Dissolved Potentially Toxic Elements (PTEs) in Relation to Depuration Plant Outflows in Adriatic Coastal Waters: A Two Year Monitoring Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Methodology
2.2. PTE Analyses
2.3. Statistical Analysis
3. Results
3.1. Physico-Chemical Parameters
3.2. PTEs Levels in DPs and Seawater
3.3. PTE Seasonal Trend
3.4. Comparison between Different Study Sites
3.5. PTEs and CTD Variables
4. Discussion
4.1. PTEs in Adriatic Sea Literature
Location (State), Sampling Year | Hg | Cd | As | Reference |
---|---|---|---|---|
Gulf of Trieste (Italy), 2019–2020 | 15 ± 7 (4–30) | 20 ± 19 (<0.5–98) | 458 ± 442 (<13–1542) | This study |
Zadar (Croatia), 2019–2020 | 8 ± 6 (<0.6–19) | 9 ± 11 (<0.5–33) | 801 ± 283 (182–1258) | This study |
Split (Croatia), 2019–2020 | 7 ± 4 (<0.6–19) | 10 ± 11 (<0.5–40) | 883 ± 295 (169–2126) | This study |
Gulf of Trieste (Italy) 2002–2003 | nd | 80 ± 140 | nd | [34] |
Marano Lagoon (Italy), 2004 | 4.1–52.4 | nd | nd | [50] |
Gulf of Trieste (Italy), 2011–2012 | 0.2–15 | nd | nd | [51] |
Mljet National Park (Croatia), 2005–2008 | 0.5–24.2 (T) | 6.4–18.7 | nd | [33] |
Southeast Adriatic coast (Montenegro), 2005–2007 | 200–2000 | 0–7400 | 500–3100 | [59] |
Durres Bay (Albania), 1999–2002 | 76.6–101.1 (T) | 121–187 (T) | nd | [58] |
Ancona (Italy), 2005 | nd | 14 ± 1 | nd | [30] |
Central Adriatic Sea, 2004 | nd | 15 ± 3 | nd | [53] |
Po Plume (Italy), 2002 | nd | 14 ± 5 | nd | [32] |
Mediterranean Sea, 1995 | nd | 7 | nd | [62] |
Isonzo River (Italy) | <LOD–8.60 | nd | 190–2310 | [49] |
Gulf of Trieste (Italy), 2012 | 1 | nd | 1500 | [63] |
Gulf of Trieste (Italy), 1990–1999 | <0.20–4.9 | nd | nd | [64] |
Krka River (Croatia), 1997–2000 | 0.50–1.10 | nd | nd | [65] |
Zrmanja River | nd | nd | 250–1740 | [66] |
Limits | ||||
Discharge in surface waters (mg L−1) | 0.005 | 0.02 | 0.5 | [16] |
MAC-EQS (µg L−1) | 0.07 | 0.45 a | 5 | [60,61] |
4.2. Seasonal Evolution of PTEs in the Adriatic Sea
4.3. PTEs Relation to DP Activity and Environmental Condition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wear, S.L.; Thurber, R.V. Sewage Pollution: Mitigation Is Key for Coral Reef Stewardship. Ann. N. Y. Acad. Sci. 2015, 1355, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water—A Comprehensive Review. Resour. Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals; InTech: London, UK, 2018. [Google Scholar]
- Srivastava, A.; Siddiqui, N.A.; Koshe, R.K.; Singh, V.K. Human Health Effects Emanating from Airborne Heavy Metals Due to Natural and Anthropogenic Activities: A Review. In Advances in Health and Environment Safety; Springer: Manhattan, NY, USA, 2018; pp. 279–296. [Google Scholar]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy Metals in Marine Fish Meat and Consumer Health: A Review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M. Biological Effects of Heavy Metals: An Overview. J. Environ. Biol. 2004, 26, 301–313. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Sankhla, M.S.; Kumari, M.; Nandan, M.; Kumar, R.; Agrawal, P. Heavy Metals Contamination in Water and Their Hazardous Effect on Human Health—A Review. SSRN Electron. J. 2016, 5, 759–766. [Google Scholar] [CrossRef]
