Flood Flow in a Proglacial Outwash Plain: Quantifying Spatial Extent and Frequency of Inundation from Time-Lapse Imagery
Abstract
:1. Introduction
- To what extent can semi-automated image analysis capture the inundation of an active floodplain?
- Which processes generate the most extensive observed inundated area?
- How strongly does the channel network alter inter-annually and during high-runoff events?
2. Materials and Methods
2.1. Time-Lapse Camera
2.2. AWS—Automatic Weather Station
2.3. Discharge Gauging Station
2.4. Image Analysis Process
3. Results
3.1. Images Available for Analysis
3.2. Areal Inundation Frequency
3.3. Daily Maximum Inundation Area
4. Discussion
4.1. Daily Maximum Inundation Area
4.2. Weather Conditions and Illumination
4.3. Spatial Segregation of AoI and AWS
4.4. Showcase Example
4.5. Future Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zemp, M.; Frey, H.; Gartner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrom, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Fischer, A.; Schwaizer, G.; Seiser, B.; Helfricht, K.; Stocker-Waldhuber, M. High-resolution inventory to capture glacier disintegration in the Austrian Silvretta. Cryosphere 2021, 15, 4637–4654. [Google Scholar] [CrossRef]
- Carrivick, J.; Heckmann, T.; Fischer, M.; Davies, B. An Inventory of Proglacial Systems in Austria, Switzerland and Across Patagonia. In Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes; Heckmann, T., Morche, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 43–57. [Google Scholar]
- Baewert, H.; Morche, D. Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol). Geomorphology 2014, 218, 88–97. [Google Scholar] [CrossRef]
- Heckmann, T.; McColl, S.; Morche, D. Retreating ice: Research in pro-glacial areas matters. Earth Surf. Processes Landf. 2016, 41, 271–276. [Google Scholar] [CrossRef]
- Comiti, F.; Mao, L.; Penna, D.; Dell’Agnese, A.; Engel, M.; Rathburn, S.; Cavalli, M. Glacier melt runoff controls bedload transport in Alpine catchments. Earth Planet. Sci. Lett. 2019, 520, 77–86. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Huss, M.; Fischer, M. Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change. Front. Earth Sci. 2016, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Laurent, L.; Buoncristiani, J.-F.; Pohl, B.; Zekollari, H.; Farinotti, D.; Huss, M.; Mugnier, J.-L.; Pergaud, J. The impact of climate change and glacier mass loss on the hydrology in the Mont-Blanc massif. Sci. Rep. 2020, 10, 10420. [Google Scholar] [CrossRef]
- Giorgi, F.; Torma, C.; Coppola, E.; Ban, N.; Schär, C.; Somot, S. Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci. 2016, 9, 584–589. [Google Scholar] [CrossRef]
- Brönnimann, S.; Rajczak, J.; Fischer, E.M.; Raible, C.C.; Rohrer, M.; Schär, C. Changing seasonality of moderate and extreme precipitation events in the Alps. Nat. Hazards Earth Syst. Sci. 2018, 18, 2047–2056. [Google Scholar] [CrossRef] [Green Version]
- Lane, S.N.; Bakker, M.; Gabbud, C.; Micheletti, N.; Saugy, J.N. Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology 2017, 277, 210–227. [Google Scholar] [CrossRef] [Green Version]
- Porter, P.R.; Smart, M.J.; Irvine-Fynn, T.D.L. Glacial Sediment Stores and Their Reworking. In Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes; Heckmann, T., Morche, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 157–176. [Google Scholar]
- Carrivick, J.L.; Heckmann, T.; Turner, A.; Fischer, M. An assessment of landform composition and functioning with the first proglacial systems dataset of the central European Alps. Geomorphology 2018, 321, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Chandler, J.; Ashmore, P.; Paola, C.; Gooch, M.; Varkaris, F. Monitoring River-Channel Change Using Terrestrial Oblique Digital Imagery and Automated Digital Photogrammetry. Ann. Assoc. Am. Geogr. 2002, 92, 631–644. [Google Scholar] [CrossRef]
- Ashmore, P.; Sauks, E. Prediction of discharge from water surface width in a braided river with implications for at-a-station hydraulic geometry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Gleason, C.J.; Smith, L.C.; Finnegan, D.C.; LeWinter, A.L.; Pitcher, L.H.; Chu, V.W. Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river. Hydrol. Earth Syst. Sci. 2015, 19, 2963–2969. [Google Scholar] [CrossRef] [Green Version]
