Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation
Abstract
:1. Introduction
- We set up a grid of nitrate measurements in groundwater of the Hormozgan region, establishing its spatial distribution and occurrence. Following this, we queried the non-carcinogenic threats by assessing the Estimated Daily Intake (EDI) and Hazard Quotients (HQ) for nitrate consumption in four age groups, including infants, children, teenagers, and adults.
- We used the Monte Carlo simulation method to account for the intrinsic uncertainty.
- Sensitivity analysis indicated the relationship between nitrate consumption and toxicity and the main alleviation factors.
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Exposure Assessment and Risk Estimation
2.4. Data Probability Distribution and Data Analysis
3. Results and Discussion
3.1. Results of Descriptive Analysis
3.2. Occurrence and Spatial Distribution of Nitrate
3.3. Exposure Assessment and Risk Estimation Results
3.4. Results of the Probabilistic Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BW | Body Weight |
EDI | Estimated Daily Intake |
GIS | Geographic Information System |
HCA | Hierarchical Cluster Analysis |
HQ | Hazard Quotient |
IDW | Inverse Distance Weighting |
LOD | limit of Detection |
LOQ | limit of Quantification |
US EPA | United States Environmental Protection Agency |
WHO | World Health Organization |
References
- Gohar, A.A.; Cashman, A. A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agric. Syst. 2016, 147, 51–64. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Singh, A.K. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh. J. Geol. Soc. India 2014, 83, 329–343. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H. Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, northwest China. Expo. Health 2016, 8, 349–359. [Google Scholar] [CrossRef]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; De Leo, F.; De Donno, A. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; Suozzi, E.; Fiorucci, A.; Lo Russo, S. Assessment of groundwater geochemistry and human health risk of an intensively cropped alluvial plain, NW Italy. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 825–845. [Google Scholar] [CrossRef]
- Sajedi-Hosseini, F.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.; Weber, K.A.J.E.S.; Letters, T. Natural uranium contamination in major US aquifers linked to nitrate. Environ. Sci. Technol. Lett. 2015, 2, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Aamalawar, M.L.; Laxman Sahu, U. Nitrate associated health risks from groundwater of Kadava river basin Nashik, Maharashtra, India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 654–672. [Google Scholar] [CrossRef]
- Liu, G.; Wu, W.; Zhang, J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agric. Ecosyst. Environ. 2005, 107, 211–220. [Google Scholar] [CrossRef]
- Badeenezhad, A.; Radfard, M.; Passalari, H.; Parseh, I.; Abbasi, F.; Rostami, S. Factors affecting the nitrate concentration and its health risk assessment in drinking groundwater by application of Monte Carlo simulation and geographic information system. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1458–1471. [Google Scholar] [CrossRef]
- Lee, C.-M.; Hamm, S.-Y.; Cheong, J.-Y.; Kim, K.; Yoon, H.; Kim, M.; Kim, J. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed. Environ. Res. 2020, 184, 109313. [Google Scholar] [CrossRef]