- Ince, M.; Kaplan Ince, O. Heavy Metal Removal Techniques Using Response Surface Methodology: Water/Wastewater Treatment. In Biochemical Toxicology—Heavy Metals and Nanomaterials; IntechOpen: London, UK, 2020. [Google Scholar]
- Akpor, O.; Muchie, M. Remediation of Heavy Metals in Drinking Water and Wastewater Treatment Systems: Processes and Applications Environmental Microbiology View Project Mycology View Project Remediation of Heavy Metals in Drinking Water and Wastewater Treatment Systems: Processes and Applications. Int. J. Phys. Sci. 2010, 5, 1807–1817. [Google Scholar] [CrossRef]
- Abou-Shady, A. Recycling of Polluted Wastewater for Agriculture Purpose Using Electrodialysis: Perspective for Large Scale Application. Chem. Eng. J. 2017, 323, 1–18. [Google Scholar] [CrossRef]
- Zhang, F.; Man, Y.B.; Mo, W.Y.; Wong, M.H. Application of Spirulina in Aquaculture: A Review on Wastewater Treatment and Fish Growth. Rev. Aquac. 2020, 12, 582–599. [Google Scholar] [CrossRef]
- Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive); Commission of the European Communities: Brussels, Belgium, 2008.
- All. 5 P. Terza, Decreto Legislativo 3 Aprile 2006, n. 152 Norme in Materia Ambientale (GU Serie Generale n.88 Del 14-04-2006—Suppl. Ordinario n. 96); Gazzetta Ufficiale: Rome, Italy, 2006.
- Gómez-Gutiérrez, A.; Garnacho, E.; Bayona, J.M.; Albaigés, J. Assessment of the Mediterranean Sediments Contamination by Persistent Organic Pollutants. Environ. Pollut. 2007, 148, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Richir, J. Trace Elements in Marine Environments: Occurrence, Threats and Monitoring with Special Focus on the Coastal Mediterranean. J. Environ. Anal. Toxicol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhang, L. Exploring the Dynamic Linkages between Tourism Growth and Environmental Pollution: New Evidence from the Mediterranean Countries. Curr. Issues Tour. 2021, 24, 49–65. [Google Scholar] [CrossRef]
- Afsa, S.; Hamden, K.; Lara Martin, P.A.; Mansour, H. ben Occurrence of 40 Pharmaceutically Active Compounds in Hospital and Urban Wastewaters and Their Contribution to Mahdia Coastal Seawater Contamination. Environ. Sci. Pollut. Res. 2020, 27, 1941–1955. [Google Scholar] [CrossRef]
- Boehm, A.B.; Graham, K.E.; Jennings, W.C. Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters. Environ. Sci. Technol. 2018, 52, 9634–9645. [Google Scholar] [CrossRef]
- Abaya, L.M.; Wiegner, T.N.; Colbert, S.L.; Beets, J.P.; Carlson, K.M.; Kramer, K.L.; Most, R.; Couch, C.S. A Multi-Indicator Approach for Identifying Shoreline Sewage Pollution Hotspots Adjacent to Coral Reefs. Mar. Pollut. Bull. 2018, 129, 70–80. [Google Scholar] [CrossRef]
- Fonti, V.; di Cesare, A.; Šangulin, J.; del Negro, P.; Celussi, M. Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in the Central Adriatic Sea: Are They Connected to Urban Wastewater Inputs? Water 2021, 13, 3335. [Google Scholar] [CrossRef]
