Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks
Abstract
:1. Introduction
- Forests
- Cut grassland
- Grazed grassland
- Arable cropping
- Ploughing of pastureland
- Horticultural crops
Study Area
2. Materials and Methods
- NSE = 1: there is a perfect correlation between simulated and actual values.
- NSE = 0: the model has the same precision as the average value of the actual values.
- −∞ < NSE < 0: it is preferable to use the mean value of the sample rather than the model’s predictions.
2.1. First ANN
2.2. Second ANN
- Discontinuous urban fabric
- Industrial or commercial units
- Road and rail networks
- Mineral extraction sites
- Non-irrigated arable land
- Permanently irrigated land
- Complex cultivation patterns
- Natural grasslands
- Sclerophyllous vegetation
3. Results and Discussion
3.1. First ANN
3.2. Second ANN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, S.; Saxena, A. Global Status of Nitrate Contamination in Groundwater: Its Occurrence, Health Impacts, and Mitigation Measures. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–21. ISBN 978-3-319-58538-3. [Google Scholar]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate Attenuation in Groundwater: A Review of Biogeochemical Controlling Processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An Overview of Nitrate Sources and Operating Processes in Arid and Semiarid Aquifer Systems. Sci. Total Environ. 2018, 624, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking—Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1. [Google Scholar]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in Hydrology. I: Preliminary Concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Trichakis, I.C.; Nikolos, I.K.; Karatzas, G. Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation. Water Resour. Manag. 2011, 25, 1143–1152. [Google Scholar] [CrossRef]
- Ghose, D.; Das, U.; Roy, P. Modeling Response of Runoff and Evapotranspiration for Predicting Water Table Depth in Arid Region Using Dynamic Recurrent Neural Network. Groundw. Sustain. Dev. 2018, 6, 263–269. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in Hydrology. II: Hydrologic Applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Lin, G.-F.; Chen, G.-R. An Improved Neural Network Approach to the Determination of Aquifer Parameters. J. Hydrol. 2006, 316, 281–289. [Google Scholar] [CrossRef]
- Nayak, P.C.; Rao, Y.R.S.; Sudheer, K.P. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resour. Manag. 2006, 20, 77–90. [Google Scholar] [CrossRef]
- Tapoglou, E.; Trichakis, I.C.; Dokou, Z.; Nikolos, I.K.; Karatzas, G.P. Groundwater-Level Forecasting under Climate Change Scenarios Using an Artificial Neural Network Trained with Particle Swarm Optimization. Hydrol. Sci. J. 2014, 59, 1225–1239. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Feng, Q.; Deo, R.C.; Wu, M.; Si, J. Wavelet Analysis–Artificial Neural Network Conjunction Models for Multi-Scale Monthly Groundwater Level Predicting in an Arid Inland River Basin, Northwestern China. Hydrol. Res. 2017, 48, 1710–1729. [Google Scholar] [CrossRef]
- Trichakis, I.C.; Nikolos, I.K.; Karatzas, G.P. Optimal Selection of Artificial Neural Network Parameters for the Prediction of a Karstic Aquifer’s Response. Hydrol. Process. 2009, 23, 2956–2969. [Google Scholar] [CrossRef]
- El Tabach, E.; Lancelot, L.; Shahrour, I.; Najjar, Y. Use of Artificial Neural Network Simulation Metamodelling to Assess Groundwater Contamination in a Road Project. Math. Comput. Model. 2007, 45, 766–776. [Google Scholar] [CrossRef]
- Cho, K.H.; Sthiannopkao, S.; Pachepsky, Y.A.; Kim, K.-W.; Kim, J.H. Prediction of Contamination Potential of Groundwater Arsenic in Cambodia, Laos, and Thailand Using Artificial Neural Network. Water Res. 2011, 45, 5535–5544. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, J.; Hou, Z.; Lei, X.; Tai, W.; Chen, W.; Chen, T. Shallow Groundwater Quality Assessment: Use of the Improved Nemerow Pollution Index, Wavelet Transform and Neural Networks. J. Hydroinformatics 2017, 19, 784–794. [Google Scholar] [CrossRef]