- Shuval, H.I.; Gruener, N. Infant methemoglobinemia and other health effects of nitrates in drinking water. In Proceedings of the Conference on Nitrogen as a Water Pollutant; The Danish National Committee of the International Association on Water Pollution Research (IAWPR): Copenhagen, Denmark, 1977; pp. 183–193. [Google Scholar]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badeenezhad, A.; Radfard, M.; Abbasi, F.; Jurado, A.; Bozorginia, M.; Jalili, M.; Soleimani, H. Effect of land use changes on non-carcinogenic health risks due to nitrate exposure to drinking groundwater. Environ. Sci. Pollut. Res. 2021, 28, 41937–41947. [Google Scholar] [CrossRef] [PubMed]
- Blaisdell, J.; Turyk, M.E.; Almberg, K.S.; Jones, R.M.; Stayner, L.T. Prenatal exposure to nitrate in drinking water and the risk of congenital anomalies. Environ. Res. 2019, 176, 108553. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.H.; Parslow, R.C.; McKinney, P.A.; Law, G.R.; Forman, D. Nitrate in drinking water and the incidence of gastric, esophageal, and brain cancer in Yorkshire, England. Cancer Causes Control 1998, 9, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Jakszyn, P.; González, C.A. Nitrosamine and related food intake and gastric and oesophageal cancer risk: A systematic review of the epidemiological evidence. World J. Gastroenterol. 2006, 12, 4296. [Google Scholar] [CrossRef]
- Cotruvo, J.A. 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition. J.-Am. Water Work. Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Badeenezhad, A.; Abbasi, F.; Shahsavani, S. Performance of household water desalinations devices and health risks assessment of fluorides (F−) and nitrate (NO3−) in input and output water of the devices in Behbahan City southwest Iran. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 217–229. [Google Scholar] [CrossRef]
- Radfard, M.; Soleimani, H.; Azhdarpoor, A.; Faraji, H.; Mahvi, A.H. Dataset on assessment of physical and chemical quality of groundwater in rural drinking water, west Azerbaijan Province in Iran. Data Brief 2018, 21, 556–561. [Google Scholar] [CrossRef]
- Azhdarpoor, A.; Radfard, M.; Pakdel, M.; Abbasnia, A.; Badeenezhad, A.; Mohammadi, A.A.; Yousefi, M. Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran. Desalin. Water Treat. 2019, 149, 43–51. [Google Scholar] [CrossRef]
- Darvishmotevalli, M.; Moradnia, M.; Noorisepehr, M.; Fatehizadeh, A.; Fadaei, S.; Mohammadi, H.; Salari, M.; Jamali, H.A.; Daniali, S.S. Evaluation of carcinogenic risks related to nitrate exposure in drinking water in Iran. MethodsX 2019, 6, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Giri, S.; Tiwari, A.K.; Mahato, M.K.; Singh, A.K. Integrated approaches to identify the major controlling factors of groundwater chemistry and quality assessment for suitability of different uses in West Singhbhum, India. Environ. Earth Sci. 2021, 80, 756. [Google Scholar] [CrossRef]
- Safa, O.; Soltanipoor, M.A.; Rastegar, S.; Kazemi, M.; Dehkordi, K.N.; Ghannadi, A. An ethnobotanical survey on hormozgan province, Iran. Avicenna J. Phytomed. 2013, 3, 64. [Google Scholar]
- Bazrafshan, O.; Parandin, F.; Farokhzadeh, B. Assessment of hydro-meteorological drought effects on groundwater resources in Hormozgan region-South of Iran. Ecopersia 2016, 4, 1569–1584. [Google Scholar] [CrossRef]
- Keramati, H.; Miri, A.; Baghaei, M.; Rahimizadeh, A.; Ghorbani, R.; Fakhri, Y.; Bay, A.; Moradi, M.; Bahmani, Z.; Ghaderpoori, M.; et al. Fluoride in Iranian Drinking Water Resources: A Systematic Review, Meta-analysis and Non-carcinogenic Risk Assessment. Biol. Trace Elem. Res. 2019, 188, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, F.; Nasseri, S.; Yunesian, M.; Nabizadeh, R.; Mosaferi, M.; Mesdaghinia, A. Carcinogenic and non-carcinogenic risk assessments of arsenic contamination in drinking water of Ardabil city in the Northwest of Iran. J. Environ. Sci. Health Part A 2018, 53, 421–429. [Google Scholar] [CrossRef]