- Fanelli, M.; Truzzi, C.; Illuminati, S.; Girolametti, F.; Vagnoni, F.; Susmel, S.; Celussi, M.; Mion, M.; de Bortoli, N.; Franci, C.; et al. Impact of Depuration Plants on Nutrients Levels in North Adriatic Sea. Water 2022, in press. [Google Scholar]
- Figueredo, F.; Girolametti, F.; Aneggi, E.; Lekka, M.; Annibaldi, A.; Susmel, S. Plastic Electrode Decorated with Polyhedral Anion Tetrabutylammonium Octamolybdate [N(C4H9)4]4 Mo8O26 for NM Phosphate Electrochemical Detection. Anal. Chim. Acta 2021, 1161, 338469. [Google Scholar] [CrossRef]
- Perugini, M.; Visciano, P.; Manera, M.; Zaccaroni, A.; Olivieri, V.; Amorena, M. Heavy Metal (As, Cd, Hg, Pb, Cu, Zn, Se) Concentrations in Muscle and Bone of Four Commercial Fish Caught in the Central Adriatic Sea, Italy. Environ. Monit. Assess. 2014, 186, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Spagnoli, F.; Dell’Anno, A.; de Marco, A.; Dinelli, E.; Fabiano, M.; Gadaleta, M.V.; Ianni, C.; Loiacono, F.; Manini, E.; Marini, M.; et al. Biogeochemistry, Grain Size and Mineralogy of the Central and Southern Adriatic Sea Sediments: A Review. Chem. Ecol. 2010, 26, 19–44. [Google Scholar] [CrossRef] [Green Version]
- Bilandžić, N.; Đokić, M.; Sedak, M. Metal Content Determination in Four Fish Species from the Adriatic Sea. Food Chem. 2011, 124, 1005–1010. [Google Scholar] [CrossRef]
- Droghini, E.; Annibaldi, A.; Prezioso, E.; Tramontana, M.; Frapiccini, E.; de Marco, R.; Illuminati, S.; Truzzi, C.; Spagnoli, F. Mercury Content in Central and Southern Adriatic Sea Sediments in Relation to Seafloor Geochemistry and Sedimentology. Molecules 2019, 24, 4467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annibaldi, A.; Illuminati, S.; Truzzi, C.; Scarponi, G. SWASV Speciation of Cd, Pb and Cu for the Determination of Seawater Contamination in the Area of the Nicole Shipwreck (Ancona Coast, Central Adriatic Sea). Mar. Pollut. Bull. 2011, 62, 2813–2821. [Google Scholar] [CrossRef]
- Annibaldi, A.; Illuminati, S.; Truzzi, C.; Libani, G.; Scarponi, G. Pb, Cu and Cd Distribution in Five Estuary Systems of Marche, Central Italy. Mar. Pollut. Bull. 2015, 96, 441–449. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Tercier-Waeber, M.-L.; Nöel, S.; Braungardt, C.B.; Achterberg, E.P.; Howell, K.A.; Turner, D.; Marini, M.; et al. In-Situ Trace Metal (Cd, Pb, Cu) Speciation along the Po River Plume (Northern Adriatic Sea) Using Submersible Systems. Mar. Chem. 2019, 212, 47–63. [Google Scholar] [CrossRef]
- Cuculić, V.; Cukrov, N.; Kwokal, Ž.; Mlakar, M. Natural and Anthropogenic Sources of Hg, Cd, Pb, Cu and Zn in Seawater and Sediment of Mljet National Park, Croatia. Estuar. Coast. Shelf Sci. 2009, 81, 311–320. [Google Scholar] [CrossRef]
- Cozzi, S.; Reisenhofer, E.; di Monte, L.; Cantoni, C.; Adami, G. Effect of Environmental Forcing on the Fate of Nutrients, Dissolved Organic Matter and Heavy Metals Released by a Coastal Wastewater Pipeline. Chem. Ecol. 2008, 24, 87–107. [Google Scholar] [CrossRef]
- Mossa, M. Field Measurements and Monitoring of Wastewater Discharge in Sea Water. Estuar. Coast. Shelf Sci. 2006, 68, 509–514. [Google Scholar] [CrossRef]
