coli | Intestinal Enterococci | Precipitation |
---|---|---|---|
Air temperature | −0.074408 | −0.097515 | −0.116098 |
Water temperature | 0.012499 | 0.035217 | 0.010085 |
Salinity | − 0.269378 | −0.226446 | −0.035646 |
pH | −0.012774 | 0.080992 | 0.141659 |
E. coli | 1.000000 | 0.688259 | 0.070780 |
Intestinal enterococci | 0.688259 | 1.000000 | 0.055395 |
Precipitation | 0.070780 | 0.055395 | 1.000000 |
Parameters | E. coli | Intestinal Enterococci | Precipitation |
---|---|---|---|
Air temperature | 0.021580 | −0.046341 | −0.105498 |
Water temperature | 0.134070 | 0.113334 | 0.035564 |
Salinity | −0.099866 | −0.024540 | −0.015196 |
pH | −0.256724 | −0.084286 | 0.143502 |
E. coli | 1.000000 | 0.503115 | 0.111749 |
Intestinal enterococci | 0.503115 | 1.000000 | 0.143276 |
Precipitation | 0.111749 | 0.143276 | 1.000000 |
Parameters | E. coli | Intestinal Enterococci | Precipitation |
---|---|---|---|
Air temperature | −0.111462 | −0.112434 | −0.132546 |
Water temperature | −0.117736 | −0.067930 | −0.024022 |
Salinity | −0.337801 | −0.292302 | −0.087983 |
pH | 0.183863 | 0.228400 | 0.143986 |
E. coli | 1.000000 | 0.753913 | 0.083236 |
Intestinal enterococci | 0.753913 | 1.000000 | 0.025341 |
Precipitation | 0.083236 | 0.025341 | 1.000000 |
Parameters | Excellent | Good | Sufficient | Poor |
---|---|---|---|---|
Intestinal enterococci (CFU/100 mL) | ≤100 * | ≤200 * | ≤185 ** | >200 ** |
E. coli (CFU/100 mL) | ≤150 * | ≤300 * | ≤300 ** | >300 ** |
Parameters | Excellent | Good | Sufficient |
---|---|---|---|
Intestinal enterococci (CFU/100 mL) | ≤60 | 61–100 | 101–200 |
E. coli (CFU 100/mL) | ≤100 | 101–200 | 201–300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordulj, M.; Jozić, S.; Baranović, M.; Krželj, M. The Effect of Precipitation on the Microbiological Quality of Bathing Water in Areas under Anthropogenic Impact. Water 2022, 14, 527. https://doi.org/10.3390/w14040527
Ordulj M, Jozić S, Baranović M, Krželj M. The Effect of Precipitation on the Microbiological Quality of Bathing Water in Areas under Anthropogenic Impact. Water. 2022; 14(4):527. https://doi.org/10.3390/w14040527
Chicago/Turabian StyleOrdulj, Marin, Slaven Jozić, Mateja Baranović, and Maja Krželj. 2022. "The Effect of Precipitation on the Microbiological Quality of Bathing Water in Areas under Anthropogenic Impact" Water 14, no. 4: 527. https://doi.org/10.3390/w14040527
APA StyleOrdulj, M., Jozić, S., Baranović, M., & Krželj, M. (2022). The Effect of Precipitation on the Microbiological Quality of Bathing Water in Areas under Anthropogenic Impact. Water, 14(4), 527. https://doi.org/10.3390/w14040527