- Stamenković, L.J. Application of ANN and SVM for Prediction Nutrients in Rivers. J. Environ. Sci. Health Part A 2021, 56, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Stamenković, L.J.; Mrazovac Kurilić, S.; Presburger Ulniković, V. Prediction of Nitrate Concentration in Danube River Water by Using Artificial Neural Networks. Water Supply 2020, 20, 2119–2132. [Google Scholar] [CrossRef]
- Rohman, F.; Setiawan, D.; Prasetyatama, Y.D.; Sutiarso, L. Development of Artificial Neural Network Model for Soil Nitrate Prediction. IOP Conf. Ser. Earth Environ. Sci. 2021, 757, 012032. [Google Scholar] [CrossRef]
- Hrnjica, B.; Mehr, A.D.; Jakupovic, E.; Crnkic, A.; Hasanagic, R. Application of Deep Learning Neural Networks for Nitrate Prediction in the Klokot River, Bosnia and Herzegovina. In Proceedings of the 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA), Tabriz, Iran, 23–24 February 2021; IEEE: Tabriz, Iran, 2021; pp. 1–6. [Google Scholar]
- Jung, K.; Bae, D.-H.; Um, M.-J.; Kim, S.; Jeon, S.; Park, D. Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation. Sustainability 2020, 12, 400. [Google Scholar] [CrossRef] [Green Version]
- Band, S.S.; Janizadeh, S.; Pal, S.C.; Chowdhuri, I.; Siabi, Z.; Norouzi, A.; Melesse, A.M.; Shokri, M.; Mosavi, A. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration. Sensors 2020, 20, 5763. [Google Scholar] [CrossRef]
- Wagh, V.; Panaskar, D.; Muley, A.; Mukate, S.; Gaikwad, S. Neural Network Modelling for Nitrate Concentration in Groundwater of Kadava River Basin, Nashik, Maharashtra, India. Groundw. Sustain. Dev. 2018, 7, 436–445. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh-Kharazi, H. Artificial Neural Network for Modeling Nitrate Pollution of Groundwater in Marginal Area of Zayandeh-Rood River, Isfahan, Iran. KSCE J. Civ. Eng. 2017, 21, 134–140. [Google Scholar] [CrossRef]
- Yesilnacar, M.I.; Sahinkaya, E.; Naz, M.; Ozkaya, B. Neural Network Prediction of Nitrate in Groundwater of Harran Plain, Turkey. Environ. Geol. 2008, 56, 19–25. [Google Scholar] [CrossRef]
- Benzer, S.; Benzer, R. Modelling Nitrate Prediction of Groundwater and Surface Water Using Artificial Neural Networks. J. Polytech. 2018, 21, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Xu, J.; Liu, X.; Liu, J.; Wang, L. Spatial Distribution Pattern Analysis of Groundwater Nitrate Nitrogen Pollution in Shandong Intensive Farming Regions of China Using Neural Network Method. Math. Comput. Model. 2011, 54, 995–1004. [Google Scholar] [CrossRef]
- Bui, D.T.; Khosravi, K.; Karimi, M.; Busico, G.; Khozani, Z.S.; Nguyen, H.; Mastrocicco, M.; Tedesco, D.; Cuoco, E.; Kazakis, N. Enhancing Nitrate and Strontium Concentration Prediction in Groundwater by Using New Data Mining Algorithm. Sci. Total Environ. 2020, 715, 136836. [Google Scholar] [CrossRef] [PubMed]
- Elzain, H.E.; Chung, S.Y.; Senapathi, V.; Sekar, S.; Lee, S.Y.; Roy, P.D.; Hassan, A.; Sabarathinam, C. Comparative Study of Machine Learning Models for Evaluating Groundwater Vulnerability to Nitrate Contamination. Ecotoxicol. Environ. Saf. 2022, 229, 113061. [Google Scholar] [CrossRef]
- Almasri, M.N.; Kaluarachchi, J.J. Modeling Nitrate Contamination of Groundwater in Agricultural Watersheds. J. Hydrol. 2007, 343, 211–229. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, H.; Xu, P.; Li, W.; Feng, W.; Liu, R. Effect of Hydrogeological Conditions on Groundwater Nitrate Pollution and Human Health Risk Assessment of Nitrate in Jiaokou Irrigation District. J. Clean. Prod. 2021, 298, 126783. [Google Scholar] [CrossRef]