- Susmel, S.; Figueredo, F.; Aissa, S.; Scognamiglio, V.; Antonacci, A.; Girolametti, F.; Annibaldi, A.; Fonti, V.; Celussi, M.; Manna, V.; et al. A New Cross-Cutting Vision for the Quality of the Adriatic Sea under the Development of the Interreg Project AdSWiM. Transition from WasteWater Treatments (WWT) Plant to Water Resource Recovery Facilities (WRRFs) in Dialogue with Universities and Research. Water 2022, in press. [Google Scholar]
- Zavatarelli, M.; Raicich, F.; Bregant, D.; Russo, A.; Artegiani, A. Climatological Biogeochemical Characteristics of the Adriatic Sea. J. Mar. Syst. 1998, 18, 227–263. [Google Scholar] [CrossRef]
- Raicich, F. On the Fresh Balance of the Adriatic Sea. J. Mar. Syst. 1996, 9, 305–319. [Google Scholar] [CrossRef]
- Decreto 30 Marzo 2010. Definizione Dei Criteri per Determinare Il Divieto di Balneazione, Nonche’ Modalita’ e Specifiche Tecniche per l’Attuazione del Decreto Legislativo 30 Maggio 2008, n. 116, di Recepimento della Direttiva 2006/7/CE, Relativa Alla Gestione della Qualita’ delle Acque di Balneazione; Gazzetta Ufficiale: Rome, Italy, 2008.
- Truzzi, C.; Girolametti, F.; Giovannini, L.; Olivotto, I.; Zarantoniello, M.; Scarponi, G.; Annibaldi, A.; Illuminati, S. New Eco-Sustainable Feed in Aquaculture: Influence of Insect-Based Diets on the Content of Potentially Toxic Elements in the Experimental Model Zebrafish (Danio Rerio). Molecules 2022, 27, 818. [Google Scholar] [CrossRef]
- Uhrovčík, J. Strategy for Determination of LOD and LOQ Values—Some Basic Aspects. Talanta 2014, 119, 178–180. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate Statistical Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality of Gomti River (India)—A Case Study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Wold, S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics 1978, 20, 397–405. [Google Scholar] [CrossRef]
- Fabbri, D.; Gabbianelli, G.; Locatelli, C.; Lubrano, D.; Trombini, C.; Vassura, I. Distribution of Mercury and Other Heavy Metals in Core Sediments of the Northern Adriatic Sea. Water Air Soil Pollut. 2001, 129, 143–153. [Google Scholar] [CrossRef]
- Zago, C.; Capodaglio, G.; Ceradini, S.; Ciceri, G.; Abelmoschi, L.; Soggia, F.; Cescon, P.; Scarponi, G. Benthic Fluxes of Cadmium, Lead, Copper and Nitrogen Species in the Northern Adriatic Sea in Front of the River Po Outflow, Italy. Sci. Total Environ. 2000, 246, 121–137. [Google Scholar] [CrossRef]
- Rossini, P.; Guerzoni, S.; Rampazzo, G.; Quarantatto, G.; Garibbo, E.; Molinaroli, E. Atmospheric Deposition of Trace Metals in North Adriatic Sea. In Mediterranean Ecosystems; Springer Milan: Milano, Italy, 2001; pp. 123–129. [Google Scholar]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury Contamination of Coastal Sediments as the Result of Long-Term Cinnabar Mining Activity (Gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Covelli, S.; Piani, R.; Acquavita, A.; Predonzani, S.; Faganeli, J. Transport and Dispersion of Particulate Hg Associated with a River Plume in Coastal Northern Adriatic Environments. Mar. Pollut. Bull. 2007, 55, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, E.; Crosera, M.; Petranich, E.; Adami, G.; Faganeli, J.; Covelli, S. Partitioning and Mixing Behaviour of Trace Elements at the Isonzo/Soča River Mouth (Gulf of Trieste, Northern Adriatic Sea). Mar. Chem. 2020, 223, 103800. [Google Scholar] [CrossRef]