- Young, D.S.; Hart, J.K.; Martinez, K. Image analysis techniques to estimate river discharge using time-lapse cameras in remote locations. Comput. Geosci. 2015, 76, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Leduc, P.; Ashmore, P.; Sjogren, D. Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera. Hydrol. Earth Syst. Sci. 2018, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Revilla-Romero, B.; Hirpa, F.A.; Pozo, J.T.-d.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; De Groeve, T. On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions. Remote Sens. 2015, 7, 15702–15728. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.-W.; Wu, J.-H.; Lin, F.-P.; Hsu, C.-H. Visual Sensing for Urban Flood Monitoring. Sensors 2015, 15, 20006–20029. [Google Scholar] [CrossRef] [Green Version]
- Moy de Vitry, M.; Leitão, J.P. The potential of proxy water level measurements for calibrating urban pluvial flood models. Water Res. 2020, 175, 115669. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sens. 2019, 11, 879. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; Janicke, A. Glacier mass balance Jamtalferner, Silvretta, Austria, 2017/2018. In Glacier Mass Balances and Elevation Zones of Jamtalferner, Silvretta, Austria, 1988/1989 et Seq. Institut für Interdisziplinäre Gebirgsforschung der Österreichischen Akademie der Wissenschaften, Innsbruck; Fischer, A., Hartl, L., Markl, G., Kuhn, M., Eds.; PANGAEA: Bremen, Germany, 2016. [Google Scholar] [CrossRef]
- LTER-Austria—Austrian Society for Long-Term Ecological Research. Jamtalferner. Available online: https://forschungsinfrastruktur.bmbwf.gv.at/en/fi/jamtalferner_4237 (accessed on 20 December 2021).
- Discharge Radar RQ-30 ADMS. Available online: https://www.sommer.at/en/products/water/radarsensor-rq-30-adms (accessed on 20 December 2021).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Arganda-Carreras, I. Register Virtual Stack Slices. Available online: https://imagej.net/plugins/register-virtual-stack-slices (accessed on 20 December 2021).
- BLACK.ICE—Life in Ice Is Accelerating Glacial Melt by the Effect of Bioalbedo. Available online: https://www.sparklingscience.at/en/show.html?--typo3_neos_nodetypes-page[id]=1166 (accessed on 20 December 2021).
- Carrivick, J.L.; Smith, M.W.; Quincey, D.J. Developing Structure from Motion in the Geosciences. Prog. Phys. Geogr.-Earth Environ. 2016, 40, 247–275. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Sofia, G. Chapter 1—Structure from motion photogrammetric technique. In Developments in Earth Surface Processes; Tarolli, P., Mudd, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 1–24. [Google Scholar]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
Year | 2018 | 2019 | 2020 | |
---|---|---|---|---|
Total | Records | 2844 | 2123 | 2939 |
Time period | 26 May–16 December | 1 February–31 December | 1 January–25 October | |
Sorted | Records | 1168 | 180 | 900 |
Time period | 12 July–16 October | 18 September–1 November | 8 July–24 September | |
Reference image | 31 July 9:50:10 | 1 October 6:55:32 | 21 August 12:52:20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiller, C.; Walter, L.; Helfricht, K.; Weisleitner, K.; Achleitner, S. Flood Flow in a Proglacial Outwash Plain: Quantifying Spatial Extent and Frequency of Inundation from Time-Lapse Imagery. Water 2022, 14, 590. https://doi.org/10.3390/w14040590
Hiller C, Walter L, Helfricht K, Weisleitner K, Achleitner S. Flood Flow in a Proglacial Outwash Plain: Quantifying Spatial Extent and Frequency of Inundation from Time-Lapse Imagery. Water. 2022; 14(4):590. https://doi.org/10.3390/w14040590
Chicago/Turabian StyleHiller, Clemens, Lukas Walter, Kay Helfricht, Klemens Weisleitner, and Stefan Achleitner. 2022. "Flood Flow in a Proglacial Outwash Plain: Quantifying Spatial Extent and Frequency of Inundation from Time-Lapse Imagery" Water 14, no. 4: 590. https://doi.org/10.3390/w14040590
APA StyleHiller, C., Walter, L., Helfricht, K., Weisleitner, K., & Achleitner, S. (2022). Flood Flow in a Proglacial Outwash Plain: Quantifying Spatial Extent and Frequency of Inundation from Time-Lapse Imagery. Water, 14(4), 590. https://doi.org/10.3390/w14040590