- Lehmann, J.; Schroth, G. Nutrient Leaching. In Trees, Crops, and Soil Fertility: Concepts and Research Methods; Schroth, G., Sinclair, F.L., Eds.; CABI Publishing: Cambridge, MA, USA, 2003; pp. 151–166. ISBN 978-0-85199-593-4. [Google Scholar]
- McLay, C.D.A.; Dragten, R.; Sparling, G.; Selvarajah, N. Predicting Groundwater Nitrate Concentrations in a Region of Mixed Agricultural Land Use: A Comparison of Three Approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef]
- Haynes, R.J.; Sherlock, R.R. Chapter 5—Gaseous Losses of Nitrogen. In Mineral Nitrogen in the Plant–Soil System; Haynes, R.J., Ed.; Academic Press: Cambridge, MA, USA, 1986; pp. 242–302. ISBN 978-0-12-334910-1. [Google Scholar]
- Francis, A.J.; Slater, J.M.; Dodge, C.J. Denitrification in Deep Subsurface Sediments. Geomicrobiol. J. 1989, 7, 103–116. [Google Scholar] [CrossRef]
- Morris, J.T.; Whiting, G.J.; Chapelle, F.H. Potential Denitrification Rates in Deep Sediments from the Southeastern Coastal Plain. Environ. Sci. Technol. 1988, 22, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.E.; Fisk, M.R.; Istok, J.D.; Pedersen, K. Microbial Nitrate Respiration of Lactate at in Situ Conditions in Ground Water from a Granitic Aquifer Situated 450 m Underground. Geobiology 2006, 4, 43–52. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C.; Moore, S.; Smith, N.P. Contributions to Nitrogen Leaching and Pasture Uptake by Autumn-Applied Dairy Effluent and Ammonium Fertilizer Labeled with 15N Isotope. Plant Soil 1999, 210, 189–198. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen Losses from the Soil/Plant System: A Review: Nitrogen Losses. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2008; Volume 458, pp. 23–42. ISBN 978-1-58829-718-1. [Google Scholar]
- Okut, H. Bayesian Regularized Neural Networks for Small n Big p Data. In Artificial Neural Networks—Models and Applications; Rosa, J.L.G., Ed.; InTech: Sao Paulo, Brazil, 2016; ISBN 978-953-51-2704-8. [Google Scholar]
- Giannoulopoulos, P. Identificative Hydrogeological—Hydrochemical Survey of Quality Charge of Groundwater of the Wider Area of the Basin of Asopos, Boeotia; Institute of Geology and Mineral Exploration, Directorate of Hydrogeology: Athens, Greece, 2008. (In Greek) [Google Scholar]
- Kayri, M. Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data. Math. Comput. Appl. 2016, 21, 20. [Google Scholar] [CrossRef]
- Matiatos, I.; Varouchakis, E.; Papadopoulou, M. Statistical Sensitivity Analysis of Multiple Groundwater Mass Transport Models. In Proceedings of the 10th International Hydrogeological Congress of Greece, Thessaloniki, Greece, 8–10 October 2014; pp. 447–456. [Google Scholar]
- Tichý, M. Applied Methods of Structural Reliability; Topics in Safety, Reliability and Quality; Springer Netherlands: Dordrecht, The Netherlands, 1993; Volume 2, ISBN 978-94-010-4861-3. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Large Scale Prediction of Groundwater Nitrate Concentrations from Spatial Data Using Machine Learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef]
- Varouchakis, Ε.A.; Hristopulos, D.T. Comparison of Stochastic and Deterministic Methods for Mapping Groundwater Level Spatial Variability in Sparsely Monitored Basins. Environ. Monit. Assess. 2013, 185, 1–19. [Google Scholar] [CrossRef]
- Tapoglou, E.; Karatzas, G.P.; Trichakis, I.C.; Varouchakis, E.A. Temporal and Spatial Prediction of Groundwater Levels Using Artificial Neural Networks, Fuzzy Logic and Kriging Interpolation. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 2 May–27 April 2014; Volume 16. [Google Scholar]
- Haykin, S.S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Upper Saddle River, NJ, USA, 1999; ISBN 978-0-13-273350-2. [Google Scholar]