- Covelli, S.; Acquavita, A.; Piani, R.; Predonzani, S.; de Vittor, C. Recent Contamination of Mercury in an Estuarine Environment (Marano Lagoon, Northern Adriatic, Italy). Estuar. Coast. Shelf Sci. 2009, 82, 273–284. [Google Scholar] [CrossRef]
- Bratkič, A.; Tinta, T.; Koron, N.; Guevara, S.R.; Begu, E.; Barkay, T.; Horvat, M.; Falnoga, I.; Faganeli, J. Mercury Transformations in a Coastal Water Column (Gulf of Trieste, Northern Adriatic Sea). Mar. Chem. 2018, 200, 57–67. [Google Scholar] [CrossRef]
- Kotnik, J.; Horvat, M.; Ogrinc, N.; Fajon, V.; Žagar, D.; Cossa, D.; Sprovieri, F.; Pirrone, N. Mercury Speciation in the Adriatic Sea. Mar. Pollut. Bull. 2015, 96, 136–148. [Google Scholar] [CrossRef]
- Annibaldi, A.; Truzzi, C.; Illuminati, S.; Scarponi, G. Recent Sudden Decrease of Lead in Adriatic Coastal Seawater during the Years 2000–2004 in Parallel with the Phasing out of Leaded Gasoline in Italy. Mar. Chem. 2009, 113, 238–249. [Google Scholar] [CrossRef]
- Habuda-Stanić, M.; Kuleš, M.; Kalajdžić, B.; Romić, Ž. Quality of Groundwater in Eastern Croatia. The Problem of Arsenic Pollution. Desalination 2007, 210, 157–162. [Google Scholar] [CrossRef]
- Ćavar, S.; Klapec, T.; Grubešić, R.J.; Valek, M. High Exposure to Arsenic from Drinking Water at Several Localities in Eastern Croatia. Sci. Total Environ. 2005, 339, 277–282. [Google Scholar] [CrossRef]
- Ujević Bošnjak, M.; Capak, K.; Jazbec, A.; Casiot, C.; Sipos, L.; Poljak, V.; Dadić, Ž. Hydrochemical Characterization of Arsenic Contaminated Alluvial Aquifers in Eastern Croatia Using Multivariate Statistical Techniques and Arsenic Risk Assessment. Sci. Total Environ. 2012, 420, 100–110. [Google Scholar] [CrossRef]
- Romić, Ž.; Habuda-Stanić, M.; Kalajdžić, B.; Kuleš, M. Arsenic Distribution, Concentration and Speciation in Groundwater of the Osijek Area, Eastern Croatia. Appl. Geochem. 2011, 26, 37–44. [Google Scholar] [CrossRef]
- Lazo, P.; Cullaj, A.; Baraj, B. An Evaluation of Hg, Cr and Heavy Metals Pollution in Seawater and Sediments of Durres Bay Adriatic Sea-Albania. J. Phys. IV 2003, 107, 715–720. [Google Scholar] [CrossRef]
- Stanković, S.; Tanaskovski, B.; Zlatić, B.; Arsenović, M.; Pezo, L. Analysis of Trace Elements in Surface Sediments, Mussels, Seagrass and Seawater along the Southeastern Adriatic Coast—A Chemometric Approach. Pure Appl. Chem. 2014, 86, 1111–1127. [Google Scholar] [CrossRef]
- European Parliament. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; European Parliament: Strasbourg, France, 2013. [Google Scholar]
- Tab 1/B, DECRETO LEGISLATIVO 13 Ottobre 2015, n. 172 Attuazione Della Direttiva 2013/39/UE, Che Modifica Le Direttive 2000/60/CE per Quanto Riguarda Le Sostanze Prioritarie Nel Settore Della Politica Delle Acque. (15G00186) (GU Serie Generale n.250 Del 27-10-2015); Gazzetta Ufficiale: Rome, Italy, 2015.