- Mustaffa, A.R.; Ku Hamid, K.H.; Musa, M.; Idris, J.; Ramli, R. High Nitrate and Phosphate Ions Reduction in Modified Low Salinity Fresh Water through Microalgae Cultivation. Processes 2019, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Mohammadpour, A.; Abbasi, A.; Rostami, I.; Gharehchahi, E.; Derakhshan, Z.; Ferrante, M.; Conti, G.O. Health risks of inhalation exposure to BTEX in a municipal wastewater treatment plant in Middle East city: Shiraz, Iran. Environ. Res. 2022, 204, 112155. [Google Scholar] [CrossRef]
- Smith, R.L. EPA Region III Risk Based Concentration Table; Environmental Protection Agency: Washington, DC, USA, 1995; pp. 1–24. [Google Scholar]
- Golaki, M.; Azhdarpoor, A.; Mohamadpour, A.; Derakhshan, Z.; Conti, G.O. Health risk assessment and spatial distribution of nitrate, nitrite, fluoride, and coliform contaminants in drinking water resources of kazerun, Iran. Environ. Res. 2022, 203, 111850. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, A.; Tabatabaee, Z.; Dehbandi, R.; Khaksefidi, R.; Golaki, M.; Gharechahi, E.; Samaei, M.R.; Mohammadpour, R.; Sheibani, A.; Badeenezhad, A. Concentration, distribution and probabilistic health risk assessment of exposure to fluoride in drinking water of Hormozgan province, Iran. Stoch. Environ. Res. Risk Assess. 2021. [Google Scholar] [CrossRef]
- Dehghani, M.; Gharehchahi, E.; Jafari, S.; Moeini, Z.; Derakhshan, Z.; Ferrante, M.; Conti, G.O. Health risk assessment of exposure to atrazine in the soil of Shiraz farmlands, Iran. Environ. Res. 2022, 204, 112090. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.; Schoeny, R.; Gallagher, K.; Deener, K.; Dockins, C.; Firestone, M.; Jordan, W.; McDonough, M.; Murphy, D.; Olsen, M.; et al. US Environmental Protection Agency’s framework for human health risk assessment to inform decision making. Int. J. Risk Assess. Manag. 2017, 20, 3–20. [Google Scholar] [CrossRef]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S.; Baraik, S. Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundw. Sustain. Dev. 2017, 5, 85–100. [Google Scholar] [CrossRef]
- Dehghani, M.; Shahsavani, S.; Mohammadpour, A.; Jafarian, A.; Arjmand, S.; Rasekhi, M.A.; Dehghani, S.; Zaravar, F.; Derakhshan, Z.; Ferrante, M.; et al. Determination of chloroform concentration and human exposure assessment in the swimming pool. Environ. Res. 2022, 203, 111883. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K.; Mahato, M.K. Monte Carlo simulation-based probabilistic health risk assessment of metals in groundwater via ingestion pathway in the mining areas of Singhbhum copper belt, India. Int. J. Environ. Health Res. 2020, 30, 447–460. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K.; Singh, R.P.; Kumari, D.; Jha, P.K.; Mehta, P. Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of east India and assessment of ecological and human health risks. Sci. Total Environ. 2020, 705, 135801. [Google Scholar] [CrossRef]
- Mirzaei, M. Concentrations of Nitrate groundwater in the 17 Wells at the Region of Hasht Bandi of Minab, Iran. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 59–63. [Google Scholar]
- Hourieh Fallah, S.; Bakaeian, M.; Parsian, H.; Amouei, A.; Asgharnia, H.; Ghanbarian, M.; Mousapour, A.; Tabarinai, H.; Oskoei, V.; Miri, S.A. Potentially harmful heavy metal contamination in Babolrood river: Evaluation for risk assessment in the Mazandaran province, Iran. Int. J. Environ. Anal. Chem. 2020, 1–15. [Google Scholar] [CrossRef]
- Qasemi, M.; Farhang, M.; Biglari, H.; Afsharnia, M.; Ojrati, A.; Khani, F.; Samiee, M.; Zarei, A. Health risk assessments due to nitrate levels in drinking water in villages of Azadshahr, northeastern Iran. Environ. Earth Sci. 2018, 77, 782. [Google Scholar] [CrossRef]