- Glass, C.; Silverstein, J. Denitrification Kinetics of High Nitrate Concentration Water: PH Effect on Inhibition and Nitrite Accumulation. Water Res. 1998, 32, 831–839. [Google Scholar] [CrossRef]
- Panchal, F.S.; Panchal, M. Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network. Int. J. Comput. Sci. Mob. Comput. 2014, 3, 455–464. [Google Scholar]
- Nagahamulla, H.R.K.; Ratnayake, U.R.; Ratnaweera, A. An Ensemble of Artificial Neural Networks in Rainfall Forecasting. In Proceedings of the International Conference on Advances in ICT for Emerging Regions (ICTer2012), Colombo, Sri Lanka, 12–15 December 2012; pp. 176–181. [Google Scholar]
- Yao, X.; Islam, M.M. Evolving Artificial Neural Network Ensembles. IEEE Comput. Intell. Mag. 2008, 3, 31–42. [Google Scholar] [CrossRef]
- Nourani, V.; Gökçekuş, H.; Gichamo, T. Ensemble Data-Driven Rainfall-Runoff Modeling Using Multi-Source Satellite and Gauge Rainfall Data Input Fusion. Earth Sci. Inform. 2021, 14, 1787–1808. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological Modeling of the Iroquois River Watershed Using Hspf and Swat. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
Well | Min Concentration (mg/L) | Max Concentration (mg/L) | Mean Concentration (mg/L) |
---|---|---|---|
G/1 | 5 | 55.8 | 23.39 |
G/43 | 5 | 15.5 | 9.93 |
YM3 | 5 | 49.6 | 17.68 |
XVI/31 | 5 | 43.4 | 11.98 |
07/G1 | 37.2 | 124 | 88.49 |
07/G2 | 5 | 18.1 | 12.87 |
07/G3 | 5 | 99.2 | 20.56 |
U39 | 55.8 | 126 | 89.50 |
U477 | 37.2 | 37.2 | 37.20 |
U600 | 41.8 | 55.8 | 48.80 |
VIII/87 | 5 | 12.4 | 7.00 |
XVI/28 | 5 | 62 | 24.00 |
XVII/27 | 18.6 | 20.5 | 19.23 |
XVII/30 | 5 | 12.4 | 6.85 |
Β116 | 12.4 | 12.4 | 12.40 |
XVI/590 | 18.6 | 32.6 | 26.10 |
Mean Values | |||||
---|---|---|---|---|---|
Well | Water Level (m) | Electrical Conductivity (μS/cm) | Air Temperature (°C) | Water Temperature (°C) | pH |
G/1 | 17.05 | 608.73 | 20.56 | 18.37 | 7.52 |
G/43 | 31.10 | 489.50 | 17.75 | 18.50 | 7.41 |
YM3 | 22.96 | 668.78 | 26.33 | 18.56 | 8.10 |
XVI/31 | 4.64 | 592.09 | 19.20 | 17.17 | 7.80 |
07/G1 | 27.27 | 713.13 | 21.04 | 16.54 | 7.59 |
07/G2 | 35.89 | 511.00 | 24.50 | 19.67 | 7.94 |
07/G3 | 51.29 | 1069.00 | 21.20 | 17.35 | 7.79 |
U39 | 28.78 | 770.00 | 24.60 | 18.68 | 7.85 |
U477 | 65.68 | 761.00 | 30.30 | 19.40 | 7.25 |
U600 | 164.21 | 846.00 | 26.35 | 19.45 | 7.79 |
VIII/87 | 13.16 | 670.05 | 22.46 | 14.97 | 7.51 |
XVI/28 | 21.64 | 770.67 | 24.97 | 18.73 | 7.52 |
XVII/27 | 67.12 | 550.00 | 18.80 | 18.50 | 7.76 |
XVII/30 | 8.16 | 650.50 | 21.33 | 18.08 | 7.46 |
Β116 | 25.44 | 895.00 | 31.40 | 19.60 | 8.13 |
XVI/590 | 8.58 | 535.00 | 23.17 | 18.03 | 7.70 |
Input Parameter | pH | Electrical Conductivity | Water Temperature | Air Temperature | Water Level |
---|---|---|---|---|---|
Correlation coefficient | −0.02 | 0.18 | 0.16 | 0.08 | 0.12 |
Index | All | Test |
---|---|---|
RMSE (mg/L) | 13.25 | 26.18 |
MAE (mg/L) | 7.17 | 17.46 |
Bias (mg/L) | −2.14 | −10.93 |
NSE | 0.84 | 0.54 |
St. Deviation | 33.33 | 39.65 |
Index | All | Test |
---|---|---|
RMSE (mg/L) | 7.56 | 15.95 |
MAE (mg/L) | 3.65 | 11.53 |
Bias (mg/L) | −0.82 | −4.20 |
NSE | 0.95 | 0.70 |
St. Deviation | 33.33 | 34.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stylianoudaki, C.; Trichakis, I.; Karatzas, G.P. Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks. Water 2022, 14, 1173. https://doi.org/10.3390/w14071173
Stylianoudaki C, Trichakis I, Karatzas GP. Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks. Water. 2022; 14(7):1173. https://doi.org/10.3390/w14071173
Chicago/Turabian StyleStylianoudaki, Christina, Ioannis Trichakis, and George P. Karatzas. 2022. "Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks" Water 14, no. 7: 1173. https://doi.org/10.3390/w14071173
APA StyleStylianoudaki, C., Trichakis, I., & Karatzas, G. P. (2022). Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks. Water, 14(7), 1173. https://doi.org/10.3390/w14071173