- Tankere, S.P.C.; Statham, P.J. Distribution of Dissolved Cd, Cu, Ni and Zn in the Adriatic Sea. Mar. Pollut. Bull. 1996, 32, 623–630. [Google Scholar] [CrossRef]
- Klun, K.; Falnoga, I.; Mazej, D.; Šket, P.; Faganeli, J. Colloidal Organic Matter and Metal(Loid)s in Coastal Waters (Gulf of Trieste, Northern Adriatic Sea). Aquat. Geochem. 2019, 25, 179–194. [Google Scholar] [CrossRef]
- Faganeli, J.; Horvat, M.; Covelli, S.; Fajon, V.; Logar, M.; Lipej, L.; Cermelj, B. Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Sci. Total Environ. 2003, 304, 315–326. [Google Scholar] [CrossRef]
- Kwokal, Ž.; Lovrić, M. Vertical Distribution of Mercury in the Krka River Estuary. Int. J. Environ. Anal. Chem. 2006, 86, 905–914. [Google Scholar] [CrossRef]
- Fiket, Z.; Ivanic, M.; Turk, M.F.; Mikac, N.; Kniewald, G. Distribution of Trace Elements in Waters of the Zrmanja River Estuary (Eastern Adriatic Coast, Croatia). Croat. Chem. Acta 2018, 91, 29. [Google Scholar] [CrossRef]
- Cecchi, T. Analysis of Volatiles Organic Compounds in Venice Lagoon Water Reveals COVID 19 Lockdown Impact on Microplastics and Mass Tourism Related Pollutants. Sci. Total Environ. 2021, 783, 146951. [Google Scholar] [CrossRef]
DP (Province, State) | ES Design Capacity a | Wastewater Input | Wastewater Treatment | Distance of Discharge from the Coast (km) | Depth of Diffusors (m) |
---|---|---|---|---|---|
Lignano Sabbiadoro (Udine, Italy) | 250,000 | Households and industry. | Mechanical and biological treatment (primary and secondary settler), and UV and peracetic acid disinfection. | 7.5 | 15 |
San Giorgio di Nogaro (Udine, Italy) | 700,000 | Mostly from industry. | Mechanical and biological treatment (primary and secondary settler), and peracetic acid disinfection. | 10 | 14 |
Zadar Upov Centar (Zadar, Croatia) | 100,000 | Mostly from households. | Mechanical treatment (rough and fine grid), sand and oil removal, biological treatment. | 2 | 33.8 |
Katalinića brig (Split, Croatia) | 122,000 | Households along with rainfall runoff wastewater. | Mechanical treatment (rough and fine grid). | 1.3 | 41.8 |
Stupe (Split, Croatia) | 138,000 | Mostly from households. | Mechanical treatment (rough and fine grid) along with sand and oil removal. | 2.75 | 36.0 |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | Gulf of Trieste | X | X | X | X | X | |||||||
Zadar | X | X | X | ||||||||||
Split | X | ||||||||||||
2020 | Gulf of Trieste | X | X | X | X | X | X | ||||||
Zadar | X | X | X | X | X | X | |||||||
Split | X | X | X | X | X |
Sampling Year | Sampling Station | Hg | Cd | As | ||
---|---|---|---|---|---|---|