- Sadler, R.; Maetam, B.; Edokpolo, B.; Connell, D.; Yu, J.; Stewart, D.; Park, M.J.; Gray, D.; Laksono, B. Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang, Indonesia. Environ. Pollut. 2016, 216, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Gholami, Z.; Abtahi, M.; Golbini, M.; Parseh, I.; Alinejad, A.; Avazpour, M.; Moradi, S.; Fakhri, Y.; Mousavi Khaneghah, A. The concentration and probabilistic health risk assessment of nitrate in Iranian drinking water: A case study of Ilam city. Toxin Rev. 2019, 40, 1048–1057. [Google Scholar] [CrossRef]
- Barry, K.H.; Jones, R.R.; Cantor, K.P.; Beane Freeman, L.E.; Wheeler, D.C.; Baris, D.; Johnson, A.T.; Hosain, G.M.; Schwenn, M.; Zhang, H.; et al. Ingested Nitrate and Nitrite and Bladder Cancer in Northern New England. Epidemiology 2020, 31, 136–144. [Google Scholar] [CrossRef]
- Temkin, A.; Evans, S.; Manidis, T.; Campbell, C.; Naidenko, O.V. Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ. Res. 2019, 176, 108442. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, H.; Nasri, O.; Ghoochani, M.; Azhdarpoor, A.; Dehghani, M.; Radfard, M.; Darvishmotevalli, M.; Oskoei, V.; Heydari, M. Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivity analysis in rural areas of Divandarreh County, Kurdistan province, Iran. Int. J. Environ. Anal. Chem. 2020, 1–19. [Google Scholar] [CrossRef]
- Sakizadeh, M.; Zhang, C. Health risk assessment of nitrate using a probabilistic approach in groundwater resources of western part of Iran. Environ. Earth Sci. 2020, 79, 43. [Google Scholar] [CrossRef]
- Qasemi, M.; Afsharnia, M.; Farhang, M.; Ghaderpoori, M.; Karimi, A.; Abbasi, H.; Zarei, A. Spatial distribution of fluoride and nitrate in groundwater and its associated human health risk assessment in residents living in Western Khorasan Razavi, Iran. Desalin. Water Treat. 2019, 170, 176–186. [Google Scholar] [CrossRef]
- Jamshidi, A.; Morovati, M.; Golbini Mofrad, M.M.; Panahandeh, M.; Soleimani, H.; Abdolahpour Alamdari, H. Water quality evaluation and non-cariogenic risk assessment of exposure to nitrate in groundwater resources of kamyaran, iran: Spatial distribution, monte-carlo simulation, and sensitivity analysis. J. Environ. Health Sci. Engin. 2021, 19, 1117–1131. [Google Scholar] [CrossRef]
- Shalyari, N.; Alinejad, A.; Hashemi, A.H.G.; RadFard, M.; Dehghani, M. Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX 2019, 6, 1812–1821. [Google Scholar] [CrossRef]
Parameters | Unit | Probability Distribution | Infants (<2 Year) | Children (2–10 Year) | Teenagers (10–18 Year) | Adults (>18 Year) | References |
---|---|---|---|---|---|---|---|
Cf | mg/L | Log-normal | - | - | - | - | Current study |
Cd | L/day | Log-normal | 0.61 ± 0.27 | 1.25 ± 0.57 | 1.58 ± 0.69 | 1.95 ± 0.64 | Adapted from [36] |
BW | kg | Log-normal | 7.98 ± 1.02 | 16.41 ± 3.78 | 39.83 ± 10.16 | 77.45 ± 13.6 | Adapted from [37] |
RfD | mg/BW kg/day | - | 1.6 | 1.6 | 1.6 | 1.6 | Adapted from [38] |
NO. | Counties | Site | Nitrate Concentration (mg/L) |
---|---|---|---|
1 | Jask | Negar-e Bala | 3.6 |
2 | Jask | Saran-e Barshaku | 2.2 |
3 | Jask | Kiai | 1 |
4 | Jask | Shahrak-e Gabrik | 3.8 |
5 | Jask | Gazdan | 2.5 |
6 | Jask | Hangestan | 1 |
7 | Bashagard | Ahun | 4.3 |
8 | Bashagard | Behtish | 9.9 |
9 | Bashagard | Khomeyni Shahr | 1 |
10 | Bashagard | Darreh-ye Murt | 7.7 |
11 | Bashagard | Zehbodi | 2.5 |
12 | Bashagard | konarejadid | 3.8 |
13 | Bashagard | Grough | 7.4 |
14 | Minab | Beneh Kan | 1.8 |
15 | Minab | Mojtame-ye Emam | 10.6 |
16 | Minab | Zartuji | 13.2 |
17 | Minab | Sarmazegh | 7.6 |
18 | Minab | Jafarabad | 7.4 |