2019 | Gulf of Trieste (ITA) | Lignano Sabbiadoro | DP | 14 ± 7 | 22 ± 11 | 1268 ± 214 |
Sea | 15 ± 5 | 47 ± 33 | 857 ± 181 | |||
San Giorgio di Nogaro | DP | 21 ± 11 | 13 ± 9 | 47 ± 24 | ||
Sea | 16 ± 4 | 34 ± 10 | 785 ± 239 | |||
Zadar (HR) | Zadar | DP | 12 ± 1 | 18 ± 2 | 435 ± 358 | |
Sea S. | 8 ± 1 | 27 ± 7 | 737 ± 67 | |||
Sea B. | 12 ± 4 | 24 ± 3 | 452 ± 245 | |||
Split (HR) | Katalinića brig | DP | 2 ± 1 | 33 ± 1 | 626 ± 26 | |
Sea S. | 5 ± 1 | 40 ± 1 | 804 ± 24 | |||
Sea B. | 5 ± 1 | 36 ± 3 | 169 ± 1 | |||
Stupe | DP | 5 ± 1 | 32 ± 1 | 473 ± 80 | ||
Sea S. | 7 ± 1 | 36 ± 1 | 751 ± 1 | |||
Sea B. | 8 ± 1 | 28 ± 1 | 804 ± 115 | |||
2020 | Gulf of Trieste (ITA) | Lignano Sabbiadoro | DP | 13 ± 7 | 10 ± 7 | 307 ± 229 |
Sea | 15 ± 8 | 22 ± 7 | 203 ± 234 | |||
San Giorgio di Nogaro | DP | 14 ± 1 | 2 ± 3 | 71 ± 67 | ||
Sea | 14 ± 9 | 17 ± 5 | 256 ± 129 | |||
Zadar (HR) | Zadar | DP | 5 ± 4 | <0.5 | 831 ± 300 | |
Sea S. | 7 ± 8 | 4 ± 2 | 918 ± 215 | |||
Sea B. | 8 ± 6 | 2 ± 2 | 982 ± 161 | |||
Split (HR) | Katalinića brig | DP | 6 ± 3 | 9 ± 5 | 777 ± 282 | |
Sea S. | 5 ± 3 | 5 ± 3 | 913 ± 127 | |||
Sea B. | 9 ± 6 | 8 ± 5 | 835 ± 195 | |||
Stupe | DP | 5 ± 4 | 11 ± 2 | 1217 ± 467 | ||
Sea S. | 8 ± 3 | 5 ± 8 | 923 ± 204 | |||
Sea B. | 9 ± 5 | 2 ± 2 | 909 ± 112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girolametti, F.; Fanelli, M.; Ajdini, B.; Truzzi, C.; Illuminati, S.; Susmel, S.; Celussi, M.; Šangulin, J.; Annibaldi, A. Dissolved Potentially Toxic Elements (PTEs) in Relation to Depuration Plant Outflows in Adriatic Coastal Waters: A Two Year Monitoring Survey. Water 2022, 14, 569. https://doi.org/10.3390/w14040569
Girolametti F, Fanelli M, Ajdini B, Truzzi C, Illuminati S, Susmel S, Celussi M, Šangulin J, Annibaldi A. Dissolved Potentially Toxic Elements (PTEs) in Relation to Depuration Plant Outflows in Adriatic Coastal Waters: A Two Year Monitoring Survey. Water. 2022; 14(4):569. https://doi.org/10.3390/w14040569
Chicago/Turabian StyleGirolametti, Federico, Matteo Fanelli, Behixhe Ajdini, Cristina Truzzi, Silvia Illuminati, Sabina Susmel, Mauro Celussi, Jadranka Šangulin, and Anna Annibaldi. 2022. "Dissolved Potentially Toxic Elements (PTEs) in Relation to Depuration Plant Outflows in Adriatic Coastal Waters: A Two Year Monitoring Survey" Water 14, no. 4: 569. https://doi.org/10.3390/w14040569
APA StyleGirolametti, F., Fanelli, M., Ajdini, B., Truzzi, C., Illuminati, S., Susmel, S., Celussi, M., Šangulin, J., & Annibaldi, A. (2022). Dissolved Potentially Toxic Elements (PTEs) in Relation to Depuration Plant Outflows in Adriatic Coastal Waters: A Two Year Monitoring Survey. Water, 14(4), 569. https://doi.org/10.3390/w14040569