19 | Minab | Shivehi | 5.2 |
20 | Minab | konarejadid(well6) | 3.4 |
21 | Minab | konarejadid(well5) | 3.5 |
22 | Minab | Kahurtak | 6.6 |
23 | Minab | Gavajag | 4.5 |
24 | Minab | Owdui | 7.5 |
25 | Minab | Bondar | 9.3 |
26 | Minab | Posht Kalat | 16.3 |
27 | Minab | tom parian | 7 |
28 | Sirik | Ravang(well1) | 5.5 |
29 | Sirik | Ravang(well2) | 8.2 |
30 | Sirik | Ravang(well3) | 6.8 |
31 | Rudan | Bajani | 13.8 |
32 | Rudan | Bagh Narges | 2.2 |
33 | Rudan | poshtebanan | 18.3 |
34 | Rudan | Palur | 6.8 |
35 | Rudan | Chiromabad | 0.3 |
36 | Bandar Abbas | Bohregh | 17.7 |
37 | Bandar Abbas | Takht | 12 |
38 | Bandar Abbas | Hasan Langi-ye Bala | 5.1 |
39 | Bandar Abbas | Gishan | 7.5 |
40 | Bandar Abbas | Moqsam | 8.5 |
41 | Hajjiabad | Dar Agah | 7.7 |
42 | Hajjiabad | Sar-e Gaz-e Ahmadi | 16.4 |
43 | Hajjiabad | Siruiyeh | 6.7 |
44 | Hajjiabad | Baynuj | 13.8 |
45 | Hajjiabad | Chaleh Murt | 11.4 |
46 | Khamir | Bastu(well2) | 1.6 |
47 | Khamir | Bastu(mineral spring) | 3.3 |
48 | Khamir | Berkeh-ye Soltan | 15.5 |
49 | Bastak | Harang | 8 |
50 | Bastak | Gowd Kaz | 4.2 |
51 | Parsian | Parsian | 4.5 |
52 | Parsian | Yord-e Qasemali | 30 |
53 | Bandar Lengeh | Bostaneh | 7.2 |
54 | Bandar Lengeh | Dezhgan | 0.5 |
Province | Number of Samples | NO3 Concentration (mg/L) | HQ | Ref. |
---|---|---|---|---|
Kurdistan | 60 | 36.06 ± 14.32 | Infants = 0.90 | Adapted from [48] |
Children = 1.17 | ||||
Teenagers = 0.90 | ||||
Adults = 0.70 | ||||
Hamadan | 26 | 24.02 ± 12.11 | Children = 0.854 | Adapted from [49] |
Adults = 0.529 | ||||
Razavi Khorasan | 30 | 5.7–25.4 (mean = 12.58) | Infants = 1.79 | Adapted from [50] |
Children = 1.68 | ||||
Adults = 0.64 | ||||
Golestan | 58 | Wells = 1–36 (mean = 16.8) | Infants = 0.94 | Adapted from [43] |
Springs = 5–51 (mean = 22.7) | Children = 0.88 | |||
Adults = 0.33 | ||||
Kurdistan | 45 | 22.42 ± 11.44 | Infants = 0.56 | Adapted from [51] |
Children = 0.72 | ||||
Teenagers = 0.56 | ||||
Adults = 0.43 | ||||
Fars | 70 | Cold season = 26.95 ± 17.03 | Children = 0.75 | Adapted from [10] |
Teenagers = 0.61 | ||||
Adults = 0.66 | ||||
Warm season = 24.88 ± 15.88 | Children = 0.57 | |||
Teenagers = 0.47 | ||||
Adults = 0.5 | ||||
Sistan, and Baluchistan | 66 | 6.15 ± 6.15 | Infants = 0.33 | Adapted from [52] |
Children = 0.31 | ||||
Teenagers = 0.31 | ||||
Adults = 0.30 | ||||
Hormozgan | 54 | 7.37 ± 5.61 | Infants = 0.35 | This study |
Children = 0.35 | ||||
Teenagers = 0.18 | ||||
Adults = 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadpour, A.; Gharehchahi, E.; Badeenezhad, A.; Parseh, I.; Khaksefidi, R.; Golaki, M.; Dehbandi, R.; Azhdarpoor, A.; Derakhshan, Z.; Rodriguez-Chueca, J.; et al. Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water 2022, 14, 564. https://doi.org/10.3390/w14040564
Mohammadpour A, Gharehchahi E, Badeenezhad A, Parseh I, Khaksefidi R, Golaki M, Dehbandi R, Azhdarpoor A, Derakhshan Z, Rodriguez-Chueca J, et al. Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water. 2022; 14(4):564. https://doi.org/10.3390/w14040564
Chicago/Turabian StyleMohammadpour, Amin, Ehsan Gharehchahi, Ahmad Badeenezhad, Iman Parseh, Razieh Khaksefidi, Mohammad Golaki, Reza Dehbandi, Abooalfazl Azhdarpoor, Zahra Derakhshan, Jorge Rodriguez-Chueca, and et al. 2022. "Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation" Water 14, no. 4: 564. https://doi.org/10.3390/w14040564
APA StyleMohammadpour, A., Gharehchahi, E., Badeenezhad, A., Parseh, I., Khaksefidi, R., Golaki, M., Dehbandi, R., Azhdarpoor, A., Derakhshan, Z., Rodriguez-Chueca, J., & Giannakis, S. (2022). Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation. Water, 14(4), 564. https://doi.org/10.3390/w14040564